JPH0333418B2 - - Google Patents

Info

Publication number
JPH0333418B2
JPH0333418B2 JP58162885A JP16288583A JPH0333418B2 JP H0333418 B2 JPH0333418 B2 JP H0333418B2 JP 58162885 A JP58162885 A JP 58162885A JP 16288583 A JP16288583 A JP 16288583A JP H0333418 B2 JPH0333418 B2 JP H0333418B2
Authority
JP
Japan
Prior art keywords
rack
pinion
tool
electrode
forging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58162885A
Other languages
Japanese (ja)
Other versions
JPS6054242A (en
Inventor
Chiaki Yabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jidosha Kiki Co Ltd
Original Assignee
Jidosha Kiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jidosha Kiki Co Ltd filed Critical Jidosha Kiki Co Ltd
Priority to JP16288583A priority Critical patent/JPS6054242A/en
Publication of JPS6054242A publication Critical patent/JPS6054242A/en
Publication of JPH0333418B2 publication Critical patent/JPH0333418B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K1/00Making machine elements
    • B21K1/76Making machine elements elements not mentioned in one of the preceding groups
    • B21K1/767Toothed racks

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Forging (AREA)

Description

【発明の詳細な説明】 本発明は、ラツクピニオン型ステアリング装置
に用いられるラツクを製造する方法に係り、特に
鍛造加工によつてラツクを製造する方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a rack used in a rack and pinion type steering device, and more particularly to a method for manufacturing a rack by forging.

一般に可変歯車比式ラツクピニオン型ステアリ
ング装置のラツクは、その歯形形状が複雑である
ため機械的な切削加工等により製造することは不
可能であり、そのため鍛造により塑性加工する方
法が行なわれている。しかしながら、鍛造によつ
てラツクを製造する場合には、鍛造の工程を行な
う前に、あらかじめ温間鍛造による荒加工あるい
は切削加工等を行なうことによつて、ラツク素材
をラツクの最終形状に近似した形状に加工した後
に、冷間鍛造による仕上加工をしていた。このよ
うな2段階の工程によつてラツクを製造すること
としていたのは、例えば、冷間鍛造一工程でラツ
クを製造しようとすると、鍛造型に加わる負荷が
大きいため型の寿命が短かく、また、弾性変形域
でのスプリングバツク等により仕上精度が低下す
るという欠点があり、一方、温間又は熱間鍛造一
工程により製造しようとする場合には、鍛造後の
素材の熱収縮を考慮した上で高精度のラツクを製
造しうる鍛造型を得ることが不可能であつたから
である。
In general, the rack of a variable gear ratio rack and pinion type steering device cannot be manufactured by mechanical cutting due to its complicated tooth profile, and therefore plastic working by forging is used. . However, when manufacturing racks by forging, before the forging process, the rack material is roughly processed by warm forging or cut to approximate the final shape of the rack. After processing into the shape, finishing processing was performed by cold forging. The reason why racks were manufactured through such a two-step process was that, for example, if a rack was manufactured in a single cold forging process, the life of the mold would be short due to the large load applied to the forging die. In addition, there is a drawback that finishing accuracy is reduced due to spring back in the elastic deformation region, etc. On the other hand, when manufacturing by warm or hot forging in one step, it is necessary to take into account the thermal shrinkage of the material after forging. This is because it was impossible to obtain a forging die capable of producing racks with high precision.

