JP2659409B2 - Manufacturing method of ceramic sliding member - Google Patents

Manufacturing method of ceramic sliding member

Info

Publication number
JP2659409B2
JP2659409B2 JP63191332A JP19133288A JP2659409B2 JP 2659409 B2 JP2659409 B2 JP 2659409B2 JP 63191332 A JP63191332 A JP 63191332A JP 19133288 A JP19133288 A JP 19133288A JP 2659409 B2 JP2659409 B2 JP 2659409B2
Authority
JP
Japan
Prior art keywords
silicon carbide
sliding member
carbide whiskers
sintered
samples
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63191332A
Other languages
Japanese (ja)
Other versions
JPH0244064A (en
Inventor
明秀 高見
宣夫 坂手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Matsuda KK
Original Assignee
Matsuda KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsuda KK filed Critical Matsuda KK
Priority to JP63191332A priority Critical patent/JP2659409B2/en
Publication of JPH0244064A publication Critical patent/JPH0244064A/en
Application granted granted Critical
Publication of JP2659409B2 publication Critical patent/JP2659409B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は優れた摺動特性が要求されるセラミック製摺
動部材、例えばロータリーピストンエンジンのアペック
スシールやポンプのスライディングベーンのようなセラ
ミック製摺動部材の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial application field) The present invention relates to a ceramic sliding member requiring excellent sliding characteristics, for example, a ceramic sliding member such as an apex seal of a rotary piston engine or a sliding vane of a pump. The present invention relates to a method for manufacturing a moving member.

(従来の技術) ロータリーピストンエンジン等のガスシール機構にお
いては、エンジン性能を維持し且つ充分に発揮させるた
めにシール材やトロコイド面は苛酷な摺動条件に耐える
ものでなければならない。特に近年のエンジンの高出力
化に伴い、アペックスシール等の摺動部材はますます厳
しい条件下に置かれている。このため従来の金属製シー
ル材によるとシール材の異常摩耗や焼付き等の問題が生
じるので、金属製シール材よりも優れた摺動特性を有す
るものとしてセラミック製シール材が注目されるように
なった。このようなセラミック製摺動部材を製造する方
法としては、特開昭59−54680号公報に示されるよう
に、窒化ケイ素粉末に炭素ケイ素ウィスカを添加して混
合原料を作製し、この混合原料を成形した後焼結する方
法が提案されている。
(Prior Art) In a gas seal mechanism such as a rotary piston engine, a sealing material and a trochoid surface must withstand severe sliding conditions in order to maintain and sufficiently exhibit engine performance. In particular, with the recent increase in engine output, sliding members such as apex seals have been placed under increasingly severe conditions. For this reason, according to the conventional metal seal material, problems such as abnormal wear and seizure of the seal material occur, so that the ceramic seal material has attracted attention as having better sliding characteristics than the metal seal material. became. As a method of manufacturing such a ceramic sliding member, as shown in JP-A-59-54680, a mixed raw material is prepared by adding carbon silicon whiskers to silicon nitride powder, and the mixed raw material is prepared. A method of sintering after molding has been proposed.

(発明が解決しようとする課題) ところが、この従来のセラミック製摺動部材の製造方
法によると、炭化ケイ素ウィスカが毛玉状になって機械
加工時に角部が欠ける、いわゆるチッピング現象が発生
したり、または、摺動特性、曲げ強度及び破壊靭性の点
で満足できない摺動部材が製造されることがある。
(Problems to be Solved by the Invention) However, according to the conventional method for manufacturing a ceramic sliding member, a so-called chipping phenomenon in which silicon carbide whiskers become pillow-like and lack corners during machining, or In some cases, a sliding member that is not satisfactory in terms of sliding characteristics, bending strength, and fracture toughness is produced.

