JPS6054242A - Manufacture of rack - Google Patents

Manufacture of rack

Info

Publication number
JPS6054242A
JPS6054242A JP16288583A JP16288583A JPS6054242A JP S6054242 A JPS6054242 A JP S6054242A JP 16288583 A JP16288583 A JP 16288583A JP 16288583 A JP16288583 A JP 16288583A JP S6054242 A JPS6054242 A JP S6054242A
Authority
JP
Japan
Prior art keywords
rack
pinion
forging
electrode
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16288583A
Other languages
Japanese (ja)
Other versions
JPH0333418B2 (en
Inventor
Chiaki Yabe
矢部 千秋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jidosha Kiki Co Ltd
Original Assignee
Jidosha Kiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jidosha Kiki Co Ltd filed Critical Jidosha Kiki Co Ltd
Priority to JP16288583A priority Critical patent/JPS6054242A/en
Publication of JPS6054242A publication Critical patent/JPS6054242A/en
Publication of JPH0333418B2 publication Critical patent/JPH0333418B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K1/00Making machine elements
    • B21K1/76Making machine elements elements not mentioned in one of the preceding groups
    • B21K1/767Toothed racks

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Forging (AREA)

Abstract

PURPOSE:To obtain a desired rack shape by bringing a steering rate stock to warm or hot die-forging so that it becomes the same shape as the time when a rack is heated and expanded, and cooling and containing it. CONSTITUTION:As the first stage, a rack forging die 5 for forming a rack of the same shape as the time when a rack to be manufactured in expanded under heating is manufactured. Subsequently, a round bar-like steering rack stock 6 is placed in the forging die 5, and a single forging working is executed by warm or hot forging. In this case, since the forging is executed under heating, workability is good, and even in case of the rack stock 6 to which rough working is not performed, it is plastically deformed easily, and a rack tooth can be formed in the stock 6 by a ragged part 7 of the forging die 5. In this case, the rack is formed to the same shape as the shape in case the rack used for a steering device is heated and expanded.

Description

【発明の詳細な説明】 本発明は、ラックピニオン型ステアリング装置に用いら
nるラックを製造する方法に係り、特に鍛造加工によっ
てラックを製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a rack used in a rack and pinion type steering device, and particularly to a method of manufacturing a rack by forging.

一般に可変歯車比式ラックピニオン型ステアリング装置
のラックは、その歯形形状が複雑であるため機械的な切
削加工等[、J17製造することは不可能であり、その
ため鍛造によって製性加工する方法が行なわnている。
In general, the rack of a variable gear ratio rack and pinion type steering device has a complicated tooth profile, so it is impossible to manufacture it by mechanical cutting, etc. Therefore, the method of manufacturing it by forging is carried out. There are n.

しかしながら、鍛造によってラックを製造する場合には
、鍛造の工程を行なう前に、あらかじめ温間鍛造VC,
Il:る荒加工あるいは切削加工等を行なうことによっ
て、ラック素材をラックの最終形状に近似し゛た形状に
加工した後に、冷間鍛造による仕上加工をしてCた。こ
のようfX、2段階の工程によってラックを製造するこ
ととしていたのd、例えば、冷間鍛造一工程でラックを
製造しようとすると、鍛造型に加わる負荷が太きいため
型の寿命が短かく、また、弾性変形域でのスプリングバ
ック等VCより仕上精度が低下するという欠点があり、
一方、温間又は熱間鍛造一工程により製造しようとする
場合には、鍛造後の素材の熱収縮を考慮した上で高精度
のランクを製造しうる鍛造型を得ることが不可能であっ
たからである。
However, when manufacturing racks by forging, warm forging VC,
After the rack material was processed into a shape that approximated the final shape of the rack by rough machining or cutting, etc., it was finished by cold forging. In this way, racks were manufactured using a two-step process.For example, if a rack was manufactured using a single process of cold forging, the life of the mold would be short due to the large load applied to the forging die. In addition, there is a drawback that the finishing accuracy is lower than that of VC due to springback in the elastic deformation region.
On the other hand, in the case of manufacturing by one process of warm or hot forging, it was impossible to obtain a forging die capable of manufacturing high-precision ranks, taking into consideration the thermal contraction of the material after forging. It is.

