JPS6046311A - Preparation of molten steel containing low melting point metal - Google Patents

Preparation of molten steel containing low melting point metal

Info

Publication number
JPS6046311A
JPS6046311A JP15549083A JP15549083A JPS6046311A JP S6046311 A JPS6046311 A JP S6046311A JP 15549083 A JP15549083 A JP 15549083A JP 15549083 A JP15549083 A JP 15549083A JP S6046311 A JPS6046311 A JP S6046311A
Authority
JP
Japan
Prior art keywords
melting point
low melting
point metal
molten steel
metals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15549083A
Other languages
Japanese (ja)
Other versions
JPH0256405B2 (en
Inventor
Eiji Kamisaka
神坂 栄治
Hirofumi Maede
前出 弘文
Yuji Kawachi
河内 雄二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP15549083A priority Critical patent/JPS6046311A/en
Publication of JPS6046311A publication Critical patent/JPS6046311A/en
Publication of JPH0256405B2 publication Critical patent/JPH0256405B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0006Adding metallic additives

Abstract

PURPOSE:To obtain molten steel containing low melting point metals with low cost, which is excellent in machinability and less dispersion of quality, by adding thereto low melting point metals in the form of sulfides. CONSTITUTION:As a low melting point metal sources, low melting point metals; Pb, Bi, etc., sulfides of said metals; PbS, and Bi2S3, and the mixture of their oxides, if needed, are added to the molten steel. A steel ingot obtained by this process has little dispersion in the analytical values of Pb and Bi taken from the plurality of portion of the ingot, and has advantage that environmental problems can be disolved as no dust is generated when adding these low melting point metals.

Description

【発明の詳細な説明】 る機械切削性の優れた快削鋼の製造方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing free-cutting steel having excellent machinability.

鋼の機械切削性は被剛性付与成分を添加することにより
得られる。特に鉛、ビスマス等の低融点金属を添加する
と、硫黄、燐等を多量に含有する切削性の優れた鋼に一
層良好な機械切削性を付与することが知られている。
The machinability of steel can be obtained by adding stiffening components. In particular, it is known that addition of low melting point metals such as lead and bismuth imparts better mechanical machinability to steels containing large amounts of sulfur, phosphorus, etc. and having excellent machinability.

これら、被削性付与成分である鉛、ビスマス等の低融点
金属を溶鋼中へ添加する方法としては、従来よシこれも
の添加金属粒をアルゴン等の不活性ガスとともに固気圧
送を利用して溶鋼中あるいは溶鋼流中へ吹込む方法が一
般的であった。
The conventional method for adding low-melting metals such as lead and bismuth, which are components that impart machinability, to molten steel is to use solid-state pumping to add these additional metal particles together with an inert gas such as argon. The most common method was to inject it into molten steel or into a molten steel flow.

またこれらの添加金属を鉄被覆ワイヤーとして溶鋼中へ
挿入添加する方法も試みられていた。
Also, attempts have been made to insert these additive metals into molten steel in the form of iron-coated wires.

しかしながら、こわらの方法においては低融点金属源と
して前記の低融点金属単体を用いており、該低融点金属
源を溶鋼中へ均一に添加することが困難であシ、そこで
材質上パラツキのない快削鋼を得ることが困難であると
いう欠点がある。すなわち鉛、ビスマス等の低融金属は
比重が鉄よシも太きく(pbで11.4,Biで9,8
)、そのため溶鋼中へ添加されたこれら金属粒はいちは
やく沈降し1太部分溶鋼取鍋底部に偏析し、材質上パラ
ツキのない快削鋼を製造することは、困難であった。ま
たこのような沈降偏析現象は低融点金属を過剰にした鋼
にならないという欠点があった。
However, in the Kowara method, the above-mentioned low melting point metal alone is used as a low melting point metal source, and it is difficult to uniformly add the low melting point metal source to molten steel. The disadvantage is that it is difficult to obtain free-cutting steel. In other words, the specific gravity of low-melting metals such as lead and bismuth is higher than that of iron (11.4 for PB, 9.8 for Bi).
), these metal particles added to the molten steel quickly settle and segregate at the bottom of the molten steel ladle in a thick portion, making it difficult to produce free-cutting steel with no material irregularities. In addition, such precipitation segregation phenomenon has the disadvantage that it does not result in steel containing an excess of low melting point metals.