上記に鑑みて本発明は、チッピングが発生しないと共
に摺動特性、曲げ強度及び破壊靭性に優れた摺動部材を
得ることができるセラミック製摺動部材の製造方法を提
供することを目的とする。
In view of the above, it is an object of the present invention to provide a method of manufacturing a ceramic sliding member that can obtain a sliding member that does not generate chipping and has excellent sliding characteristics, bending strength, and fracture toughness.

(課題を解決するための手段) 上記の目的を達成するため本発明は、窒化ケイ素粉末
に添加する炭化ケイ素ウィスカの長さ及びこの混合原料
を成形する条件を特定するものである。
(Means for Solving the Problems) In order to achieve the above object, the present invention specifies the length of a silicon carbide whisker to be added to a silicon nitride powder and the conditions for molding this mixed raw material.

具体的に本発明の講じた解決手段は、窒化ケイ素粉末
と炭化ケイ素ウィスカとの混合原料を焼結してなるセラ
ミック製摺動部材の製造方法を、窒化ケイ素粉末に焼結
後の窒化ケイ素粉末の平均粒径の1〜15倍の平均長を有
する炭化ケイ素ウィスカを添加して混合原料を作製し、
このようにして得た混合原料を炭化ケイ素ウィスカがラ
ンダム配向するように成形した後、この成形体を常圧焼
結する構成としたものである。
Specifically, a solution taken by the present invention is to provide a method of manufacturing a ceramic sliding member obtained by sintering a mixed raw material of silicon nitride powder and silicon carbide whisker. A mixed raw material is prepared by adding silicon carbide whiskers having an average length of 1 to 15 times the average particle size of
The mixed material thus obtained is formed so that the silicon carbide whiskers are randomly oriented, and then the formed body is sintered under normal pressure.

(作用) 上記の構成により、本発明の製造方法により得られる
セラミック製摺動部材は、炭化ケイ素ウィスカの平均長
が焼結後の窒化ケイ素粉末の平均粒径の15倍以下である
ので、機械加工時にチッピングの発生が避けられると共
に曲げ強度の低下が避けられ、また、炭化ケイ素ウィス
カの平均長が焼結後の窒化ケイ素粉末の平均粒径よりも
長いので、摺動特性、曲げ強度及び破壊靭性の向上が図
られる。
(Function) In the ceramic sliding member obtained by the production method of the present invention, the average length of the silicon carbide whiskers is 15 times or less the average particle diameter of the sintered silicon nitride powder. The occurrence of chipping during processing is avoided and the decrease in bending strength is also avoided.Since the average length of the silicon carbide whiskers is longer than the average particle size of the silicon nitride powder after sintering, sliding characteristics, bending strength and fracture The toughness is improved.

さらに、このセラック製摺動部材は炭化ケイ素ウィス
カがランダム配向するように成形されるので機械加工時
にチッピングの発生が避けられる。
Further, since the shellac sliding member is formed so that the silicon carbide whiskers are randomly oriented, occurrence of chipping during machining can be avoided.

(実施例) 以下、本発明の実施例について説明する。(Example) Hereinafter, an example of the present invention will be described.

本発明に係るセラミック製摺動部材の製造方法は、窒
化ケイ素粉末に炭化ケイ素ウィスカ、すなわち繊維型炭
化ケイ素単結晶を加えて混合原料を得、この混合原料を
プレスにより炭化ケイ素ウィスカがランダム配向するよ
うにして成形体を作製し、この成形体を常圧で焼結して
セラミック製摺動部材を得るものである。この際、混合
原料中の炭化ケイ素ウィスカを、その平均長が焼結後の
窒化ケイ素粉末の平均粒径の1〜15倍の範囲内にあるも
のに限定しておく。
The method for manufacturing a ceramic sliding member according to the present invention is characterized in that a silicon carbide whisker, that is, a fiber-type silicon carbide single crystal is added to silicon nitride powder to obtain a mixed raw material, and the silicon carbide whisker is randomly oriented by pressing the mixed raw material. Thus, a molded body is produced, and the molded body is sintered at normal pressure to obtain a ceramic sliding member. At this time, the silicon carbide whiskers in the mixed raw material are limited to those having an average length within a range of 1 to 15 times the average particle diameter of the sintered silicon nitride powder.