本発明は、以上の点に鑑みなざnたもので、熱膨張の論
理と歯車の噛合理論とを合成することに、l:り、温間
又は熱間鍛造一工程という簡易な工程で高精度のラック
を製造することを可能としたラックの製造方法を提供す
るものであり、製造すべきラックが加熱下で膨張したと
きと同一の形状全なすラックを形成しうるような形状の
ラック鍛造型を先ず製作し、次にこのラック鍛造型を用
いて、ステアリングラック素材に温間又は熱間における
単一の鍛造加工を施し、そのラックが後に収縮したとき
に所望の形状のラックを得らnるようにしたものである
The present invention has been made in view of the above points, and is aimed at combining the theory of thermal expansion and the theory of gear meshing, and achieves high performance in a simple step of warm or hot forging. The present invention provides a rack manufacturing method that makes it possible to manufacture racks with high precision, and involves forging racks in a shape that allows the rack to be manufactured to have the same shape as when expanded under heating. A mold is first manufactured, and then this rack forging mold is used to perform a single warm or hot forging process on the steering rack material to obtain the desired rack shape when the rack is later shrunk. It was designed so that

以下、図示実施例に基づいて本発明を説明する。The present invention will be described below based on illustrated embodiments.

第1の工程として、製造すべきラックが加熱下で膨張し
たときと同一の形状をなすランクを形成しうる形状のラ
ック鍛造型、すなわち熱膨張時のランク歯形の凹凸と逆
でありかつ完全に対応する凹凸形状を有する鍛造型を製
作する。先ず、常温下において正規の噛合いをするラッ
クとビニオンは、温度分布が一定で、かつ、線膨張率が
各部分で一定であるならば、常温以外の他の温度条件下
でも正規の噛合いをするという物理的な性質に着眼し、
常温におけるビニオン形状を決定する歯車諸元に対して
、熱膨張時のピニオン形状を決定する諸元を導き出した
。一般に、ビニオン(1)の形状を決定する諸元として
通常用いらnるものとしては、第1図に鎖線で示すよう
に、基礎円径(Dg)、歯底円径(Db′)、歯先円径
(Dt)、半角(す、リード(L)とがある。熱膨張が
こnらの諸元にどのような影響を与えるかを考えると、
常温における形状と、熱膨張時の形状とは幾何学的に相
似形であるから、ピニオン形状を決定する諸元のうち、
寸法を示すものは熱膨張の影響全党け、その値は常温時
の寸法に熱膨張率を乗じた値となり、一方角度を示す諸
元は熱膨張の影響によっては変化しない。従って、上述
した常温時のビニオン(1)全加工指示する諸元に対し
、このビニオンの熱膨張時の形状と同一形状の工具(1
′〕を加工指示する諸元は以下の通りとなる。
The first step is to create a rack forging die with a shape that can form ranks that have the same shape as when the rack to be manufactured expands under heating, that is, the unevenness of the rank tooth profile during thermal expansion is opposite and completely A forging die with a corresponding uneven shape is manufactured. First, racks and pinions that mesh normally at room temperature will mesh normally even under other temperature conditions, provided the temperature distribution is constant and the coefficient of linear expansion is constant in each part. Focusing on the physical properties of
In contrast to the gear specifications that determine the pinion shape at room temperature, we derived the specifications that determine the pinion shape during thermal expansion. In general, the dimensions normally used to determine the shape of the binion (1) are the base circle diameter (Dg), the tooth root diameter (Db'), the tooth root diameter (Db'), and the There are the tip diameter (Dt), half angle (S), and lead (L). Considering how thermal expansion affects these specifications,
Since the shape at room temperature and the shape during thermal expansion are geometrically similar, among the specifications that determine the pinion shape,
The dimensions indicate all the effects of thermal expansion, and the value is the value obtained by multiplying the dimensions at room temperature by the coefficient of thermal expansion, while the dimensions indicating angles do not change due to the effects of thermal expansion. Therefore, with respect to the specifications specified for complete machining of the binion (1) at room temperature mentioned above, the tool (1
′] are as follows.

但し、α:膨張係数、T:素材の加熱温度とする。However, α: coefficient of expansion, T: heating temperature of the material.

