JPH04190959A - Manufacture of hydrogen occluding alloy - Google Patents

Manufacture of hydrogen occluding alloy

Info

Publication number
JPH04190959A
JPH04190959A JP2316216A JP31621690A JPH04190959A JP H04190959 A JPH04190959 A JP H04190959A JP 2316216 A JP2316216 A JP 2316216A JP 31621690 A JP31621690 A JP 31621690A JP H04190959 A JPH04190959 A JP H04190959A
Authority
JP
Japan
Prior art keywords
alloy
metal
contact
segregation
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2316216A
Other languages
Japanese (ja)
Inventor
Masataka Sugano
菅野 正崇
Taro Kimura
太郎 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Nikko Kyodo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd, Nikko Kyodo Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP2316216A priority Critical patent/JPH04190959A/en
Publication of JPH04190959A publication Critical patent/JPH04190959A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To manufacture a hydrogen occluding alloy having little micro segregation by specifying a casting method and heat treatment condition after casting. CONSTITUTION:After melting the alloy, the molten alloy is cast to a plate having 7-40mm thickness so that the one side surface is in contact with a metal- made mold, or a plate having 14-80mm so that both surfaces are contact with the metal-made mold in vacuum or inert gas and thereafter, the heat treatment is executed at 1000-1200 deg.C in vacuum or inert gas. By this method, the hydrogen occluding alloy such as Mm Ni1-X-Y-ZMnxAlyCoz (Mm; mish metal) for a secondary battery having comparatively uniform shape and the size of crystal grain on a metallurgical structure and consisting essentially of a rare earth metal and nickel, etc., of little micro segregation can be manufactured.

Description

【発明の詳細な説明】 、巖1ユ11す1年団 本発明は金属組織上結晶粒の形状と大きさが比較的均一
で、ミクロ偏析の弱い希土類元素およびニッケル等を主
成分とする2次電池用のMm Ni 1−X−Y−Z 
MnxAlyCoz (Mm :ミッシュメタル)等の
水素吸蔵合金の製造方法に関するものである。
[Detailed description of the invention] The present invention is based on a metallographic structure in which the shape and size of crystal grains are relatively uniform, and the main components are rare earth elements and nickel, which have weak micro-segregation. Mm Ni 1-X-Y-Z for next battery
The present invention relates to a method for manufacturing hydrogen storage alloys such as MnxAlyCoz (Mm: misch metal).

夫米Ω弦皿 従来希土類元素およびニッケルを主成分とし、マンカン
、アルミニウム、コバルト等を含む水素吸蔵合金は溶解
後、円筒状のインコツトに鋳造し粗粉砕、熱処理、微粉
砕等の工程を経て、2次電池の負極材料用として用いら
れてきた。しかしながら、インゴットの結晶粒が柱状晶
と等軸晶の混在する状況であり、かつ結晶粒の太きさも
不均一であった。さらに、希土類元素、マンガン等の顕
著なミクロ偏析が認められ結晶粒の不均一と合わせて、
2次電池用途においてきられれる特性のばらつきと再現
性の無さの原因となっている。
Fubei Omega String Dish Conventionally, a hydrogen storage alloy whose main components are rare earth elements and nickel, and which also contains mankan, aluminum, cobalt, etc., is melted and then cast into a cylindrical inkotsuto, which undergoes processes such as coarse pulverization, heat treatment, and fine pulverization. It has been used as a negative electrode material for secondary batteries. However, the crystal grains of the ingot were a mixture of columnar crystals and equiaxed crystals, and the thickness of the crystal grains was also non-uniform. Furthermore, remarkable micro-segregation of rare earth elements, manganese, etc. was observed, and together with the non-uniformity of crystal grains,
This causes variations in characteristics and lack of reproducibility in secondary battery applications.

lが解むしようとする間町点 本発明はかかる不具合を除去したもので、水素吸蔵合金
インゴットの金属組織における結晶粒の不均一性とミク
ロ偏析についてそれらを解消し、2次電池用に用いる場
合、特性のばらつきのないこと及び再現性あるものを製
造することを目的とする。
The present invention eliminates such problems, and eliminates the unevenness and microsegregation of crystal grains in the metal structure of hydrogen storage alloy ingots, which are used for secondary batteries. In this case, the aim is to manufacture products with consistent characteristics and reproducibility.

副題点を1、するための手段 ひ作 発明者は、上記問題点を解決すべく鋭意研究した結果以
下の発明をなした。
Means for achieving subtitle 1. The inventor Hisaku made the following invention as a result of intensive research to solve the above problems.