以下においては、上記の製造方法の具体例を比較例と
共に説明し、炭化ケイ素ウィスカの平均長を上記のよう
に限定した理由及びこの炭化ケイ素ウィスカがランダム
配向するように成形する理由について説明する。
Hereinafter, specific examples of the above-described manufacturing method will be described together with comparative examples, and the reason why the average length of the silicon carbide whiskers is limited as described above and the reason that the silicon carbide whiskers are formed so as to be randomly oriented will be described.

具体例及び比較例その1: 平均粒径0.1μm、α型91%の窒化ケイ素粉末に、モ
ル%で酸化イットリウム、酸化セリウム、酸化ジルコニ
ウム、酸化ネオジウムを内分が92:2:1:1:4になるように
加え、さらに巾0.5μm、長さ30μm及び巾0.5μm、長
さ150μmの炭化ケイ素ウィスカを15重量%加えて混合
原料を得た。この混合原料を金型プレスにより炭化ケイ
素ウィスカがランダム配向するように成形して直径25m
m、厚さ5mmの円板状のの成形体を作製し、この成形体を
1850℃の温度下で2時間保持して焼結した。このように
して得た焼結体の密度はそれぞれ96%、85%であり、こ
の焼結体における窒化ケイ素粉末の平均粒径は3μmで
あった。
Specific Examples and Comparative Examples Part 1: Yttrium oxide, cerium oxide, zirconium oxide, and neodymium oxide are contained in a molar ratio of 92: 2: 1: 1: to silicon nitride powder having an average particle size of 0.1 μm and α-type of 91%. 4, and 15 wt% of silicon carbide whiskers having a width of 0.5 μm, a length of 30 μm and a width of 0.5 μm, and a length of 150 μm were further added to obtain a mixed raw material. This mixed raw material is molded by a die press so that the silicon carbide whiskers are randomly oriented and have a diameter of 25 m.
m, a disk-shaped molded body with a thickness of 5 mm was prepared, and this molded body was
It was sintered at a temperature of 1850 ° C. for 2 hours. The densities of the sintered bodies thus obtained were 96% and 85%, respectively, and the average particle size of the silicon nitride powder in the sintered bodies was 3 μm.

窒化ケイ素を主成分とする焼結体においては密度と曲
げ強度は密接な関係にあり、密度が92%以上でないと焼
結体に求められる実用的な曲げ強度に達しないことは既
に知られている。この点から焼結後の窒化ケイ素粉末の
平均粒径3μmの15倍を超えている150μmの長さを有
する炭化ケイ素ウィスカは採用できないことが分かる。
It is already known that the density and bending strength of a sintered body containing silicon nitride as a main component are closely related to each other, and it is not possible to achieve the practical bending strength required for the sintered body unless the density is 92% or more. I have. From this point, it can be seen that a silicon carbide whisker having a length of 150 μm, which is more than 15 times the average particle size of 3 μm of the sintered silicon nitride powder, cannot be adopted.