本発明は上記の欠点を有利に解決したものであシ、その
要旨とするところは、溶鋼に低融点金属源全添加し低融
点金属含有溶鋼全製造するに当シ、低融点金属源として
該低融点金属の硫化物を用いることにある。又、低融点
金属と該低融点金属の硫化物、酸化物との混合物を用い
るところにある。
The present invention advantageously solves the above-mentioned drawbacks, and the gist thereof is to add all low-melting point metal sources to molten steel, and to produce all molten steel containing low-melting point metals. The purpose is to use a sulfide of a low melting point metal. Also, a mixture of a low melting point metal and a sulfide or oxide of the low melting point metal is used.

以下に先づ本発明に到達するまでに行った実験、測定に
ついて述べる。
Below, we first describe the experiments and measurements that were carried out to arrive at the present invention.

本発明者らは低融点金属を溶鋼中へ均一に分散させるた
めの手段について実験全型ね、そして総合的に検討を加
えた。その結果、先づ低融点金属源として従来法である
該低融点金属単体を用いた場合には、溶鋼の攪拌条件、
低融点金属の添加条件をいろいろ変えて製造しても沈降
偏析現象を生じ、均一に分散させることはできないこと
金知った。
The present inventors conducted all types of experiments and comprehensively investigated means for uniformly dispersing a low melting point metal into molten steel. As a result, when using the low melting point metal alone as the low melting point metal source in the conventional method, the stirring conditions of molten steel,
I learned that even if the low-melting-point metal was manufactured under various conditions, sedimentation and segregation would occur and uniform dispersion would not be possible.

そこで、沈降偏析現象音生じないか、又は生じるとして
も極微になる低融点金属源を見出すために、低融点金属
源としては(1)比ルが鉄に近く、溶鍋中で懸濁しやす
いこと、(2)低融点金属源が鋼の被削性等利質に悪影
響ヲ及ぼさないことの二点を満足することを重要なポイ
ントとして多くの実(倹全行つfc。
Therefore, in order to find a low melting point metal source that does not produce sedimentation and segregation noise, or if it does, it is minimal, the low melting point metal source should be (1) having a ratio close to that of iron and being easily suspended in the molten pot; (2) Many efforts are being made to ensure that the low melting point metal source does not adversely affect the machinability or other properties of the steel.

このような低融点金属源として本発明者らは低融点金属
の硫化物を見出し、実15へ、jtll定をおこlよっ
た。
As a source of such a low melting point metal, the present inventors found a sulfide of a low melting point metal, and conducted the jtll determination to Example 15.

その結果。the result.

■ 低融点金属中とくに鋼の被削性を向上させる鉛の安
定な硫化物は、比重が759であり、ビスマスの安定な
硫化物は、比重が739であシ、前記(1)の条件を滴
しており、溶鋼中で懸濁し取鍋底部に沈降することはほ
とんどないことが明らかになった。
■ The stable sulfide of lead, which improves the machinability of low melting point metals, especially steel, has a specific gravity of 759, and the stable sulfide of bismuth has a specific gravity of 739. It became clear that the steel was suspended in the molten steel and almost never settled at the bottom of the ladle.

■ 又低融点金属源の被剛性を向上させる髄黄との化合
物即ち硫化物であるため、一層被削。
■ It is also a sulfide, a compound with pulp yolk that improves the rigidity of the low melting point metal source, making it more difficult to cut.

性の優れた鋼を得ることができ、前記(2)の条件を満
すものであることが判明した。
It has been found that a steel with excellent properties can be obtained and satisfies the condition (2) above.

本発明は上記実験に基づくものである。The present invention is based on the above experiment.

次に本発明方法に用いられる低融点金属硫化物の好まし
い品位、粒度について述べる。一般に硫化鉛は方鉛鉱と
して、また硫化ビスマスは、輝蒼鉱として天然に産出す
る。これらの鉱石はi’ b s 。
Next, the preferred grade and particle size of the low melting point metal sulfide used in the method of the present invention will be described. In general, lead sulfide occurs naturally as galena, and bismuth sulfide occurs naturally as diastolite. These ores are i' b s.

Bi253 の純度が比較的高(、該鉱石全そのまま低
融点金属源として用いることもできる。まfc。
The purity of Bi253 is relatively high (the whole ore can also be used as a low melting point metal source).

もちろん化学的に合成されたPbS、Bi2O3を使用
してもよい。
Of course, chemically synthesized PbS and Bi2O3 may also be used.

これら硫化物中PbS、Bi28gの品位は90%以上
であればよい。90%未満であれば不純物による溶鋼汚
染、取鍋耐大物浸食作用が大きくなる。
The quality of 28g of PbS and Bi in these sulfides may be 90% or more. If it is less than 90%, contamination of molten steel by impurities and erosion of large objects in the ladle will increase.

また粒度はホッパーよシ済鋼表面へ添加する上方添加方
式では3〜SOWが適正範囲である。3M以下では集じ
ん系への吸引比率が高(,50m以上ではホラノミ−内
でいわゆる棚つシ現象をきたす。まfc浸漬ランスによ
シネ活性ガスと共に溶鋼中へ吹込むインジェクション方
式では安定した吹込みを行うため1,5H以下が適正範
囲である。1.5IIJI金超えると吹込みの際の管内
摩擦抵抗が大きくなり安定した吹込みがおこなえない。
In addition, the appropriate particle size range is 3 to SOW in the upward addition method in which the particles are added to the surface of the steel that has been passed through the hopper. Below 3M, the suction ratio to the dust collection system is high (and above 50m, a so-called "shelf drop" phenomenon occurs in the hollow chamber). However, with the injection method in which FC immersion lance is used to blow into the molten steel along with the cine active gas, stable blowing is not possible. The appropriate range is 1.5H or less for injection.If it exceeds 1.5IIJI, the frictional resistance inside the pipe during injection becomes large and stable injection cannot be performed.

なお、本発明において低融点金属硫化物の添加方式は・
特に限定するものではない。
In addition, in the present invention, the method of adding the low melting point metal sulfide is as follows:
It is not particularly limited.

又、低融点金属硫化物を必要に応じすなわち材質要求特
性に応じ、低融点金属、低融点金属酸化物と混合して添
加してもよい。
Further, a low melting point metal sulfide may be added in a mixture with a low melting point metal or a low melting point metal oxide as needed, that is, depending on the required characteristics of the material.

鋼の被剛性をコントロールする上で鋼中の低融点金属の
形態をコントロールすることは重要であり、これら上記
の添加物及びその量の選定により鋼材中の低融点金属単
体、低融点金属硫化物、低融点金属の硫化物+酸化物の
比率を任意にコントロールして、要求される被削性に応
じた’41 k製造することができる。
In order to control the stiffness of steel, it is important to control the morphology of the low melting point metal in the steel, and by selecting the above additives and their amounts, it is possible to control the form of the low melting point metal and low melting point metal sulfide in the steel material. By controlling the ratio of low melting point metal sulfide + oxide, it is possible to manufacture '41k according to the required machinability.

次に本発明の効果について説明する。Next, the effects of the present invention will be explained.

本発明者らは本発明の効果を確認するため。In order to confirm the effects of the present invention.

100 ton溶鋼を用いた実験をおこなった。An experiment was conducted using 100 tons of molten steel.

この実験における溶鍋の成分及び温度は第1表に示す通
りである。
The components and temperature of the melting pot in this experiment are shown in Table 1.

第1表 該溶鋼に低融点金属源として金属鉛粒、硫化鉛(品位9
8%以上工業合成製品)、金属ビスマス、硫化ビスマス
(B l2Ss r品位98チ以上、工業合成製品)で
粒度が3〜10閣のものを上方添加法によ、!7Pbあ
るいはBi換算で溶鋼に対して0.4%添加した。その
結果、第1図に示す如く鉛源添加溶鋼、ビスマス源添加
溶鋼ともに、単体の金属粒で添加する従来法に比べ硫化
物として添加する本発明法は鉛又はビスマスの歩留が著
しく向上したことが確認された。
Table 1 Metallic lead particles, lead sulfide (grade 9
8% or more industrially synthesized product), bismuth metal, bismuth sulfide (Bl2Ssr grade 98% or more, industrially synthesized product) with a particle size of 3 to 10 degrees by the upward addition method! 7 Pb or Bi was added in an amount of 0.4% to the molten steel. As a result, as shown in Figure 1, in both lead source-added molten steel and bismuth source-added molten steel, the yield of lead or bismuth was significantly improved by the method of the present invention in which lead is added as a sulfide, compared to the conventional method in which it is added as a single metal particle. This was confirmed.

これによシ低融点金属添加コストの大riJな低減が図
られた。
This has led to a significant reduction in the cost of adding low melting point metals.

また本発明法によって得られた鋼塊中の任意の複数部位
のそれぞれのPb、Bi分析値間のパランキは平均値に
対して±0.02%であったのに対し。
Moreover, the paranki between the respective Pb and Bi analysis values of arbitrary plural parts in the steel ingot obtained by the method of the present invention was ±0.02% with respect to the average value.

さらに本発明法は従来法のように低融点金属添加時に檄
しく発生する粉じんもほとんど皆無であった。
Furthermore, in the method of the present invention, unlike the conventional method, almost no dust was generated when low melting point metals were added.

以上の効果確認の実馳から明らかなように1本発明によ
れば、機械切削性に優れ、かつ品質のノ々ラツキが極め
て少ない低融点金属含有快削鋼を低コストで製造するこ
とが可能となった。さらに低融点金属添加時の粉じん発
生等の環境問題も有利に解決され鉄鋼業にとって極めて
有益なものである。
As is clear from the confirmation of the above effects, according to the present invention, it is possible to produce at low cost a free-cutting steel containing a low-melting point metal that has excellent machinability and has extremely little unevenness in quality. It became. Furthermore, environmental problems such as dust generation when low-melting point metals are added are advantageously solved, which is extremely beneficial to the steel industry.

代理人 弁理士 秋 沢 政 光 外2名Agent Patent Attorney Masaaki Akizawa 2 people outside

Claims (2)

【特許請求の範囲】[Claims] (1) 溶鋼に低融点金属源を添加し低融点金属含有溶
鋼を製造するに当り低融点金属源として該低融点金属の
硫化物を用いることを特徴とする低融点金属含有溶鋼の
製造方法。
(1) A method for producing molten steel containing a low melting point metal, which comprises adding a low melting point metal source to molten steel to produce molten steel containing a low melting point metal, and using a sulfide of the low melting point metal as the low melting point metal source.
(2) 溶鋼に低融点金属源を添加し低融点金属含有溶
鍋を製造するに当シ低融点金爲源として該低融点金属と
該低融点金属の硫化物、酸化物との混合物を用いること
を特徴とする低融点金属含有溶鋼の製造方法。
(2) When adding a low melting point metal source to molten steel to produce a molten pot containing a low melting point metal, it is recommended to use a mixture of the low melting point metal and a sulfide or oxide of the low melting point metal as the low melting point metal source. A method for producing molten steel containing low melting point metals.
JP15549083A 1983-08-25 1983-08-25 Preparation of molten steel containing low melting point metal Granted JPS6046311A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15549083A JPS6046311A (en) 1983-08-25 1983-08-25 Preparation of molten steel containing low melting point metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15549083A JPS6046311A (en) 1983-08-25 1983-08-25 Preparation of molten steel containing low melting point metal

Publications (2)

Publication Number Publication Date
JPS6046311A true JPS6046311A (en) 1985-03-13
JPH0256405B2 JPH0256405B2 (en) 1990-11-30

Family

ID=15607182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15549083A Granted JPS6046311A (en) 1983-08-25 1983-08-25 Preparation of molten steel containing low melting point metal

Country Status (1)

Country Link
JP (1) JPS6046311A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62501081A (en) * 1984-11-05 1987-04-30 エクストラメ・アンデュストリ−・ソシエテ・アノニム Processing methods for refining metals and alloys

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62501081A (en) * 1984-11-05 1987-04-30 エクストラメ・アンデュストリ−・ソシエテ・アノニム Processing methods for refining metals and alloys

Also Published As

Publication number Publication date
JPH0256405B2 (en) 1990-11-30

Similar Documents

Publication Publication Date Title
JP7122979B2 (en) Cast iron inoculant and method for producing cast iron inoculant
KR20200100155A (en) Cast iron inoculant and method of producing cast iron inoculant
GB2043696A (en) Adjusting carbon contents of steel melts
JPS6046311A (en) Preparation of molten steel containing low melting point metal
JPH01165731A (en) Manufacture of v-al alloy
EP3775310B1 (en) Silicon based alloy, method for the production thereof and use of such alloy
US3892561A (en) Composition for treating steels
US3865578A (en) Composition for treating steels
US3304174A (en) Low oxygen-silicon base addition alloys for iron and steel refining
US1020512A (en) Zinc and method of purifying and improving the same.
JP6848369B2 (en) Sulfur-added raw material to molten steel and manufacturing method of sulfur-added steel
JP6888275B2 (en) Manufacturing method of sulfur-added steel
JPS6333514A (en) Manufacture of molten steel containing calcium by refining
EP0259772B1 (en) Apparatus and method for manufacturing copper-base alloy
SU952983A1 (en) Batch for producing manganese agglomerate
US4483710A (en) Addition agent for adding vanadium to iron base alloys
JPH0820829A (en) Method for melting copper or copper alloy having low sulfur content
JP2944820B2 (en) Operation method of ferronickel firing furnace
RU2247158C1 (en) Method of extra-furnace alloying of iron-carbon alloys in ladle
US4076523A (en) Pyrometallurgical process for lead refining
US2343761A (en) Smelting copper-lead drosses and the like
US2302616A (en) Briquette for the addition of tungsten to ferrous alloys
RU2044063C1 (en) Method for making low-alloyed steel with niobium
CN110073009B (en) Dephosphorization flux and preparation method thereof
US2207350A (en) Method of making alloys