上記(1)式によって得ら′nた諸元に基づいて、ホブ
切削及び研削等の加工を行なうことにより、ラックピニ
オン型ステアリング装置のビニオン(1)全熱膨張させ
たものと同一形状のビニオン工具(1′)(第1図に実
線で示す)を得ることができる。
Based on the specifications obtained from the above formula (1), by performing processing such as hob cutting and grinding, a binion of the same shape as the binion (1) of the rack and pinion type steering device that has been fully thermally expanded is obtained. A tool (1') (shown in solid line in FIG. 1) can be obtained.

次に、この工具(1′)と、電極ラックの素側’(2’
)との相対的な動きについて第2図〜第4図にょ9説明
する。尚、図中破線はステアリング装置のピニオン及び
ラック、実線は工具及び電極ラック累月ヲ示す。歯車諸
元中でピニオン工具(1′)とラック歯形の形成さする
素側(2′)との相対的な動きを示すものとしてピッチ
円径(Dp)がある。可変比率の歯車においては、ピッ
チ内径(D、っが回転角(θ)の関数として与えらnl
 ビニオン工具(1′)の任意の回転角(θ)邑りのラ
ック集材(2′つの相対的移動量(X)は、 として与えらnる。
Next, use this tool (1') and the bare side'(2') of the electrode rack.
) will be explained in FIGS. 2 to 4. In the figure, broken lines indicate the pinion and rack of the steering device, and solid lines indicate the tool and electrode rack. Among gear specifications, the pitch circle diameter (Dp) indicates the relative movement between the pinion tool (1') and the bare side (2') where the rack tooth profile is formed. In variable ratio gears, the pitch inner diameter (D) is given as a function of the rotation angle (θ).
The relative movement amount (X) of rack material collection (2') at any rotation angle (θ) of the binion tool (1') is given as:

常温のラック形状(2)と熱膨張したラック形状は、上
記ピニオンとfi’iJ様に幾何学的VC+g似でるジ
、又、ラック歯形を構成する各ポイントは、ピニオン(
1)或は工具(1′)の任意の回転角に対する移動した
歯形で構成される。すなわち、前述のように常温におい
て噛合いするピニオン(1)とラック(2)は、両者が
同−流度下で加熱さnても噛合うものであるから、前記
工具(1勺で熱膨張した状態の形状を有するラック歯形
を創成する条件は、所望の回転角(θ)aD(DrdA
動量(x’ )VCついて、常温時のランクピニオンに
おける移動量(x) VC熱膨張率を乗じた値(x’=
 xX(1+α@T))゛とすfば良い(第2図参照)
The rack shape (2) at room temperature and the thermally expanded rack shape resemble the above-mentioned pinion and fi'iJ.
1) Alternatively, it is composed of a tooth profile that moves for any rotation angle of the tool (1'). That is, as mentioned above, the pinion (1) and the rack (2) that mesh at room temperature will mesh even if they are heated at the same flow rate. The conditions for creating a rack tooth profile having the shape of the desired rotation angle (θ)aD(DrdA
The amount of movement (x') of the VC, the amount of movement in the rank pinion at room temperature (x) The value multiplied by the coefficient of VC thermal expansion (x'=
xX(1+α@T))゛ and f (see Figure 2)
.

この変更要素について、歯車諸元においては、(2)式
よりビニオン工具(1′つのピッチ円径(D′p)をD
哩=Dp×(1+α・T) −−−Hと丁tLは良い(
第6図参照)。
Regarding this change element, in the gear specifications, from equation (2), the binion tool (1' pitch circle diameter (D'p)
哩=Dp×(1+α・T) ---H and tL are good (
(See Figure 6).

更に、上記工具(1′)VCよって電極ラックの累月(
2′)を塑性加工する際のその他の変更すべき条件につ
いて考えると、電極ラック素材(2′〕及び工具(1′
)は共に熱膨張時の形状をしているのであるから、従来
技術における工具の軸芯と累月の軸芯との相対距離をZ
とすると、本発明における相対距離(Z′)は Z’= Z X (1+a・T) ”” (4)としな
けnばならない(第4図参照)。
Furthermore, the cumulative period of the electrode rack (
Considering other conditions that need to be changed when plastic working the electrode rack material (2') and the tool (1'
) both have the shape at the time of thermal expansion, so the relative distance between the axis of the tool and the axis of the moon in the prior art is Z
Then, the relative distance (Z') in the present invention must be Z'=Z X (1+a·T) "" (4) (see FIG. 4).