具体例及び比較例その2: 平均粒径0.1μm、α型91%の窒化ケイ素粉末に、モ
ル%で酸化イットリウム、酸化アルミニウムを内分が8
5:5:5になるように加えた粉末材料を準備し、この粉末
材料、すなわち無添加のものを試料1とした。次にこの
粉末材料に、幅が0.5μmであって、平均長がそれぞれ1
5μm、35μm、50μm、80μm、100μm、150μmで
ある炭化ケイ素ウィスカを各20重量%加えて得た混合原
料をそれぞれ試料2〜7とした。このようにして得た試
料1〜7を金型プレスにより炭化ケイ素ウィスカがラン
ダム配向するように成形して成形体を作製し、この成形
体を窒素(N2)ガス中で1750℃の温度下で2時間保持し
て焼結した。さらにこの焼結体を1800℃、窒素(N2)15
00気圧の条件下で0.5時間保持して熱間加圧(ホットア
イソスタティックプレス)を施したところ、これらの焼
結体における窒化ケイ素粉末の平均粒径は3〜5μmで
あった。
Specific Examples and Comparative Example 2: A silicon nitride powder having an average particle size of 0.1 μm and α-type of 91% was mixed with yttrium oxide and aluminum oxide in an amount of 8% by mole.
A powder material added at 5: 5: 5 was prepared, and this powder material, that is, an additive-free material was used as Sample 1. Next, this powder material is 0.5 μm wide and has an average length of 1
Mixed materials obtained by adding 20% by weight of silicon carbide whiskers of 5 μm, 35 μm, 50 μm, 80 μm, 100 μm, and 150 μm were designated as Samples 2 to 7, respectively. The thus obtained samples 1 to 7 were molded by a die press so that the silicon carbide whiskers were randomly oriented to produce a molded body, and this molded body was heated at a temperature of 1750 ° C. in nitrogen (N 2 ) gas. And sintered for 2 hours. Further, the sintered body is heated at 1800 ° C. and nitrogen (N 2 ) 15
When hot pressing (hot isostatic pressing) was performed while maintaining the pressure at 00 atm for 0.5 hour, the average particle size of the silicon nitride powder in these sintered bodies was 3 to 5 μm.

上記のようにして得た各焼結体を第1図に示すような
5mm×5mmの角棒状の摺動部材1に加工し、これらの摺動
部材1(試料1〜7)を140のレジンボンドのダイヤ
砥石2により切込み量50μmで荒研削したところ、試料
1〜4の摺動部材1は良好に研削できたが、試料5〜7
の摺動部材1は第2図に示すようにチッピング6が生
じ、特に試料7の摺動部材1はチッピングの深さが0.1m
mにも達した。
Each sintered body obtained as described above was used as shown in FIG.
A 5 mm × 5 mm square rod-shaped sliding member 1 was processed, and these sliding members 1 (samples 1 to 7) were roughly ground at a cutting depth of 50 μm with a 140 # resin-bonded diamond grindstone 2. Although the sliding member 1 of No. 4 was successfully ground, samples 5 to 7
As shown in FIG. 2, chipping 6 occurs in the sliding member 1 of FIG. 2. Particularly, the sliding member 1 of the sample 7 has a chipping depth of 0.1 m.
m.

また、試料1〜7の焼結体をJIS1601の方法により曲
げ強度試験を行うと共に、IM法により破壊靭性の試験を
行い、窒化ケイ素を主成分とする焼結体の特性に対する
炭化ケイ素ウィスカの長さの影響について調べた。この
結果は第3図に示すとおりであって、炭化ケイ素ウィス
カを添加すると無添加のものに比べて破壊靭性は大きく
なるが、この炭化ケイ素ウィスカの平均長が大きくなる
と曲げ強度が低下することが分かる。
Further, the sintered bodies of Samples 1 to 7 were subjected to a bending strength test according to the method of JIS1601, and a fracture toughness test was performed by the IM method. We investigated the effects of The results are as shown in FIG. 3. When silicon carbide whiskers are added, the fracture toughness is increased as compared with the case where no silicon carbide whiskers are added, but when the average length of the silicon carbide whiskers is increased, the bending strength may decrease. I understand.