本発明は、以上の点に鑑みなされたもので、熱
膨張の論理と歯車の噛合理論とを合成することに
より、温間又は熱間鍛造一工程という簡易な工程
で高精度のラツクを製造することを可能としたラ
ツクの製造方法を提供するものであり、製造すべ
きラツクが加熱下で膨張したときと同一の形状を
なすラツクを形成しうるラツク鍛造型を製造する
工程と、ステアリングラツク素材を、上記ラツク
鍛造型を用いた温間又は熱間における単一の鍛造
工程によつてラツクに形成する工程とを備え、上
記ラツク鍛造型を製造する工程が、ラツクピニオ
ン型ステアリング装置に用いられるピニオンを熱
膨張させた時の歯車諸元に基づいてピニオン工具
を形成する工程と、このピニオン工具と、この工
具によつてラツク歯型が形成される電極ラツク素
材とを、上記ステアリング装置のラツクとピニオ
ンとの軸間距離に熱膨張率を乗じた値の距離を隔
てて配置し、かつ、これら工具と素材とに、上記
ステアリング装置におけるピニオンの単位回転角
当りのラツクの軸方向移動量に熱膨張率を乗じた
値の移動量を与えた相対運動をさせて、素材にラ
ツク歯溝を創成した後、この電極ラツク素材を電
極ラツクに整形する工程と、この電極ラツクを用
いた放電加工によつて、ラツク鍛造加工用の鍛造
型を形成する工程とから成ることを特徴としてい
る。
The present invention was made in view of the above points, and by combining the logic of thermal expansion and the theory of gear engagement, it is possible to manufacture a high-precision rack in a simple process of warm or hot forging. The present invention provides a method for manufacturing a rack that makes it possible to produce a rack, including a process for manufacturing a rack forging die that can form a rack that has the same shape as when the rack to be manufactured expands under heating, and a steering rack material. easily formed by a single warm or hot forging process using the above-mentioned rack forging die, and the process of manufacturing the above-mentioned rack forging die is used for a rack and pinion type steering device. A process of forming a pinion tool based on the gear specifications when the pinion is thermally expanded, and an electrode rack material in which a rack tooth shape is formed by this pinion tool are applied to the rack of the steering device. and the pinion at a distance equal to the distance between the shafts multiplied by the coefficient of thermal expansion, and the tool and the material are arranged at a distance equal to the axial movement of the rack per unit rotation angle of the pinion in the above steering device. A process of creating a rack tooth groove in the material by applying a relative movement with a movement amount multiplied by the coefficient of thermal expansion, and then shaping this electrode rack material into an electrode rack, and electrical discharge machining using this electrode rack. The method is characterized by a step of forming a forging die for easy forging.

以下、図示実施例に基づいて本発明を説明す
る。第1の工程として、製造すべきラツクが加熱
下で膨張したときと同一の形状をなすラツクを形
成しうる形状のラツク鍛造型、すなわち熱膨張時
のラツク歯形の凹凸と逆でありかつ完全に対応す
る凹凸形状を有する鍛造型を製作する。先ず、常
温下において正規の噛合いをするラツクとピニオ
ンは、温度分布が一定で、かつ、線膨張率が各部
分で一定であるならば、常温以外の温度条件でも
正規の噛合いをするという物理的な性質に着眼
し、常温におけるピニオン形状を決定する歯車諸
元に対して、熱膨張時のピニオン形状を決定する
諸元を導き出した。一般に、ピニオン1の形状を
決定する諸元として通常用いられるものとして
は、第1図に鎖線で示すように、基礎円径Dg、
歯底円径Db、歯先円径Dt、半角ε、リードLと
がある。熱膨張がこれらの諸元にどのような影響
を与えるかを考えると、常温における形状と、熱
膨張時の形状とは幾何学的に相似形であるから、
ピニオン形状を決定する諸元のうち、寸法を示す
ものは熱膨張の影響を受け、その値は常温時の寸
法に熱膨張率を乗じた値となり、一方角度を示す
諸元は熱膨張の影響によつて変化しない。従つ
て、上述した常温時のピニオン1を加工指示する
諸元に対し、このピニオンの熱膨張時の形状と同
一形状の工具1′を加工指示する諸元は以下の通
りとなる。
The present invention will be explained below based on illustrated embodiments. The first step is to use a rack forging die with a shape that allows the rack to be manufactured to form a rack that has the same shape as when it expands under heat, that is, the unevenness of the rack tooth profile during thermal expansion is opposite and completely. A forging die with a corresponding uneven shape is manufactured. First, a rack and pinion that mesh normally at room temperature will mesh normally even under temperature conditions other than room temperature if the temperature distribution is constant and the coefficient of linear expansion is constant in each part. Focusing on physical properties, we derived the specifications that determine the pinion shape during thermal expansion in contrast to the gear specifications that determine the pinion shape at room temperature. In general, the dimensions normally used to determine the shape of the pinion 1 are the basic circle diameter Dg, as shown by the chain line in FIG.
There is a root diameter Db, a tooth tip diameter Dt, a half angle ε, and a lead L. Considering how thermal expansion affects these specifications, the shape at room temperature and the shape during thermal expansion are geometrically similar, so
Among the specifications that determine the pinion shape, those that indicate dimensions are affected by thermal expansion, and their values are the dimensions at room temperature multiplied by the coefficient of thermal expansion, while specifications that indicate angles are affected by thermal expansion. does not change depending on Therefore, in contrast to the specifications for instructing the machining of the pinion 1 at room temperature described above, the specifications for instructing the machining of the tool 1' having the same shape as the pinion when thermally expanded are as follows.

