JPS6051544B2 - Manufacturing method of titanium-manganese alloy - Google Patents

Manufacturing method of titanium-manganese alloy

Info

Publication number
JPS6051544B2
JPS6051544B2 JP3673181A JP3673181A JPS6051544B2 JP S6051544 B2 JPS6051544 B2 JP S6051544B2 JP 3673181 A JP3673181 A JP 3673181A JP 3673181 A JP3673181 A JP 3673181A JP S6051544 B2 JPS6051544 B2 JP S6051544B2
Authority
JP
Japan
Prior art keywords
titanium
alloy
manganese
arc
melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3673181A
Other languages
Japanese (ja)
Other versions
JPS57152436A (en
Inventor
伸行 柳原
孝治 蒲生
良夫 森脇
勉 岩城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3673181A priority Critical patent/JPS6051544B2/en
Publication of JPS57152436A publication Critical patent/JPS57152436A/en
Publication of JPS6051544B2 publication Critical patent/JPS6051544B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、少なくともマンガンとチタンを含有するTi
−Mn系合金を工業的に製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides Ti containing at least manganese and titanium.
-Regarding a method for industrially manufacturing a Mn-based alloy.

一般に、逓はその融点(1244℃)近くにおいて約l
torr、、1700℃において100torr、の高
い蒸気圧を有している他に、酸素や窒素との親和力が強
いために、Mn系合金の溶解はきわめて困難とされてい
る。
In general, water is about 1 liter near its melting point (1244°C).
In addition to having a high vapor pressure of 100 torr at 1700° C., Mn-based alloys have a strong affinity with oxygen and nitrogen, making it extremely difficult to melt Mn-based alloys.

したがつて、高周波溶解、誘導加熱溶解法でも大気中溶
解の場合は、Mnが大気中の酸素および窒素と強く反応
するために良質の合金が得られない。一方、真空溶解法
では、Mnの蒸発が激しく、とくに高融点の活性金属と
の合金化は多くの量が蒸発し溶融金属中のMn量が著し
く低下する。さらに、溶解用るつぼに耐熱材料として、
金属酸化物やカーボン等が使用されているため、高純度
の金属、高品質の合金を製造する場合には、Mnと耐火
物との反応が激しくるつぼからの不純物の混入が多く、
この方法は用いることができない。とくに、水素吸蔵合
金の場合にはわずかの不純物が混入しても均質性、結晶
構造、格子定数などに変化を与えて、水素吸蔵特性に悪
影響を与えるので、この方法を使うことは難しいとされ
ている。この様に不純物の混入をきらう製法として、前
述の高周波溶解、誘導加熱溶解の他にプラズマ・アーク
溶解法がある。この方法は、上記溶解法と比較して、多
量生産時にやや高価になるが、不純物の混入がなく、高
品質の合金が得られる特徴を有し、水素吸蔵合金を製造
する場合はとくに適している。この方法は、アルゴン雰
囲気中でプラズマ、ア・ −クを照射して、金属を溶解
させるものであるが、この方法も照射時に、Mnの蒸気
圧が高いために、他の金属より早く蒸発する傾向がある
ことと、その衝撃でMnが飛散することで、溶解してで
きた合金中のMn量が著しく減少し組成のづれ・た合金
ができる欠点を有していた。
Therefore, even in the case of high-frequency melting and induction heating melting, when melting is performed in the atmosphere, a good quality alloy cannot be obtained because Mn strongly reacts with oxygen and nitrogen in the atmosphere. On the other hand, in the vacuum melting method, Mn evaporates rapidly, and especially when alloyed with an active metal having a high melting point, a large amount evaporates, resulting in a significant decrease in the amount of Mn in the molten metal. Furthermore, as a heat-resistant material for melting crucibles,
Because metal oxides, carbon, etc. are used, when producing high-purity metals and high-quality alloys, the reaction between Mn and refractories is intense, and impurities from the crucible are often mixed in.
This method cannot be used. In particular, in the case of hydrogen storage alloys, it is considered difficult to use this method because even the slightest amount of impurity will change the homogeneity, crystal structure, lattice constant, etc. and adversely affect the hydrogen storage properties. ing. In addition to the above-mentioned high frequency melting and induction heating melting, there is a plasma arc melting method as a manufacturing method that avoids the contamination of impurities. Although this method is slightly more expensive in mass production than the above-mentioned melting method, it is free from impurities and produces high-quality alloys, making it particularly suitable for producing hydrogen-absorbing alloys. There is. In this method, metals are melted by irradiating plasma or arc in an argon atmosphere, but this method also evaporates faster than other metals due to the high vapor pressure of Mn during irradiation. This has the disadvantage that the amount of Mn in the melted alloy decreases significantly due to the scattering of Mn due to the impact, resulting in an alloy with a misaligned composition.