さらに、試料1〜7の摺動部材1を170のビドリフ
ァイドボンドのダイヤ砥石2により切込み量40μmで荒
研削したところ、試料1〜4の摺動部材1は良好に研削
できたが、試料5〜7の摺動部材2はチッピングが生じ
た。これらのチッピング面を電子顕微鏡で観察したとこ
ろ、炭化ケイ素ウィスカが存在していたと思われる引き
抜かれた跡が無数にあった。
Further, when the sliding members 1 of samples 1 to 7 were roughly ground with a cutting depth of 40 μm using a diamond grindstone 2 of 170 # bidibond, the sliding members 1 of samples 1 to 4 were successfully ground. Chipping occurred in the sliding members 2 of Samples 5 to 7. When these chipping surfaces were observed with an electron microscope, there were countless traces of pulling out, which seemed to have silicon carbide whiskers.

以上の各試験から、焼結後の窒化ケイ素粉末の平均粒
径の15倍未満である50μm以下の長さを有する炭化ケイ
素ウィスカ(試料2〜4)は採用できるが、平均粒径の
15倍を超える80μm以上の長さを有するもの(試料5〜
7)は採用できないことが分かる。
From the above tests, silicon carbide whiskers (samples 2 to 4) having a length of 50 μm or less, which is less than 15 times the average particle size of the silicon nitride powder after sintering, can be employed.
With a length of 80 μm or more that exceeds 15 times
It can be seen that 7) cannot be adopted.

次に、試料3及び4の混合原料を第4図(a)〜
(c)に示すように湿式成形法により成形した。すなわ
ち、スラリー状の混合原料3をフィルター4の上に流し
込み、上方から加圧して水分を抜いて成形体5を得る。
この成形体5を上記と同様の条件下で焼結して焼結体
(試料3a,3b)を得た。これらの焼結体を上記と同様形
状の摺動部材1に加工した後、140のレジンボンドの
ダイヤ砥石2により切込量50μmで荒研削したところ、
いずれも第5図(a)に示すように、炭化ケイ素ウィス
カが層状になっている方向(図中の矢印の方向)に大き
なむしれ、すなわちチッピング6が生じた。この理由
は、湿式成形法により成形体5を得ると第5図(b)に
示すように、炭化ケイ素ウィスカが二次元方向(図中の
矢印の方向)に整列して配向するためであると思われ
る。従って、チッピングを防止するためには、湿式成形
法以外の方法、例えば金型プレス成形法等により炭化ケ
イ素ウィスカがランダム配向するように成形することが
必要である。
Next, the mixed raw materials of Samples 3 and 4 were prepared as shown in FIGS.
Molding was performed by a wet molding method as shown in (c). That is, the mixed raw material 3 in the form of a slurry is poured onto the filter 4 and pressurized from above to remove moisture, thereby obtaining a molded body 5.
The molded body 5 was sintered under the same conditions as above to obtain sintered bodies (samples 3a and 3b). After processing these sintered bodies into the sliding member 1 having the same shape as above, rough grinding was performed at a cutting depth of 50 μm with a 140 # resin-bonded diamond grindstone 2.
In each case, as shown in FIG. 5 (a), large scuffs occurred in the direction in which the silicon carbide whiskers were layered (the direction of the arrow in the figure), that is, chipping 6 occurred. The reason is that, when the molded body 5 is obtained by the wet molding method, as shown in FIG. 5B, the silicon carbide whiskers are aligned and oriented in a two-dimensional direction (the direction of the arrow in the figure). Seem. Therefore, in order to prevent chipping, it is necessary to form the silicon carbide whiskers by a method other than the wet forming method, such as a die press forming method, so that the silicon carbide whiskers are randomly oriented.