上述した如く、従来のビニオン工具″tなわちラックピ
ニオン型ステアリング装置のピニオン(1)と同一形状
の工具に対して、上記(1)及び(31式で換算−Gn
た諸元の工具(1’%、、l:つて、(4)式の条件下
で電極ラックの歯形を創成し、しかる後に電極ラックと
して整形する。そして、この電極ランクを用いて、従来
周知の放電加工法によυ鍛造型を製作する。この鍛造型
は、ステアリング装置に使用さnるラックが熱膨張した
時の形状を有するラックを鍛造加工!c、J:って成形
しつるものである。
As mentioned above, for a conventional pinion tool "t, that is, a tool having the same shape as the pinion (1) of a rack and pinion type steering device, -Gn converted using the above formulas (1) and (31)
The tooth profile of the electrode rack is created under the conditions of equation (4) using a tool with the specified specifications (1'%, l: A υ forging die is manufactured using the electric discharge machining method.This forging die is used to forge a rack that has the shape when the rack used in the steering device undergoes thermal expansion!c, J:. It is.

次に、上記工程により製作した鍛造型金用いて、第5図
に示すようにラックの鍛、竜加工を行なう。
Next, using the forging die produced in the above steps, the rack is forged and hammered as shown in FIG.

上記鍛造型(5)円に丸棒状少ステアリングラック累月
(6)を配置し、温間又は熱間において鍛造加工を行な
う。この鍛造は加熱下で行なわ12るので加工性が良く
、あらかじめ荒加工金施していないラック累月(6)で
あっても、容易に塑性変形させて、鍛造型(5)の凹凸
(γ)vC,l:つてラック素材(6)にラック歯を形
成することができる。このラックはステアリング装置に
使用されるラックが熱膨張した時の形状と同一の形状を
有しており、その後冷却さn収縮し、た場合に所望のラ
ック形状となる。このようにして温間又は熱間鍛造一工
程でラックを製造することによって、工数低減に、l:
v製造コストを低減させ、又、使用する鍛造型が一種で
良いため鍛造型の製f′「費の削減及び製作時間の短縮
という利益を得らnる。更に、従来と異なり単一の鍛造
工程でラックを製造するにもかかわらず、高精度の製品
を得ることが出来る。
A round bar-shaped small steering rack assembly (6) is placed in the forging die (5), and forging is performed in warm or hot conditions. Since this forging is carried out under heating12, workability is good, and even if the rack plate (6) has not been rough-machined in advance, it can be easily plastically deformed and the unevenness (γ) of the forging die (5) can be easily deformed. vC,l: Rack teeth can be formed on the rack material (6). This rack has the same shape as the rack used in the steering device when thermally expanded, and then cools and contracts to assume the desired rack shape. By manufacturing the rack in one step of warm or hot forging in this way, the number of man-hours can be reduced.
v It reduces manufacturing costs, and since only one forging die is required, it is possible to obtain the benefits of reducing forging die manufacturing costs and shortening production time. Even though the rack is manufactured in a process, it is possible to obtain a high-precision product.