工具の基礎円径(D′g)=Dg×(1+α・T) 工具の歯底円径(D′b)=Db×(1+α・T) 工具の歯先円径(D′t)=Dt×(1+α・T) 工具のリード(L′)=L×(1+α・T) 工具の半角(ε′)=ε
……(1) 但し、α:膨張計数、T:素材の加熱温度とす
る。
Tool basic circle diameter (D' g ) = D g × (1 + α・T) Tool root circle diameter (D' b ) = D b × (1 + α・T) Tool tip circle diameter (D' t ) =D t ×(1+α・T) Tool lead (L′)=L×(1+α・T) Tool half-angle (ε′)=ε
...(1) However, α: expansion coefficient, T: heating temperature of the material.

上記(1)式によつて得られた諸元に基づいて、ホ
ブ切削及び研削等の加工を行なうことにより、ラ
ツクピニオン型ステアリング装置のピニオン(1)を
熱膨張させたものと同一形状のぴに温工具1′
(第1図に実線で示す)を得ることができる。
Based on the specifications obtained from equation (1) above, by performing processing such as hobbing and grinding, a pinion of the same shape as the pinion (1) of the rack and pinion type steering device is made by thermally expanding it. Warm tool 1'
(shown by the solid line in FIG. 1) can be obtained.

次に、この工具1′と、電極ラツクの素材2′と
の相対的な動きについて第2図〜第4図により説
明する。尚、図中破線はステアリング装置のピニ
オン及びラツク、実線は工具及び電極ラツク素材
を示す。歯車居諸元中でピニオン工具1′とラツ
ク歯形の形成される素材2′との相対的な動きを
示すものとしてピツチ円径Dpがある。可変比率
の歯車においては、ピツチ円径Dpが回転角θの
関数として与えられ、ピニオン工具1′の任意の
回転角θ当りのラツク素材2′の相対的移動量x
は、 x=∫〓10f(θ)/2dθ……(2) として与えられる。
Next, the relative movement between the tool 1' and the electrode rack material 2' will be explained with reference to FIGS. 2 to 4. In the figure, broken lines indicate the pinion and rack of the steering device, and solid lines indicate the tool and electrode rack material. Among the gear gear specifications, there is a pitch circle diameter D p that indicates the relative movement between the pinion tool 1' and the material 2' on which the rack tooth profile is formed. In a variable ratio gear, the pitch circle diameter D p is given as a function of the rotation angle θ, and the relative displacement x of the rack material 2' per arbitrary rotation angle θ of the pinion tool 1'
is given as x=∫〓 10 f(θ)/2dθ...(2).

常温のラツク形状2と熱膨張したラツク形状
は、上記ピニオンと同様に幾何学的に相似であ
り、又、ラツク歯形を構成する各ポイントは、ピ
ニオン1或は工具1′の任意の回転角に対する移
動した歯形で構成される。すなわち、前述のよう
に常温において噛合いするピニオン1とラツク2
は、両者が同一温度下で加熱されても噛合うもの
であるから、前記工具1′で熱膨張した状態の形
状を有するラツク歯形を創成する条件は、所望の
回転角θ当りの移動量x′について、常温時のラツ
クピニオンにおける移動量xに熱膨張率を乗じた
値(x′=x×(1+α・T)とすれば良い(第2
図参照)。この変更要素について、歯車諸元にお
いては、(2)式よりピニオン工具1′のピツチ円径
D′pを D′p=Dp×(1+α・T) ……(3) とすれば良い(第3図参照)。
The rack shape 2 at normal temperature and the thermally expanded rack shape are geometrically similar to each other like the above-mentioned pinion, and each point constituting the rack tooth profile is Consists of shifted tooth profiles. In other words, as mentioned above, pinion 1 and rack 2 mesh at room temperature.
Since these mesh with each other even if they are heated at the same temperature, the conditions for creating a rack tooth profile having a thermally expanded shape with the tool 1' are as follows: the amount of movement x per desired rotation angle θ ′ should be the value obtained by multiplying the amount of movement x in the rack and pinion at room temperature by the coefficient of thermal expansion (x′=x×(1+α・T) (second
(see figure). Regarding this change factor, in the gear specifications, the pitch circle diameter of pinion tool 1' is calculated from equation (2).
D' p can be set as D' p = D p × (1 + α・T) ...(3) (see Figure 3).

更に、上記工具1′によつて電極ラツクの素材
2′を塑性加工する際のその他の変更すべき条件
について考えると、電極ラツク素材2′及び工具
1′は共に熱膨張時の形状をしているのであるか
ら、従来技術における工具の軸芯と素材の軸芯と
の相対距離をZとすると、本発明における相対距
離Z′は Z′=Z×(1+α・T) ……(4) としなければならない(第4図参照)。
Furthermore, considering other conditions that need to be changed when plastic working the electrode rack material 2' using the tool 1', it is important to note that both the electrode rack material 2' and the tool 1' have a shape when thermally expanded. Therefore, if the relative distance between the axis of the tool and the axis of the material in the prior art is Z, then the relative distance Z' in the present invention is Z'=Z×(1+α・T)...(4) (See Figure 4).

上述した如く、従来のピニオン工具すなわちラ
ツクピニオン型ステアリング装置のピニオン1と
同一形状の工具に対して、上記(1)及び(3)式で換算
された諸元の工具1′によつて、(4)式の条件下で
電極ラツクの歯形を創成し、しかる後に電極ラツ
クとして整形する。そして、この電極ラツクを用
いて、従来周知の放電加工法により鍛造型を製作
する。この鍛造型は、ステアリング装置に使用さ
れるラツクが熱膨張した時の形状を有するラツク
を鍛造加工によつて成形しうるものである。
As mentioned above, for a conventional pinion tool, that is, a tool having the same shape as the pinion 1 of a rack-pinion type steering device, by using the tool 1' with the specifications converted using equations (1) and (3) above, ( 4) Create the tooth profile of the electrode rack under the conditions of formula, and then shape it as an electrode rack. Then, using this electrode rack, a forging die is manufactured by a conventionally well-known electrical discharge machining method. This forging die is capable of forming, by forging, a rack that has a shape when a rack used in a steering device is thermally expanded.

次に、上記工程により製作した鍛造型を用い
て、第5図に示すようにラツクの鍛造加工を行な
う。上記鍛造型5内に丸棒状のステアリングラツ
ク素材6を配置し、温間又は熱間において鍛造加
工を行なう。この鍛造は加熱下で行なわるので加
工性が良く、あらかじめ荒加工を施していないラ
ツク素材6であつても、容易に塑性変形させて、
鍛造型5の凹凸7によつてラツク素材6にラツク
歯を形成することができる。このラツクはステア
リング装置に使用されるラツクが熱膨張した時の
形状と同一の形状を有しており、その後冷却され
収縮した場合に所望のラツク形状となる。このよ
うにして温間又は熱間鍛造一工程でラツクを製造
することによつて、工数低減により製造コストを
低減させ、又、使用する鍛造型が一種で良いため
鍛造型の製作費の削減及び製作時間の短縮という
利益を得られる。更に、従来と異なり単一の鍛造
工程でラツクを製造するにもかかわらず、高精度
の製品を得ることが出来る。
Next, using the forging die produced in the above steps, a simple forging process is performed as shown in FIG. A round bar-shaped steering rack material 6 is placed in the forging die 5 and forged in a warm or hot state. This forging is carried out under heating, so it has good workability, and even if it is a rough material 6 that has not been rough-machined beforehand, it can be easily plastically deformed.
Rack teeth can be formed in the rack material 6 by the unevenness 7 of the forging die 5. This rack has the same shape as the rack used in the steering device when thermally expanded, and assumes the desired rack shape when it is subsequently cooled and contracted. By manufacturing racks in one step of warm or hot forging in this way, manufacturing costs are reduced due to the reduction in man-hours, and since only one type of forging die is required, the manufacturing cost of forging dies is reduced. The benefit is a reduction in production time. Furthermore, although the rack is manufactured in a single forging process unlike the conventional method, a highly accurate product can be obtained.

次に、上記実施例における鍛造工程で使用した
ラツク鍛造型を製作する他の方法について説明す
る。先ず、上記実施例におけるピニオン工具と同
一形状の電極ピニオン工具を形成し、この電極ピ
ニオンとラツク素材との間に、上記実施例と同様
の相対運動をさせることにより、ラツク素材にラ
ツク歯溝を放電加工で創成する。次いで、この歯
型の形成されたラツク素材(以下マスタラツクと
呼ぶ)を用いて電極ラツクを成形する。この工程
について第6図〜第9図により詳細に説明する
と、マスタラツク10の歯型11の歯面12上に
離型剤を塗布した後、マスタラツク歯型11の歯
面12で第1可塑材料のプラスチツク型13に歯
面14を形成する(第6図参照)。次に、プラス
チツク型13をマスタラツク10から分離した
後、プラスチツク型歯面14に離型剤を塗布し、
その後に第7図に示す如く、プラスチツク型歯面
14に2〜3mm程度の厚さの銅層15を電着させ
る。次に、第8図に示す如く、プラスチツク型歯
面14に銅層15が電着された状態で、銅層15
の補強材として第2可塑材料16を銅層15の下
面15aに接合させて電極ラツク17を成形す
る。このようにして成形された電極ラツク17の
銅層歯面18はマスタラツク歯面12と同一形状
に形成されている。次に、電極ラツク17をプラ
スチツク型13ら分離した後、第9図に示す如
く、電極ラツクの銅層15を加工電極とし、ラツ
ク歯形の近似形状に予め歯切り加工された近似歯
形19を有するラツク鍛造型の素材を被加工物と
して放電加工をおこない、ラツク鍛造型20にラ
ツク成形用歯型21を形成する。この鍛造型20
は上記第1の製造方法により形成された鍛造型と
同様に、ステアリング装置のラツクが熱膨張した
時の形状を有するラツクを鍛造加工しうるもので
あり、温間又は熱間鍛造一工程で所望の形状のラ
ツクを得ることができる。
Next, another method of manufacturing the easy forging die used in the forging process in the above embodiment will be described. First, an electrode pinion tool having the same shape as the pinion tool in the above example is formed, and a relative movement similar to that in the above example is made between the electrode pinion and the rack material to form a rack tooth groove in the rack material. Created by electrical discharge machining. Next, an electrode rack is formed using the rack material with the tooth pattern (hereinafter referred to as master rack). This process will be explained in detail with reference to FIGS. 6 to 9. After applying a mold release agent on the tooth surface 12 of the tooth pattern 11 of the master rack 10, the first plastic material is applied on the tooth surface 12 of the master rack tooth pattern 11. A tooth surface 14 is formed on the plastic mold 13 (see FIG. 6). Next, after separating the plastic mold 13 from the master rack 10, a mold release agent is applied to the tooth surfaces 14 of the plastic mold,
Thereafter, as shown in FIG. 7, a copper layer 15 having a thickness of about 2 to 3 mm is electrodeposited on the plastic tooth surface 14. Next, as shown in FIG. 8, the copper layer 15 is electrodeposited on the plastic tooth surface 14.
A second plastic material 16 is bonded to the lower surface 15a of the copper layer 15 as a reinforcing material to form the electrode rack 17. The copper layer tooth surface 18 of the electrode rack 17 thus formed has the same shape as the master rack tooth surface 12. Next, after separating the electrode rack 17 from the plastic mold 13, as shown in FIG. 9, the copper layer 15 of the electrode rack is used as a machining electrode, and has an approximate tooth profile 19 which has been pre-cut into an approximate shape of the rack tooth profile. A tooth die 21 for easy forming is formed in the easy forging die 20 by performing electric discharge machining using the material of the easy forging die as a workpiece. This forging die 20
Similar to the forging mold formed by the first manufacturing method, the rack can be forged to have the shape when the rack of the steering device is thermally expanded, and the desired shape can be formed in one step of warm or hot forging. You can get a rack in the shape of .

以上述べたように、本発明方法によれば、温間
又は熱間鍛造一工程で高精度のラツクを製造する
ことができる。
As described above, according to the method of the present invention, a highly accurate rack can be manufactured in one step of warm or hot forging.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はピニオンの形状を決定する歯車諸元を
示す説明図、第2図〜第4図は本発明の一実施例
について、ピニオンとピニオン工具とを対比させ
た説明図であり、第2図はピニオンとピニオン工
具の回転角に対するラツクの移動量、第3図はピ
ツチ円径、第4図はラツクとの軸間距離を示す。
第5図は鍛造工程を示す。第6図〜第9図は鍛造
型の第2の製造方法を示す断面図である。 1:ピニオン、2:ラツク、1′:ピニオン工
具、2′:ラツク素材、5:鍛造型、6:ステア
リングラツク素材。
FIG. 1 is an explanatory diagram showing gear specifications that determine the shape of the pinion, and FIGS. 2 to 4 are explanatory diagrams comparing a pinion and a pinion tool in one embodiment of the present invention. The figure shows the amount of movement of the rack relative to the rotation angle of the pinion and pinion tool, Figure 3 shows the pitch circle diameter, and Figure 4 shows the distance between the shafts of the rack.
Figure 5 shows the forging process. 6 to 9 are cross-sectional views showing a second method of manufacturing a forging die. 1: pinion, 2: rack, 1': pinion tool, 2': rack material, 5: forging die, 6: steering rack material.

Claims (1)

【特許請求の範囲】 1 製造すべきラツクが加熱下で膨張したときと
同一の形状をなすラツクを形成しうるラツク鍛造
型を製造する工程と、ステアリングラツク素材
を、上記ラツク鍛造型を用いた温間又は熱間にお
ける単一の鍛造工程によつてラツクに形成する工
程とを備え、上記ラツク鍛造型を製造する工程
が、ラツクピニオン型ステアリング装置に用いら
れるピニオンを熱膨張させた時の歯車諸元に基づ
いてピニオン工具を形成する工程と、このピニオ
ン工具と、この工具によつてラツク歯型が形成さ
れる電極ラツク素材とを、上記ステアリング装置
のラツクとピニオンとの軸間距離に熱膨張率を乗
じた値の距離を隔てて配置し、かつ、これら工具
と素材とに、上記ステアリング装置におけるピニ
オンの単位回転角当りのラツクの軸方向移動量に
熱膨張率を乗じた値の移動量を与えた相対運動を
させて、素材にラツク歯溝を創成した後、この電
極ラツク素材を電極ラツクに整形する工程と、こ
の電極ラツクを用いた放電加工によつて、ラツク
鍛造加工用の鍛造型を形成する工程とから成るこ
とを特徴とするラツクの製造方法。 2 ラツク鍛造型を製造する工程がラツクピニオ
ン型ステアリング装置に用いられるピニオンを熱
膨張させた時の歯車諸元に基づいて電極ピニオン
工具を形成する工程と、この電極ピニオン工具
と、この工具によつてラツク歯形が形成されるラ
ツク素材とを、上記ステアリング装置のラツクと
ピニオンとの軸間距離に熱膨張率を乗じた値の距
離を隔てて配置し、かつ、これら電極ピニオン工
具とラツク素材とに、上記ステアリング装置にお
けるピニオンの単位回転角当りのラツクの軸方向
移動量に熱膨張率を乗じた値の移動量を与えた相
対運動をさせて、ラツク素材にラツク歯溝を放電
加工で創成した後、このラツク素材の歯面で樹脂
型に歯面を転写し、離型剤が塗布された前記樹脂
型の歯面に銅層を電着し、この樹脂型の歯面へ電
着された銅層に樹脂材料を接合して電極ラツクを
成形する工程と、この電極ラツクを用いた放電加
工によつて、ラツク鍛造加工用の鍛造型を形成す
る工程とから成る特許請求の範囲第1項記載のラ
ツクの製造方法。
[Scope of Claims] 1. A process for manufacturing a rack forging die capable of forming a rack having the same shape as the rack to be manufactured when expanded under heating, and a steering rack material using the rack forging die described above. and a step of easily forming the gear by a single warm or hot forging step, and the step of manufacturing the rack forging die thermally expands a pinion used in a rack and pinion type steering device. A process of forming a pinion tool based on the specifications, and heating the pinion tool and the electrode rack material, on which the rack tooth shape is formed by the tool, to the distance between the shafts of the rack and pinion of the steering device. The tool and the material are arranged at a distance equal to the value multiplied by the coefficient of expansion, and the tool and the material are moved by a value equal to the axial movement of the rack per unit rotation angle of the pinion in the steering device multiplied by the coefficient of thermal expansion. After creating an easy tooth groove in the material by applying a certain amount of relative motion, the electrode rack material is shaped into an electrode rack, and electrical discharge machining is performed using this electrode rack to create a shape for easy forging. 1. A method for manufacturing racks, comprising the steps of forming a forging die. 2. The process of manufacturing the rack forging die includes the process of forming an electrode pinion tool based on the gear specifications when the pinion used in the rack and pinion type steering device is thermally expanded, and this electrode pinion tool and the tool. A rack material on which a rack tooth profile is formed is arranged at a distance equal to the distance between the shafts of the rack and pinion of the steering device multiplied by the coefficient of thermal expansion, and the electrode pinion tool and the rack material are Then, create a rack tooth groove in the rack material by electric discharge machining by causing a relative movement that gives a movement amount equal to the value of the axial movement amount of the rack multiplied by the coefficient of thermal expansion per unit rotation angle of the pinion in the above steering device. After that, the tooth surface of this easy material is transferred to a resin mold, and a copper layer is electrodeposited on the tooth surface of the resin mold coated with a mold release agent. Claim 1 comprises the steps of forming an electrode rack by bonding a resin material to the copper layer, and forming a forging die for rack forging by electric discharge machining using the electrode rack. Method for producing racks as described in Section 1.
JP16288583A 1983-09-05 1983-09-05 Manufacture of rack Granted JPS6054242A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16288583A JPS6054242A (en) 1983-09-05 1983-09-05 Manufacture of rack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16288583A JPS6054242A (en) 1983-09-05 1983-09-05 Manufacture of rack

Publications (2)

Publication Number Publication Date
JPS6054242A JPS6054242A (en) 1985-03-28
JPH0333418B2 true JPH0333418B2 (en) 1991-05-17

Family

ID=15763104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16288583A Granted JPS6054242A (en) 1983-09-05 1983-09-05 Manufacture of rack

Country Status (1)

Country Link
JP (1) JPS6054242A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6361386B2 (en) * 2014-09-04 2018-07-25 株式会社ジェイテクト Rack shaft and steering device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5216057A (en) * 1975-07-29 1977-02-07 Moririka:Kk Automatic filtrating and absorbing device
JPS5813431A (en) * 1981-07-13 1983-01-25 Jidosha Kiki Co Ltd Manufacture of rack
JPS5831257A (en) * 1981-08-03 1983-02-23 デイデイエル−ヴエルケ・アクチエン・ゲゼルシヤフト Method of elevating temperature of gassy inert heat transmitting medium when effective heat is extracted from energy accumulating medium operating through water adsorption

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5216057A (en) * 1975-07-29 1977-02-07 Moririka:Kk Automatic filtrating and absorbing device
JPS5813431A (en) * 1981-07-13 1983-01-25 Jidosha Kiki Co Ltd Manufacture of rack
JPS5831257A (en) * 1981-08-03 1983-02-23 デイデイエル−ヴエルケ・アクチエン・ゲゼルシヤフト Method of elevating temperature of gassy inert heat transmitting medium when effective heat is extracted from energy accumulating medium operating through water adsorption

Also Published As

Publication number Publication date
JPS6054242A (en) 1985-03-28

Similar Documents

Publication Publication Date Title
US3628226A (en) Method of making hollow compressor blades
US4708912A (en) Sintered metal body with at least one toothing
US20070240307A1 (en) Method for manufacturing constituents of a hollow blade by press forging
RU2710827C1 (en) Method for manufacturing of gear wheels and gear wheel made with help thereof
TW201041673A (en) Gear forming method
JPH035251B2 (en)
CA1219471A (en) Sintered metal body with at least one toothing
JPH0333418B2 (en)
JPS6127138A (en) Forging method of speed change gear
JPH0356821B2 (en)
JPS6128860B2 (en)
JPH0579445B2 (en)
RU99113931A (en) METHOD FOR PRODUCING MULTILAYER CELLULAR STRUCTURE
JP3407148B2 (en) Cold forging method of spline shaft
JPS6358305B2 (en)
JP3541433B2 (en) Helical pinion gear and method and apparatus for manufacturing the same
JP3494349B2 (en) Helical gear manufacturing method
JP3674399B2 (en) Stepped shaft manufacturing method and stepped shaft manufacturing apparatus
JP3405372B2 (en) Manufacturing method of cam lobe for assembly
JPH0685967B2 (en) Method for manufacturing machine parts by die forging
JPH0790317B2 (en) Extrusion molding equipment for forged parts
JPS59166339A (en) Manufacture of ball pin
JPH04366028A (en) Manufacturing device for transmission gear
JP2004034040A (en) Die for forging
JPS597455A (en) Manufacture of rack of variable gear ratio steering device