具体例及び比較例その3: 平均粒径0.7μm、α型92%の窒化ケイ素粉末に、モ
ル%で酸化イットリウム、酸化セリウム、酸化ジルコニ
ウム、酸化ランタンを内分が94.5:2:1:0.5:2になるよう
に加えた粉末材料を準備し、この粉末材料に平均粒径0.
3μmの炭化ケイ素粉末を加えて得た混合原料を試料8
とした。また、上記の粉末材料に幅が0.5μmであっ
て、平均長がそれぞれ3μm、15μm、35μmである炭
化ケイ素ウィスカを各10重量%加えて得た混合原料をそ
れぞれ試料9〜11とし、無添加のものを試料12とした。
これら試料8〜12を金型プレスにより成形して成形体を
作製し、この成形体を1800℃の温度下で4時間保持して
焼結したところ、焼結後の窒化ケイ素の平均粒径は4μ
mであった。
Specific Examples and Comparative Example 3: A silicon nitride powder having an average particle size of 0.7 μm and α-type of 92%, and yttrium oxide, cerium oxide, zirconium oxide, and lanthanum oxide in a molar percentage of 94.5: 2: 1: 0.5: Prepare a powder material added so that the average particle size of the powder material is 0.2.
The mixed raw material obtained by adding 3 μm silicon carbide powder was used as sample 8
And Also, mixed materials obtained by adding 10% by weight of silicon carbide whiskers each having a width of 0.5 μm and an average length of 3 μm, 15 μm, and 35 μm to each of the powder materials described above were referred to as samples 9 to 11, respectively. This was designated as Sample 12.
These samples 8 to 12 were molded by a die press to form a molded body, and the molded body was sintered at a temperature of 1800 ° C. for 4 hours. 4μ
m.

試料8〜12の焼結体を上記と同様の方法により曲げ強
度試験及び破壊靭性の試験を行い、窒化ケイ素を主成分
とする焼結体の特性に対する炭化ケイ素ウィスカの長さ
の影響について調べた。この結果は第6図に示すとおり
であって、試料8(図中△印で示す)のものは試料12
(図中○印で示す)のものと比較して、曲げ強度が低下
し、破壊靭性についても殆ど向上していない。このこと
から炭化ケイ素ウィスカの短いものは強度及び靭性に対
して効果のないことが分る。
A bending strength test and a fracture toughness test were performed on the sintered bodies of Samples 8 to 12 in the same manner as described above, and the effect of the length of the silicon carbide whiskers on the properties of the sintered body mainly containing silicon nitride was examined. . The result is as shown in FIG. 6, and the result of sample 8 (indicated by a mark in the figure) is the same as that of sample 12
Compared with those (shown by a circle in the figure), the bending strength was reduced and the fracture toughness was hardly improved. This shows that short silicon carbide whiskers have no effect on strength and toughness.

次に、試料8〜12の焼結体をピンディスク摩耗試験機
により摩耗試験を行い、炭化ケイ素ウィスカの長さによ
る摺動特性調べた。この試験は表面にCr−Moのめっき
(Hv1000)を施したディスクを摺速10m/秒で回転し、こ
の回転するディスクに焼結体であるピンを押付荷重10kg
/cmで60分間押付けることにより行った。この結果は第
7図に示すとおりであって、この摩耗量については試料
8(図中△印で示す)のものは炭化ケイ素が粉末のため
に試料12(図中○印で示す)のものと殆んど変らなかっ
た。また、ディスクの摩耗量については、炭化ケイ素の
粉末がピンとディスクとの間に介在して却ってディスク
を摩耗させるために、試料8(図中▲印で示す)のもの
は試料12(図中●印で示す)のものよりも多かった。ま
た、試料9の焼結体は試料8及び12のものに比べるとピ
ン及びディスク7の摩耗量は少ないが満足できる摺動特
性とは言えない。
Next, the sintered bodies of Samples 8 to 12 were subjected to an abrasion test using a pin disk abrasion tester, and the sliding characteristics according to the length of the silicon carbide whiskers were examined. In this test, a disk with its surface plated with Cr-Mo (Hv1000) was rotated at a sliding speed of 10 m / sec, and a pin, which was a sintered body, was pressed against the rotating disk with a load of 10 kg.
Performed by pressing at 60 cm / cm for 60 minutes. The results are as shown in FIG. 7, and the wear amount of the sample 8 (indicated by △ in the figure) is that of sample 12 (indicated by ○ in the figure) because the silicon carbide is powder. It was almost the same. Regarding the amount of wear of the disk, the sample 8 (indicated by ▲ in the figure) was replaced with the sample 12 (indicated by ● in the figure) because the silicon carbide powder was interposed between the pin and the disk and instead abraded the disk. (Indicated by a mark). The sintered body of sample 9 has less wear of the pin and disk 7 than those of samples 8 and 12, but cannot be said to have satisfactory sliding characteristics.