即ち本発明は、合金溶解後、片面が金属製鋳型と接する
ように厚さ7〜40鵬の板状に鋳造するか、両面が金属
製鋳型と接するように厚さ14〜80InITlの板状
に真空中あるいは不活性ガス中で鋳造後、1000〜1
200℃で真空中あるいは不活性カス中で熱処理するこ
とを特徴とする水素吸蔵合金の製造方法に関する。
That is, in the present invention, after the alloy is melted, it is cast into a plate shape with a thickness of 7 to 40 InITl so that one side is in contact with a metal mold, or it is cast into a plate shape with a thickness of 14 to 80 InITl so that both sides are in contact with a metal mold. 1000-1 after casting in vacuum or inert gas
The present invention relates to a method for producing a hydrogen storage alloy, which is characterized by heat treatment at 200° C. in vacuum or in an inert scum.

以下本発明について詳細に説明する。The present invention will be explained in detail below.

原料は市販のミツシュメタル、電解ニッケル(3N〜4
N)、電解コバルト(3N)、フレーク状マンガン(3
N)、アルミニウムショット(3N)を使用すればよい
The raw materials are commercially available Mitshu metal, electrolytic nickel (3N to 4
N), electrolytic cobalt (3N), flaky manganese (3N), electrolytic cobalt (3N), manganese flake (3N),
N), aluminum shot (3N) may be used.

溶解は1330−1380℃でカルシするつぼを使用し
高周波誘導溶解炉にて行う。溶解の雰囲気は不活性ガス
もしくはI X 103〜I X 10−’Torrの
真空とする。まずニッケルおよびコバルトとミツシュメ
タルを溶解して、マンガンおよびアルミニウムを添加す
る。その後2〜15分間保持してインゴット2〜40k
gに鋳造する。
Melting is carried out in a high-frequency induction melting furnace using a calcining crucible at 1330-1380°C. The atmosphere for dissolution is an inert gas or a vacuum of I x 103 to I x 10 -' Torr. First, nickel and cobalt and Mitsushmetal are melted and manganese and aluminum are added. After that, hold for 2-15 minutes and make an ingot of 2-40k.
Cast to g.

鋳造においては、結晶粒の均一性とミクロ偏析の解消と
いった観点から第1図に示すごとく溶解温度から100
0℃までの平均冷却速度で3.5℃/sec以上が好ま
しい。次工程での熱処理による偏析除去に極めて好まし
い結果を与えるからである。このような条件を満たすべ
く鋳型は冷却の速い金属製鋳型を用いる。材質としては
鋳鉄、水冷銅鋳型等でよい。さらに冷却を早めるべくイ
ンゴットは板形状とする。板面を水平とし、底部が板面
と接するようにした場合厚みは7〜40Mとする。40
mm以上では目的とする結晶粒の均一性とミクロ偏析の
解消を達成できず、7M以下とすると鋳造が困難であり
、さらには、広い面積を要して好ましくない。また冷却
速度の観点から明らかに板面を垂直にし、両面が鋳型と
接するようにした場合14〜80mmにて同等の効果を
得る。
In casting, from the viewpoint of uniformity of crystal grains and elimination of micro-segregation, the melting temperature is lowered by 100% as shown in Figure 1.
The average cooling rate to 0°C is preferably 3.5°C/sec or more. This is because it provides extremely favorable results for removing segregation by heat treatment in the next step. In order to meet these conditions, a metal mold that cools quickly is used. The material may be cast iron, water-cooled copper mold, etc. In order to further speed up cooling, the ingot is shaped into a plate. When the plate surface is horizontal and the bottom is in contact with the plate surface, the thickness is 7 to 40M. 40
If it is more than 7 mm, it will not be possible to achieve the desired uniformity of crystal grains and eliminate micro-segregation, and if it is less than 7 M, it will be difficult to cast, and furthermore, it will require a large area, which is not preferable. Moreover, from the viewpoint of cooling rate, if the plate surface is made vertical and both surfaces are in contact with the mold, the same effect can be obtained at 14 to 80 mm.

このようにして作製したインゴットは5〜10印に粗粉
砕して1000〜1200℃にて2〜10時間行う。こ
れは、ミクロ偏析をなくすため好適な範凹だからである
。不活性ガス又は10−’Torr程度の真空雰囲気に
て熱処理を行う。特に冷却速度の速いインゴットは水素
吸収放出における圧力−濃度−温度曲線において濃度の
変化に対し圧力の変化が少ないいわゆるプラトー領域を
示さないが、熱処理によりプラトー領域が認められるよ
うになる。
The ingot thus produced is coarsely pulverized into 5 to 10 marks and subjected to heating at 1000 to 1200°C for 2 to 10 hours. This is because the range is suitable for eliminating micro-segregation. Heat treatment is performed in an inert gas or vacuum atmosphere of about 10-' Torr. Particularly, ingots with a fast cooling rate do not exhibit a so-called plateau region in the pressure-concentration-temperature curve during hydrogen absorption and desorption, in which the pressure changes little with respect to concentration changes, but the plateau region becomes visible after heat treatment.

上記熱処理の後、0.5mm以下に微粉砕して2次電池
用負極材料に用いる。
After the above heat treatment, it is finely pulverized to 0.5 mm or less and used as a negative electrode material for secondary batteries.

失]L久 市販のミツシュメタル、電解ニッケル(3N)、電解コ
バルト(3N)、フレーク状マンガン(3N)、アルミ
ニウムショット(3N)を使用してM m N i、、
、Mn、、、A 1.、、Co6.、の組成のインゴッ
トを真空中1330℃で8〜54mmの厚みの板に鋳造
した。
M m N i, using commercially available Mitsushi metal, electrolytic nickel (3N), electrolytic cobalt (3N), flaky manganese (3N), and aluminum shot (3N).
,Mn,,,A 1. ,,Co6. An ingot having a composition of , was cast in vacuum at 1330° C. into a plate having a thickness of 8 to 54 mm.

鋳造したインゴット約2kgおよびインゴットを5〜1
0mmに粗粉砕して1100℃×5時間の熱処理をほど
こした材料について光学顕微鏡にて結晶粒の観察を行い
、さらにX線マイクロアナライザーにてミクロ偏析の調
査を行った。その結果、以下の表のNo、 1〜6のご
とく好ましい結果を得た。さらにNo、 7〜10を比
較の為同様に調べた結果本発明の実施例が優れている事
を確認した。
Approximately 2 kg of cast ingots and 5 to 1 ingots
The material was coarsely ground to 0 mm and heat treated at 1100° C. for 5 hours, and the crystal grains were observed using an optical microscope, and microsegregation was investigated using an X-ray microanalyzer. As a result, favorable results were obtained as shown in Nos. 1 to 6 in the table below. Furthermore, as a result of similarly examining Nos. 7 to 10 for comparison, it was confirmed that the examples of the present invention were superior.

即ち、片面が鋳型と接する場合、40mm以下の厚みで
結晶粒が均一であり、ミクロ偏析か弱く、かつ熱処理で
ミクロ偏析の解消が認められるのに対し、40mmより
大きい板厚では結晶粒が不均一かつミクロ偏析が残る。
In other words, when one side is in contact with the mold, the crystal grains are uniform with a thickness of 40 mm or less and the micro-segregation is weak, and the micro-segregation can be resolved by heat treatment, whereas the crystal grains are non-uniform with a thickness greater than 40 mm. And micro-segregation remains.

ミクロ偏析はインゴットではMn、La、CIについて
著しく、熱処理材ではいずれもMnのミクロ偏析は解消
されていたが、La、C1については残っていた。
In the ingot, the micro-segregation was remarkable for Mn, La, and CI, and in the heat-treated material, the micro-segregation of Mn was eliminated, but it remained for La and C1.

両面が鋳型と接する場合についても80mm以下の厚み
で、結晶粒が均一で、ミクロ偏析か弱く、かつ熱処理で
ミクロ偏析の解消が認められた。
Even when both sides were in contact with the mold, the thickness was 80 mm or less, the crystal grains were uniform, the micro-segregation was weak, and it was observed that the micro-segregation was eliminated by heat treatment.

さらに実施例および比較例について、電池容量およびサ
イクル寿命のばらつきを調査した所、実施例のばらつき
は比較例より小さく、再現性に優れていた。
Further, when the variations in battery capacity and cycle life were investigated for the Examples and Comparative Examples, the variations in the Examples were smaller than in the Comparative Examples, and the reproducibility was excellent.

以下余白 以上説明したように、水素吸蔵合金を溶解後片面が金属
製鋳型と接するように厚さ7〜40mmの板状に鋳造す
るか両面が金属製鋳型と接するように厚さ14〜80i
11Tlの板状に鋳造する事には結晶粒が均一でミクロ
偏析の弱い材料を提供する事ができ、その同一の合金を
使用したそれぞれの2次電池特性のばらつきと再現性の
なさを解消する。
As explained above, after melting the hydrogen storage alloy, it is cast into a plate shape with a thickness of 7 to 40 mm so that one side is in contact with the metal mold, or a plate with a thickness of 14 to 80 mm so that both sides are in contact with the metal mold.
Casting 11Tl into a plate shape can provide a material with uniform crystal grains and weak micro-segregation, which eliminates the variation and lack of reproducibility in the characteristics of secondary batteries using the same alloy. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図、本発明における鋳型インゴットの厚みと冷却速
度を示す。
FIG. 1 shows the thickness and cooling rate of the mold ingot in the present invention.

Claims (1)

【特許請求の範囲】[Claims] (1)合金溶解後、片面が金属製鋳型と接するように厚
さ7〜40mmの板状に鋳造するか、両面が金属製鋳型
と接するように厚さ14〜80mmの板状に真空中ある
いは不活性ガス中で鋳造後、1000〜1200℃で真
空中あるいは不活性ガス中で熱処理することを特徴とす
る水素吸蔵合金の製造方法。
(1) After the alloy is melted, it is cast into a plate with a thickness of 7 to 40 mm so that one side is in contact with a metal mold, or cast into a plate with a thickness of 14 to 80 mm so that both sides are in contact with a metal mold in a vacuum or A method for producing a hydrogen storage alloy, which comprises casting in an inert gas and then heat-treating the alloy at 1000 to 1200°C in a vacuum or in an inert gas.
JP2316216A 1990-11-22 1990-11-22 Manufacture of hydrogen occluding alloy Pending JPH04190959A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2316216A JPH04190959A (en) 1990-11-22 1990-11-22 Manufacture of hydrogen occluding alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2316216A JPH04190959A (en) 1990-11-22 1990-11-22 Manufacture of hydrogen occluding alloy

Publications (1)

Publication Number Publication Date
JPH04190959A true JPH04190959A (en) 1992-07-09

Family

ID=18074597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2316216A Pending JPH04190959A (en) 1990-11-22 1990-11-22 Manufacture of hydrogen occluding alloy

Country Status (1)

Country Link
JP (1) JPH04190959A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5817222A (en) * 1995-04-03 1998-10-06 Santoku Metal Industry Co., Ltd. Rare earth metal-nickel hydrogen storage alloy, process for producing the same, and anode for nickel-hydrogen rechargeable battery
JP2002212601A (en) * 2001-01-15 2002-07-31 Mitsui Mining & Smelting Co Ltd Method for producing hydrogen occlusion alloy
JP2022020892A (en) * 2020-07-21 2022-02-02 新日本電工株式会社 HYDROGEN STORAGE ALLOY POWDER OF LOW Co CONTENT

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5817222A (en) * 1995-04-03 1998-10-06 Santoku Metal Industry Co., Ltd. Rare earth metal-nickel hydrogen storage alloy, process for producing the same, and anode for nickel-hydrogen rechargeable battery
JP2002212601A (en) * 2001-01-15 2002-07-31 Mitsui Mining & Smelting Co Ltd Method for producing hydrogen occlusion alloy
JP2022020892A (en) * 2020-07-21 2022-02-02 新日本電工株式会社 HYDROGEN STORAGE ALLOY POWDER OF LOW Co CONTENT

Similar Documents

Publication Publication Date Title
CN114457270B (en) L1 2 Medium-entropy alloy with strong particle plasticization and preparation method thereof
CN103502505A (en) Cu-Ga alloy sputtering target and method for producing same
KR100207906B1 (en) Age-preciptating rare earth metal-nickel alloy, its manufacture and negative electrode for nickel-hydrogen secondary cell
CN112899547B (en) CoCrNiZr x Eutectic high-entropy alloy and preparation method thereof
TW201533248A (en) High-purity tantalum powder and preparation method therefor
CN110616341A (en) CoCrNiNbxEutectic medium entropy alloy and preparation method thereof
JP3212133B2 (en) Rare earth metal-nickel based hydrogen storage alloy ingot and method for producing the same
TW201103999A (en) Method for manufacturing nickel alloy target
EP0784350B1 (en) Method for producing hydrogen-absorbing alloy
CN112251659B (en) AlCrFe2Ni2C0.24High-entropy alloy and preparation method thereof
JP2003013116A (en) Method for manufacturing rare-earths-based alloy with ultralow oxygen content and fine and homogeneous crystalline structure, by reduction of rare-earth oxide
JP4503915B2 (en) Hydrogen storage alloy and method for producing the same
JPH04190959A (en) Manufacture of hydrogen occluding alloy
KR101560455B1 (en) LCD Glass METHOD OF MANUFACTURING AN OXIDE DISPERSION STRENGTHENED PLATINUMRHODIUM ALLOYS MATERIALS USING SPARK PLASMA SINTERING FOR LIQUID CRYSTAL DISPLAY GLASS MANUFACTURING
CN114381644B (en) Vanadium-titanium-based hydrogen storage alloy powder and preparation method thereof
JPS6333563A (en) Production of pt-ni alloy for sputtering
JP2989053B2 (en) Method for producing low oxygen Ti-Al alloy and low oxygen Ti-Al alloy
JP2002030374A (en) Hydrogen storage alloy and its production method
CN101210294B (en) Preparation method of A5B19 type alloy
RU2819192C1 (en) Method of producing high-purity nickel for sputtered targets
JPH02108450A (en) Method for casting titanium or titanium base alloy
JPH0132165B2 (en)
JP2004339542A (en) Recycling method for rare earth-transition metal alloy
KR101060525B1 (en) The method for manufacturing of high reactive, and/or high melting point metal or alloys
JPH1161392A (en) Production of sputtering target for forming ru thin film