次に、上8C実施例における鍛造工程で使用したラック
鍛造型を製作する他の方法について説明する。先ず、上
記実施例におけるビニオン工具と同一形状の電極ピニオ
ン工具を形成し、この電極ピニオンとランク素材との間
に、上記実施例と同様の相対運動全させることに、r、
ジ、ラック累月にラック歯溝を放電加工で創成する。次
いで、この歯型の形成さ′nたランク素材(以下マスク
ランクと呼ぶ)を用いて電極ラックを成形する。この工
程について第6図〜第9図VC,Il′す詳細に説明す
ると、マスクランク■)の歯型αηの歯面(旧上に離型
剤を塗布した後、マスタラック歯型α力の歯面(埒で第
1可塑材料のプラスチック型(18) vC歯面(1句
を形成する(第6図参照)。次に、プラスチック型(1
3)をマスタラック叫から分離した後、プラスチック型
歯面(1句に離型剤を塗布し、その後に第7図に示す如
く、プラスチック型歯面(貝に2〜3 mm程度の厚さ
の銅層05〕を電着させる。次に、第8図に示す如く、
プラスチック型歯面(所に銅層(至)ノが電着さnた状
態で、銅層(15)の補強材として第2可塑I料(16
) 召:銅層(15)の下面(15a)に接合させて電
極ランク(17)を成形する。
Next, another method of manufacturing the rack forging die used in the forging process in Example 8C above will be described. First, an electrode pinion tool having the same shape as the pinion tool in the above embodiment is formed, and a relative movement similar to that in the above embodiment is caused between the electrode pinion and the rank material.
The rack tooth groove is created by electric discharge machining in the rack. Next, an electrode rack is formed using the rank material on which the tooth pattern has been formed (hereinafter referred to as a mask rank). To explain this process in detail in Figures 6 to 9 VC, Il', after applying a mold release agent on the tooth surface of the tooth profile αη of the mask rank (■), the master rack tooth profile α force is applied. A plastic mold (18) of the first plastic material is formed on the tooth surface (forms one section (see Figure 6). Next, the plastic mold (18) is
After separating the plastic mold tooth surface (3) from the master rack, apply a mold release agent to the plastic mold tooth surface (one part), and then apply a mold release agent to the plastic mold tooth surface (approximately 2 to 3 mm thick on the shell) as shown in Figure 7. Copper layer 05] is electrodeposited.Next, as shown in FIG.
With the plastic mold tooth surface (where the copper layer (to) is electrodeposited), a second plastic I material (16) is applied as a reinforcing material for the copper layer (15).
) Formation of the electrode rank (17) by bonding it to the lower surface (15a) of the copper layer (15).

このようにして成形さ′t″した電極ラック(17)の
銅層歯面(18)はマスタラック歯面(靭と同一形状に
形成さnている。次に、電極ラック(17)をプラスチ
ック型(13)から分離した後、第9図に示す如く、電
極ラックの銅層(ロ))を加工電極とし、ラック歯形の
近似形状に予め歯切り加工さf′した近似歯形α9)を
有するラック鍛造型の素材を被加工物として放電加工を
おこない、ランク鍛造型(財)にランク成形用歯型il
l ’i影形成る。この鍛造型(財)は上記第1の製造
方法により形成さnた鍛造型と同様に、ステアリング装
置のランクが熱膨張した時の形状を有するランク全鍛造
加工しうるちのであり、温間又は熱間鍛造一工程で所望
の形状のラックを′得ることができる。
The copper layer tooth surface (18) of the electrode rack (17) formed in this way is formed in the same shape as the master rack tooth surface (toughness).Next, the electrode rack (17) is made of plastic. After separating from the mold (13), as shown in Fig. 9, the copper layer (b)) of the electrode rack is used as a processing electrode, and has an approximate tooth profile α9) which is pre-geared f' into an approximate shape of the rack tooth profile. Electrical discharge machining is performed using the material of the rack forging die as a workpiece, and the tooth die for rank forming is applied to the rank forging die (incorporated).
l'i shadow formation. Similar to the forging die formed by the first manufacturing method, this forging die (goods) is forged with the entire rank having the shape when the rank of the steering device undergoes thermal expansion, and is a warm or A rack of a desired shape can be obtained in one hot forging process.

以上述べたように、本発明方法によ7Lば、温間又は熱
間鍛造一工程で高精度のラック全製造することができる
As described above, according to the method of the present invention, a complete rack of 7L can be manufactured with high precision in one step of warm or hot forging.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はピニオンの形状を決定する両車諸元を示す説明
図、第2図〜第4図は本発明の一実施例について、ピニ
オンとピニオン工具と全対比させた説明図であり、第2
図はピニオンとピニオン工具の回転角に対するラックの
移動量、第6図はピッチ円径、第4図はラックとの軸間
距離を示す。 第5図id鍛造工程を示す、第6図〜第9図は鍛造型の
第2の製造方法を示す断面図である。 (1):ビニオン (2)ニラツク (1’):ピニオン工具 (2′)ニラツク素拐(5)
:鍛造型 (6)ニステアリングラック素材 第3図 第4図
FIG. 1 is an explanatory diagram showing the specifications of both vehicles that determine the shape of the pinion, and FIGS. 2
The figure shows the amount of movement of the rack relative to the rotation angle of the pinion and pinion tool, FIG. 6 shows the pitch circle diameter, and FIG. 4 shows the distance between the axes of the rack. FIG. 5 shows the id forging process, and FIGS. 6 to 9 are cross-sectional views showing the second manufacturing method of the forging die. (1): Binion (2) Pinion tool (1'): Pinion tool (2') Pinion removal (5)
: Forging mold (6) Ni steering rack material Figure 3 Figure 4

Claims (1)

【特許請求の範囲】 ・ (1)製造すべきラックが加熱下で膨張したときと
同一の形状をなすラックを形成しうるラック鍛造型を製
造する工程と、ステアリングランク素材を、上記ラック
鍛造型を用いた温間又は熱間における単一の鍛造工程に
よってラックに形成する工程とを含むラックの製造方法
。 (2)ラック鍛造型を製造する工程が、ラックピニオン
型ステアリング装置に用いら匙るピニオンを熱膨張させ
た時の歯車諸元に基づいてピニオン工具を形成する工程
と、このピニオン工具と、この工具によってラック歯形
が形成ざnる電極ランク素材とを、上記ステアリング装
置のラックとピニオンとの軸間距離に熱膨張率を乗じた
値の距離を隔てて配置し、かつ、こわら工具と累月とに
、上記ステアリング装置におけるピニオンの単位回転角
当りのラックの軸方向移動量に熱膨張率を乗じた値の移
動量を与えた相対運動をさせて、累月にラジク歯溝を創
成した後、この電極ラック累月を電極ラックに整形する
工程と、この電極ラックを用いた放電加工によって、ラ
ック鍛造加工用の鍛造型を形成する工程とから成る特許
請求の範囲第1項記載のラックの製造方法。 (8)ラック鍛造型を製造する工程がラックピニオン型
ステアリング装置に用いらnるピニオンを熱膨張させた
時の歯車諸元に基づいて電極ピニオン工具を形成する工
程と、この電極ピニオン工具と、この工具によってラッ
ク歯形が形成されるラック素材と金、上記ステアリング
装置のラックとピニオンとの軸間距離に熱膨張率を乗じ
た値の距離を隔てて配置し、かつ、こnら電極ピニオン
工具とラック素材とに、上記ステアリング装置における
ピニオンの単位回転角当りのラックの軸方向移動量に熱
膨張率を乗じた値の移動量を与えた相対運動をざぜて、
ランク素材にラック歯溝を放電加工で創成した後、′こ
のラック素材の歯面で樹脂型に歯面を転写し、離型剤が
塗布さnた前記樹脂型の歯面に銅層を電着し、この樹脂
型の歯面へ電着さt″した銅層に樹脂材料を接合して電
極ラックを成形する工程と、この電極ラックを用いた放
電加工によって、ラック鍛造加工用の鍛造型を形成する
工程とから成る特許請求の範囲第1項記載のランクの製
造方法。
[Claims] - (1) A process of manufacturing a rack forging die capable of forming a rack having the same shape as the rack to be manufactured when expanded under heating; forming a rack by a single warm or hot forging process using a rack. (2) The process of manufacturing the rack forging die includes a process of forming a pinion tool based on the gear specifications when the pinion used in the rack and pinion type steering device is thermally expanded; The electrode rank material on which the rack tooth profile is formed by the tool is placed at a distance equal to the distance between the axes of the rack and pinion of the steering device multiplied by the coefficient of thermal expansion, and A radial tooth gap was created in the radial tooth groove by causing a relative movement in the above-mentioned steering device with an amount of movement equal to the value obtained by multiplying the axial movement amount of the rack per unit rotation angle of the pinion by the coefficient of thermal expansion. The rack according to claim 1, comprising the steps of: shaping the electrode rack into an electrode rack; and forming a forging die for rack forging by electric discharge machining using the electrode rack. manufacturing method. (8) the step of manufacturing the rack forging die is a step of forming an electrode pinion tool based on the gear specifications when the pinion used in the rack and pinion type steering device is thermally expanded; and the electrode pinion tool; The rack material on which the rack tooth profile is formed by this tool and gold are arranged at a distance equal to the distance between the shafts of the rack and pinion of the steering device multiplied by the coefficient of thermal expansion, and the electrode pinion tool and the rack material are subjected to a relative movement in which the amount of movement in the axial direction of the rack per unit rotation angle of the pinion in the above steering device is multiplied by the coefficient of thermal expansion,
After creating a rack tooth groove on the rank material by electric discharge machining, the tooth surface of this rack material is transferred to a resin mold, and a copper layer is electrically applied to the tooth surface of the resin mold coated with a mold release agent. A forging die for rack forging is formed by forming an electrode rack by bonding a resin material to the electrodeposited copper layer on the tooth surface of the resin die, and by electrical discharge machining using this electrode rack. A method for manufacturing a rank according to claim 1, comprising the step of forming a rank.
JP16288583A 1983-09-05 1983-09-05 Manufacture of rack Granted JPS6054242A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16288583A JPS6054242A (en) 1983-09-05 1983-09-05 Manufacture of rack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16288583A JPS6054242A (en) 1983-09-05 1983-09-05 Manufacture of rack

Publications (2)

Publication Number Publication Date
JPS6054242A true JPS6054242A (en) 1985-03-28
JPH0333418B2 JPH0333418B2 (en) 1991-05-17

Family

ID=15763104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16288583A Granted JPS6054242A (en) 1983-09-05 1983-09-05 Manufacture of rack

Country Status (1)

Country Link
JP (1) JPS6054242A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016052875A (en) * 2014-09-04 2016-04-14 株式会社ジェイテクト Rack shaft and steering device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5216057A (en) * 1975-07-29 1977-02-07 Moririka:Kk Automatic filtrating and absorbing device
JPS5813431A (en) * 1981-07-13 1983-01-25 Jidosha Kiki Co Ltd Manufacture of rack
JPS5831257A (en) * 1981-08-03 1983-02-23 デイデイエル−ヴエルケ・アクチエン・ゲゼルシヤフト Method of elevating temperature of gassy inert heat transmitting medium when effective heat is extracted from energy accumulating medium operating through water adsorption

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5216057A (en) * 1975-07-29 1977-02-07 Moririka:Kk Automatic filtrating and absorbing device
JPS5813431A (en) * 1981-07-13 1983-01-25 Jidosha Kiki Co Ltd Manufacture of rack
JPS5831257A (en) * 1981-08-03 1983-02-23 デイデイエル−ヴエルケ・アクチエン・ゲゼルシヤフト Method of elevating temperature of gassy inert heat transmitting medium when effective heat is extracted from energy accumulating medium operating through water adsorption

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016052875A (en) * 2014-09-04 2016-04-14 株式会社ジェイテクト Rack shaft and steering device

Also Published As

Publication number Publication date
JPH0333418B2 (en) 1991-05-17

Similar Documents

Publication Publication Date Title
US5636440A (en) Process for manufacturing a hollow blade for a turbo-machine
US3628226A (en) Method of making hollow compressor blades
JP2978579B2 (en) Method of forming hollow blade
US5562785A (en) Method for manufacturing toothed gears
JP2016529106A (en) Manufacturing method of forged products and other processed products
RU2710827C1 (en) Method for manufacturing of gear wheels and gear wheel made with help thereof
TWI361117B (en)
CN106660108A (en) Hollow rack bar and method of manufacturing the hollow rack bar
KR20150088688A (en) Method of manufacturing gear with double teeth patterns involving forging and two stage cold extrusion process
Pacheco et al. Numerical simulation of electric hot incremental sheet forming of 1050 aluminum with and without preheating
KR900003037B1 (en) Swaged metal denture base
JPS6054242A (en) Manufacture of rack
JPH0356821B2 (en)
JP2018051615A (en) Die for hot forging and hot forging method
RU99113931A (en) METHOD FOR PRODUCING MULTILAYER CELLULAR STRUCTURE
JPH0579445B2 (en)
JP2008246569A (en) Method for manufacturing die for forging
CN114654168A (en) Processing technology of high-lock nut for aerospace
JP2004202576A (en) Forging metal die with two parallel faces facing each other, designing method for the metal die, forging method and forged article
JP3674399B2 (en) Stepped shaft manufacturing method and stepped shaft manufacturing apparatus
JP3494349B2 (en) Helical gear manufacturing method
JPS59218228A (en) Manufacture of press die
JPH0790317B2 (en) Extrusion molding equipment for forged parts
CN112719177B (en) Forging process method of asymmetric TA19 alloy casing forging
KR20190103600A (en) Method for manufacturing a bevel gear using a metal mold having a sink hole formed therein