以上の各試験から、焼結後の窒化ケイ素粉末の平均粒
径よりも短い炭化ケイ素ウィスカ(試料9)及び炭化ケ
イ素粉末(試料8)は採用できないことが分る。
From the above tests, it is found that silicon carbide whiskers (sample 9) and silicon carbide powder (sample 8) shorter than the average particle size of the sintered silicon nitride powder cannot be used.

(発明の効果) 以上説明したように、本発明に係るセラミック製摺動
部材の製造方法によると、窒化ケイ素粉末に添加する炭
化ケイ素ウィスカの長さが特定されていると共に、この
炭化ケイ素ウィスカがランダム配向するように成形され
ているので、得られるセラミック製摺動部材は機械加工
時にチッピングが発生し難いと共に摺動特性、曲げ強度
及び破壊靭性に優れている。
(Effects of the Invention) As described above, according to the method for manufacturing a ceramic sliding member according to the present invention, the length of the silicon carbide whisker to be added to the silicon nitride powder is specified, and the silicon carbide whisker is used. Since the ceramic sliding member is formed so as to be randomly oriented, the resulting ceramic sliding member is less likely to cause chipping during machining and has excellent sliding characteristics, bending strength, and fracture toughness.

【図面の簡単な説明】[Brief description of the drawings]

第1図は摺動部材をダイヤ砥石により研削加工する状態
の説明図、第2図はこの研削加工によりチッピングが発
生した摺動部材の正面図、第3図は炭化ケイ素ウィスカ
の長さと曲げ強度及び破壊靭性の関係を示すグラフ、第
4図は湿式成形法の説明図、第5図は炭化ケイ素ウィス
カの配向を示す説明図であって、第5図(a)は摺動部
材の正面図、第5図(b)は成形体の斜視図、第6図は
炭化ケイ素ウィスカの長さと曲げ強度及び破壊靭性の関
係を示すグラフ、第7図は炭化ケイ素ウィスカの長さと
ピン及びディスクの摩耗量の関係を示すグラフである。 1……摺動部材、2……ダイヤ砥石、3……スラリー状
の混合原料、4……フィルター、5……成形体、6……
チッピング。
FIG. 1 is an explanatory view of a state in which a sliding member is ground by a diamond grindstone, FIG. 2 is a front view of the sliding member in which chipping has occurred by the grinding, and FIG. 3 is a length and bending strength of a silicon carbide whisker. FIG. 4 is an explanatory view of a wet forming method, FIG. 5 is an explanatory view showing the orientation of silicon carbide whiskers, and FIG. 5 (a) is a front view of a sliding member. Fig. 5 (b) is a perspective view of the compact, Fig. 6 is a graph showing the relationship between the length of silicon carbide whiskers and bending strength and fracture toughness, and Fig. 7 is the length of silicon carbide whiskers and wear of pins and disks. It is a graph which shows the relationship of quantity. DESCRIPTION OF SYMBOLS 1 ... Sliding member, 2 ... Diamond grindstone, 3 ... Slurry-like mixed raw material, 4 ... Filter, 5 ... Molded body, 6 ...
Chipping.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】窒化ケイ素粉末と炭化ケイ素ウィスカとの
混合原料を焼結してなるセラミック製摺動部材の製造方
法であって、窒化ケイ素粉末に焼結後の窒化ケイ素粉末
の平均粒径の1〜15倍の平均長を有する炭化ケイ素ウィ
スカを添加して混合原料を作製し、このようにして得た
混合原料を炭化ケイ素ウィスカがランダム配向するよう
に成形した後、この成形体を常圧焼結することを特徴と
するセラミック製摺動部材の製造方法。
1. A method for producing a ceramic sliding member, comprising sintering a mixed raw material of silicon nitride powder and silicon carbide whiskers, comprising: A mixed material was prepared by adding silicon carbide whiskers having an average length of 1 to 15 times, and the mixed material thus obtained was shaped so that the silicon carbide whiskers were randomly oriented. A method for producing a ceramic sliding member, comprising sintering.
JP63191332A 1988-07-29 1988-07-29 Manufacturing method of ceramic sliding member Expired - Fee Related JP2659409B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63191332A JP2659409B2 (en) 1988-07-29 1988-07-29 Manufacturing method of ceramic sliding member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63191332A JP2659409B2 (en) 1988-07-29 1988-07-29 Manufacturing method of ceramic sliding member