そこで、Mn量を少し多い目に配合して、補正などを試
みたが、溶解条件などにより、合金中のMn量が一定せ
ず、バラツキ幅が大きく、この事が起因して、水素吸蔵
特性の安定した合金が得られない欠点があつた。本発明
は、■より蒸気圧の小さい金属、たとえばTiなどに着
目し、この蒸気圧の小さい金属より溶解させることによ
りMnの蒸発量を著しく減少するものである。
Therefore, we attempted to correct this by adding a slightly higher amount of Mn to the alloy, but due to melting conditions etc., the amount of Mn in the alloy was not constant and had a wide range of variation. The disadvantage was that a stable alloy could not be obtained. The present invention focuses on a metal having a lower vapor pressure than (2), such as Ti, and by melting the metal with a lower vapor pressure than the metal, the amount of evaporation of Mn is significantly reduced.

すなわち、プラズマ・アークを熱源とする溶解炉を用い
、アルゴンガス雰囲気中で、Ti−Mn系合金を製造す
る場合、Mnの上部をTiなどのMnより蒸気圧の低い
金属単体または混合物で包囲するようにるつぼ内に配置
させ、この部分よりプラズマアークを照射し、溶解させ
ることにより、上記の問題点を解消するものである。以
下、本発明を実施例により説明する。
That is, when producing a Ti-Mn alloy in an argon gas atmosphere using a melting furnace using a plasma arc as a heat source, the upper part of Mn is surrounded by a single metal or a mixture of metals having a lower vapor pressure than Mn, such as Ti. The above-mentioned problems can be solved by arranging the metal in a crucible and melting it by irradiating the plasma arc from this part. The present invention will be explained below using examples.

実施例で用いたアーク溶解炉の構成を第1図に、また金
属製のるつぼに原料金属を配置した状態を第2図、第3
図に示す。
Figure 1 shows the configuration of the arc melting furnace used in the examples, and Figures 2 and 3 show the state in which the raw metal is placed in the metal crucible.
As shown in the figure.

第1図において、アーク溶解炉のケース1内の水冷銅る
つぼ(ハース)2に被溶解金属3を入れ、排気管4より
真空ポンプ5で脱ガスし、ついでバルブ6を閉じ、バル
ブ7を開いて、アルゴンガスを導入する。
In Fig. 1, a metal to be melted 3 is placed in a water-cooled copper crucible (hearth) 2 in a case 1 of an arc melting furnace, degassed through an exhaust pipe 4 with a vacuum pump 5, then a valve 6 is closed and a valve 7 is opened. Then, introduce argon gas.

内部の圧力を400〜500t0rr.に保持した状態
でバルブ8を閉じる。次に、直流電源9により電流制御
器10を介して電極支持体11の先端電極12とるつぼ
との間に電圧を印加して、電極12よりアークを発生さ
せる。この時るつぼの底部は水冷配管13により冷却さ
れている。14は圧力ゲージである。
Increase the internal pressure to 400 to 500 t0rr. Close the valve 8 while holding the position. Next, a voltage is applied by the DC power supply 9 via the current controller 10 between the tip electrode 12 of the electrode support 11 and the crucible to generate an arc from the electrode 12. At this time, the bottom of the crucible is cooled by the water cooling pipe 13. 14 is a pressure gauge.

第2図は、本発明によるるつぼ内の金属の配置状態を示
したもので、銅製るつぼ2の底にMnを*7おき、その
上にhを包囲するようにTiを配置し、この上部金属に
電極12よりアークを照射し、溶解させるのである。
Figure 2 shows the arrangement of metals in a crucible according to the present invention. An arc is irradiated from the electrode 12 to melt the material.

同様に、第3図は、銅製るつぼ2の底にMn,Crなど
蒸気圧の高い金属を入れ、その上にTi,V,Zr,M
Oなど蒸気圧の低い金属を配置し、この上部金属に電極
12よりアークを照射し、溶解させるのである。試料金
属として、ます、純度99.5%以上の市販のスポンジ
状Tiと電解Mnとを両者の原子比が)1:1.5にな
るように秤量し、Mnをアーク溶解炉内のるつぼの底部
に配置し、ついで、その上にTiをかぶせるように配置
した。
Similarly, in FIG. 3, metals with high vapor pressure such as Mn and Cr are placed at the bottom of a copper crucible 2, and Ti, V, Zr, and M are placed on top of the metals.
A metal with low vapor pressure, such as O, is placed, and the upper metal is irradiated with an arc from the electrode 12 to melt it. As sample metals, commercially available spongy Ti with a purity of 99.5% or more and electrolytic Mn were weighed so that the atomic ratio of both was 1:1.5, and the Mn was placed in a crucible in an arc melting furnace. It was placed on the bottom, and then Ti was placed on top of it.

つぎに、10−4〜10?5t0rr.まで真空吸引し
た後、アルゴンガスを導入し、少し減圧状状態でアーク
を照射して溶解さ・せた。試料は数回反転させて合金の
均質化を図つた。この場合Mnの上部に配置したTiの
部分に電極より発生するアークを照射して、Mnに直接
高熱のアークが触れないようにして、Mnの飛散、急激
な蒸発などを防止するようにした。この様に一してTj
Mnl.5合金を製造して水素吸蔵特性を調べた。つぎ
に、Mnより蒸気圧力が低い金属として、Ti,■,Z
r,Cr,MO、などをMnの上部に配置した同様な溶
解を試みた。
Next, 10-4 to 10?5t0rr. After vacuum suction to a certain level, argon gas was introduced, and an arc was irradiated under a slightly reduced pressure to melt the material. The sample was inverted several times to homogenize the alloy. In this case, an arc generated from an electrode was irradiated onto the Ti portion placed above the Mn to prevent the high-temperature arc from directly touching the Mn, thereby preventing scattering and rapid evaporation of the Mn. In this way Tj
Mnl. Five alloys were manufactured and their hydrogen storage properties were investigated. Next, as metals with lower vapor pressure than Mn, Ti, ■, Z
Similar dissolution was attempted in which r, Cr, MO, etc. were placed on top of Mn.

そしてその一例として TlO・!RO・
1Mn1・4cr0・4v0−29T10.8Zr0.
2Mn1.8M00.2などの合金を製造した。上記の
ようにして製造した合金の水素吸蔵特性として、20′
Cにおける水素吸蔵量、放出量、利用率などを測定した
結果を次表に示す。比較のためにTiなどの金属をるつ
ぼの底に入れ、その上にへ伯を配置して製造した合金の
特性も併せて示す。表の如く、本発明によれば、TiM
n玩、多元系4ともに、水素の吸蔵・放出量が従来法に
よるものよりもすぐれた特性を有している。
And as an example, TlO! R.O.
1Mn1・4cr0・4v0-29T10.8Zr0.
Alloys such as 2Mn1.8M00.2 were produced. The hydrogen storage property of the alloy produced as described above is 20'
The following table shows the results of measuring hydrogen storage amount, release amount, utilization rate, etc. in C. For comparison, the characteristics of an alloy produced by placing a metal such as Ti at the bottom of a crucible and placing a heel on top are also shown. As shown in the table, according to the present invention, TiM
Both n-type and multi-component type 4 have superior properties in terms of hydrogen storage and release amounts compared to conventional methods.

従来法では、いずれもMnの量が減少し、目的の組成よ
り大きくづれているために、水素吸蔵、放出、利用率が
共に悪くなつている。この結果は合金中のMn量の分析
により確認された。一方、比較的蒸気圧の高いCrなど
と共に溶解させる時は、Mnと一緒にるつぼの底に配置
する方が、Crの飛散や蒸発が防止できるので、特性上
好ましいことである。この中で、とくにMnの量は特性
に大きな影響を与えるので、Mnをるつぼの底部に配置
する事は非常に効果的である。その他の金属としてFe
,Ni,Cul希土類なども同様である。例えば、蒸気
圧1t0rr.を示す各金属の温度の高低の序列は次の
ようになる。Ca(700℃)、T1(8000C)、
Pb(10000C)、Mn(1200℃)くCr(1
700゜C)、Fe,CO(1900℃)、Ni<Ti
(2250℃)、■(2300℃)くZr(3000℃
)、MO(3100℃)Mnは蒸気圧1t0rr′.を
示す温度は1200℃と比較的低いため、高温における
金属の蒸発も早い。
In all conventional methods, the amount of Mn decreases and the composition deviates greatly from the desired composition, resulting in poor hydrogen absorption, hydrogen release, and utilization. This result was confirmed by analysis of the amount of Mn in the alloy. On the other hand, when melting together with Cr, etc., which has a relatively high vapor pressure, it is preferable in terms of characteristics to place it together with Mn at the bottom of the crucible, since scattering and evaporation of Cr can be prevented. Among these, the amount of Mn in particular has a great influence on the properties, so placing Mn at the bottom of the crucible is very effective. Fe as other metals
, Ni, Cul, and other rare earths. For example, the steam pressure is 1t0rr. The order of high and low temperatures of each metal is as follows. Ca (700℃), T1 (8000C),
Pb (10000C), Mn (1200℃), Cr (1
700°C), Fe, CO (1900°C), Ni<Ti
(2250℃), ■ (2300℃) Zr (3000℃
), MO (3100°C) Mn has a vapor pressure of 1t0rr'. Since the temperature at which this occurs is relatively low at 1200°C, the metal evaporates quickly at high temperatures.

Ca,Tlなどはさらにその度合が大きい。この点Ti
,V,Zr,CO,MOなどは蒸発しにくく、またアー
ク照射時において金属自体の粘性(ねばり)などのため
に、飛散の度合も非常に小さい。従つてこれらの金属て
Mnの飛散や蒸発を有効に防止することができる。さら
にはMnが蒸発と哩?]−1.,上部で溶解している金
属と容易に、しかも外部に放散する前に合金化してしま
うので、より均質な合金が製造される。またMnの上部
に配置する金属混合物をあらかじめ溶解合金化しておく
事も同様な効果がある。実施例では、主にMnに注目し
て述べたが、hと共に又は単独でCaを用いる場合にも
適用できる。とくにCaNi5系合金の場合は有効であ
る。以上のように、本発明によれば、プラズマ●アーク
溶解させる際に、Mnの飛散や蒸発を防止し、より均質
な合金を製造することができ、特に水素吸蔵特性のバラ
ツキの少ない高品質の合金を得ることができる。
The degree of damage is even greater for Ca, Tl, and the like. This point Ti
, V, Zr, CO, MO, etc. are difficult to evaporate, and the degree of scattering is very small due to the viscosity (stickiness) of the metal itself during arc irradiation. Therefore, these metals can effectively prevent scattering and evaporation of Mn. Furthermore, does Mn evaporate? ]-1. , because it easily alloys with the molten metal at the top and before it dissipates to the outside, a more homogeneous alloy is produced. A similar effect can also be obtained by melting and alloying the metal mixture placed on top of Mn in advance. Although the embodiments have been described mainly focusing on Mn, the present invention can also be applied to cases where Ca is used together with h or alone. This is particularly effective for CaNi5 alloys. As described above, according to the present invention, scattering and evaporation of Mn can be prevented during plasma arc melting, and a more homogeneous alloy can be produced, and a high quality alloy with less variation in hydrogen storage properties can be produced. Alloys can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例における溶解炉の構成を示す図
、第2図および第3図は原料金属の配置状態を示す図で
ある。
FIG. 1 is a diagram showing the configuration of a melting furnace in an embodiment of the present invention, and FIGS. 2 and 3 are diagrams showing the arrangement of raw metals.

Claims (1)

【特許請求の範囲】 1 プラズマ・アークを熱源とする溶解炉を用い、不活
性ガス雰囲気中でチタン−マンガン系合金を製造する方
法において、マンガンの上部をチタンを含む上記マンガ
ンより蒸気圧が低い金属単体、混合物、または合金で包
囲してるつぼ内に配置し、この包囲部分よりプラズマ・
アークを照射して溶解させることを特徴とするチタン−
マンガン系合金の製造法。 2 上記チタン−マンガン系合金が、ジルコニウム、ク
ロム、バナジウム、鉄、モリブデン、ニッケルおよび希
土類元素よりなる群から選択される少なくとも1種を含
有する特許請求の範囲第1項記載のチタン−マンガン系
合金の製造法。
[Claims] 1. A method for producing a titanium-manganese alloy in an inert gas atmosphere using a melting furnace using a plasma arc as a heat source, in which the upper part of the manganese has a lower vapor pressure than the manganese containing titanium. Plasma is placed in a crucible surrounded by a single metal, a mixture, or an alloy, and plasma is generated from the surrounding area.
Titanium that is characterized by being melted by irradiating it with an arc.
Manufacturing method for manganese alloys. 2. The titanium-manganese alloy according to claim 1, wherein the titanium-manganese alloy contains at least one member selected from the group consisting of zirconium, chromium, vanadium, iron, molybdenum, nickel, and rare earth elements. manufacturing method.
JP3673181A 1981-03-13 1981-03-13 Manufacturing method of titanium-manganese alloy Expired JPS6051544B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3673181A JPS6051544B2 (en) 1981-03-13 1981-03-13 Manufacturing method of titanium-manganese alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3673181A JPS6051544B2 (en) 1981-03-13 1981-03-13 Manufacturing method of titanium-manganese alloy

Publications (2)

Publication Number Publication Date
JPS57152436A JPS57152436A (en) 1982-09-20
JPS6051544B2 true JPS6051544B2 (en) 1985-11-14

Family

ID=12477872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3673181A Expired JPS6051544B2 (en) 1981-03-13 1981-03-13 Manufacturing method of titanium-manganese alloy

Country Status (1)

Country Link
JP (1) JPS6051544B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6329132U (en) * 1986-08-08 1988-02-25
JPH02285355A (en) * 1989-03-31 1990-11-22 E I Du Pont De Nemours & Co Adjustable dot gain simulation for color proof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3415333B2 (en) * 1995-07-13 2003-06-09 トヨタ自動車株式会社 Hydrogen storage alloy
JP4646032B2 (en) * 2005-12-16 2011-03-09 大亜真空株式会社 Arc melting furnace apparatus and mold used for the melting furnace

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6329132U (en) * 1986-08-08 1988-02-25
JPH02285355A (en) * 1989-03-31 1990-11-22 E I Du Pont De Nemours & Co Adjustable dot gain simulation for color proof

Also Published As

Publication number Publication date
JPS57152436A (en) 1982-09-20

Similar Documents

Publication Publication Date Title
US7413589B2 (en) Method of producing hydrogen storage alloy
CN114427045A (en) High-uniformity vanadium-titanium-based hydrogen storage alloy and preparation method thereof
JPS6051544B2 (en) Manufacturing method of titanium-manganese alloy
Taylor et al. The constitution diagram of the molybdenum-hafnium binary system
TWI396753B (en) Hydrogen storage alloy and producing method thereof
JP4956826B2 (en) Method for melting high vapor pressure metal-containing alloys
CN116287953A (en) Nuclear grade ferritic stainless steel with high-density nano-dispersed particles and preparation method thereof
JP2002030374A (en) Hydrogen storage alloy and its production method
Morito Effect of impurities on the weldability of powder metallurgy, electron-beam melted and arc-melted molybdenum and its alloys
JP4712228B2 (en) Method for producing hydrogen storage alloy
JPS6169931A (en) Method for making intermetallic compound amorphous by chemical reaction
JPH04224113A (en) Production of titanium oxide for vapor deposition
JPS589821B2 (en) Manufacturing method of cemented carbide containing molybdenum
Lim et al. Removal of metallic impurities from zirconium by hydrogen plasma arc melting
CN112226641B (en) Molybdenum niobium silicon aluminum carbon intermediate alloy and preparation method thereof
JPS5836657B2 (en) Manufacturing method of titanium-manganese alloy
JP2002331336A (en) Alloy manufacturing apparatus and manufacturing method of hydrogen storage alloy
JPS633012B2 (en)
Lingmin et al. The 500° C isothermal section of the phase diagram of the Fe Gd Nd ternary system
US3573902A (en) Yttrium-containing welding alloys
JPS5831050A (en) Manufacture of alloy for storing hydrogen
JPS5939493B2 (en) Titanium-cobalt multi-component hydrogen storage alloy
JP4062819B2 (en) Hydrogen storage alloy and method for producing the same
JPH04190959A (en) Manufacture of hydrogen occluding alloy
JPS61270362A (en) Manufacture of metallic alloy for hydrogen storage