Publications (2)

Publication Number Publication Date
JPH0244064A JPH0244064A (en) 1990-02-14
JP2659409B2 true JP2659409B2 (en) 1997-09-30

Family

ID=16272796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63191332A Expired - Fee Related JP2659409B2 (en) 1988-07-29 1988-07-29 Manufacturing method of ceramic sliding member

Country Status (1)

Country Link
JP (1) JP2659409B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2705618B2 (en) * 1995-03-08 1998-01-28 株式会社日立製作所 Method for producing silicon nitride sintered body
CN116657063B (en) * 2023-07-31 2023-10-27 陕西太合智能钻探有限公司 High-wear-resistance polycrystalline diamond compact, and preparation method and application thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6055469B2 (en) * 1982-09-24 1985-12-05 工業技術院長 Method for producing fiber-reinforced silicon nitride sintered body
JPH0764639B2 (en) * 1986-10-03 1995-07-12 住友電気工業株式会社 Method for manufacturing silicon nitride sintered body

Also Published As

Publication number Publication date
JPH0244064A (en) 1990-02-14

Similar Documents

Publication Publication Date Title
US3543402A (en) Ceramic cutting blade
Mitchell Jr et al. Processing and properties of particulate composites from coated powders
KR910009894B1 (en) Ceramic products and process for producing the same
JPS61291463A (en) Material for high toughness ceramic tool
JP2659409B2 (en) Manufacturing method of ceramic sliding member
US4205964A (en) Process for producing ceramic powders and products resulting therefrom
US3830435A (en) Production of ceramic-metal composite powders and articles thereof
JP2729204B2 (en) Polycrystalline ceramic product and method for producing the same
JPH01115574A (en) Extremely thin cutting blade
US5352533A (en) Ceramic composite body, process for producing a ceramic composite
JPS63236757A (en) Polycrystal ceramic product and manufacture
JP4700217B2 (en) WC-ZrO2-based composite ceramic sintered body
KR920006807B1 (en) Preparation method of calcined body made by al2o3-ticx
KR960016069B1 (en) Silicon nitride base sintered body
JPS61111885A (en) Molding for grinding
JP2000070745A (en) Member for pulverizer
JPS5950075A (en) Manufacture of cubic boron nitride sintered body
JPS596837B2 (en) Ceramic sintered body for tools and its manufacturing method
JP2735702B2 (en) Fiber reinforced ceramic tools
JPS62287027A (en) Manufacture of porous cu-alloy sintered compact
JPH0583511B2 (en)
Kennedy Effect of microstructural features on the mechanical properties of REFEL self-bonded silicon carbide
JP2643503B2 (en) Manufacturing method of cubic boron nitride ceramic material with high toughness
JPS63236755A (en) Composite ceramics and manufacture
JP2588252B2 (en) Method of manufacturing wear-resistant sliding member

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees