JPH0256405B2 - - Google Patents

Info

Publication number
JPH0256405B2
JPH0256405B2 JP15549083A JP15549083A JPH0256405B2 JP H0256405 B2 JPH0256405 B2 JP H0256405B2 JP 15549083 A JP15549083 A JP 15549083A JP 15549083 A JP15549083 A JP 15549083A JP H0256405 B2 JPH0256405 B2 JP H0256405B2
Authority
JP
Japan
Prior art keywords
melting point
low melting
point metal
molten steel
bismuth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15549083A
Other languages
Japanese (ja)
Other versions
JPS6046311A (en
Inventor
Eiji Kamisaka
Hirofumi Maede
Juji Kawachi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP15549083A priority Critical patent/JPS6046311A/en
Publication of JPS6046311A publication Critical patent/JPS6046311A/en
Publication of JPH0256405B2 publication Critical patent/JPH0256405B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0006Adding metallic additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は低融点金属である鉛、ビスマスを含有
する機械切削性の優れた快削鋼の製造方法に関す
るものである。 鋼の機械切削性は被削性付与成分を添加するこ
とにより得られる。特に鉛、ビスマスを添加する
と、硫黄、燐等を多量に含有する切削性のの優れ
た鋼に一層良好な機械切削性を付与することが知
られている。 これら、被削性付与成分である鉛、ビスマスを
溶鋼中へ添加する方法としては、従来よりこれら
の添加金属粒をアルゴン等の不活性ガスとともに
固気圧送を利用して溶鋼中あるいは溶鋼流中へ吹
込む方法が一般的であつた。またこれらの添加金
属を鉄被覆ワイヤーとして溶鋼中へ挿入添加する
方法も試みられていた。 しかしながら、これらの方法においては低融点
金属源として前記の低融点金属単体を用いてお
り、該低融点金属源を溶鋼中へ均一に添加するこ
とが困難であり、そこで材質上バラツキのない快
削鋼を得ることが困難であるという欠点がある。
すなわち鉛、ビスマスは比重が鉄よりも大きく
(Pbで11.4、Biで9.8)、そのため溶鋼中へ添加さ
れたこれらの金属粒はいちはやく沈降し、大部分
溶鋼取鍋底部に偏析し、材質上バラツキのない快
削鋼を製造することは困難であつた。また、この
ような沈降偏析現象は鉛、ビスマスを過剰に添加
しなければ所望量の低融点合金を全体的に含有し
た鋼にならないという欠点があつた。 本発明は上記の欠点を有利に解決したものであ
り、その要旨は、実質的に鉛もしくはビスマスで
ある低融点金属の硫化物を溶鋼に添加る低融点金
属含有溶鋼の製造方法、実質的に鉛もしくはビス
マスである低融点金属の硫化物と当該低融点金属
との混合物を溶鋼に添加する低融点金属含有溶鋼
の製造方法、および、実質的に鉛もしくはビスマ
スである低融点金属の硫化物と当該低融点金属と
その酸化物とからなる混合物を溶鋼に添加する低
融点金属含有溶鋼の製造方法である。 以下にまず本発明に到達するまでに行つた実
験、測定について述べる。 本発明者らは低融点金属である鉛とビスマスを
溶鋼中へ均一に分散させるための手段について実
験を重ね、そして総合的に検討を加えた。その結
果、まず鉛とビスマスをそれぞれ単体で用いた場
合には、溶鋼の撹拌条件、鉛、ビスマスの添加条
件をいろいろと変えて製造しても沈降偏析現象を
生じ、均一に分散させることはできないことを知
つた。 そこで、沈降偏析現象を生じないか、又は生じ
るとしても極微少になる低融点金属源を見出すた
めに、低融点金属源としては(1)比重が鉄に近く、
溶鋼中で懸濁しやすいこと、(2)低融点金属源が鋼
の被削性等材質に悪影響を及ぼさないこと、の二
点を満足することを重要なポイントとして多くの
実験を行つた。 このような低融点金属源として本発明者らは鉛
またはビスマスの硫化物を見出し、実験、測定を
行つた。 その結果、 該低融点金属中とくに鋼の被削性を向上させ
鉛の安定な硫化物は比重が7.59であり、ビスマ
スの安定な硫化物は比重が7.39であり、前記(1)
の条件を満たしており、溶鋼中で懸濁し取鍋底
部に沈降することはほとんどないことが明らか
になつた。 又それらの低融点金属源は、被削性を向上さ
せる硫黄との化合物即ち硫化物であるため、一
層被削性の優れた鋼を得ることができ、前記(2)
の条件を満たすものであることが判明した。 本発明は上記実験に基づくものである。 次に本発明方法に用いられる鉛およびビスマス
の硫化物の好ましい品位、粒度について述べる。
一般に硫化鉛は方鉛鉱として、また硫化ビスマス
は輝蒼鉱として天然に産出する。これらの鉱石は
PbS、Bi2S3の純度が比較的高く、該鉱石をその
まま低融点金属源として用いることもできる。ま
た、もちろん化学的に合成されたPbS、Bi2S3
使用してもよい。 これら硫化物中PbS、Bi2S3の品位は90%以上
であればよい。90%未満であると不純物による溶
鋼汚染、取鍋耐火物浸食作用が大きくなる。 また粒度はホツパーより溶鋼表面へ添加する上
方添加方式では3〜50mmが適正範囲である。3mm
以下では集塵系への吸引比率が高く、50mm以上で
はホツパー内でいわゆる棚つり現象をきたす。ま
た浸漬ランスにより不活性ガスと共に溶鋼中へ吹
込むインジエクシヨン方式では、安定した吹込み
を行うため1.5mm以下が適正範囲である。1.5mmを
越えると吹込みの際の管内摩擦抵抗が大きくな
り、安定した吹込みがおこなえない。 なお、本発明において低融点金属硫化物の添加
方式は特に限定するものではない。 又、鉛、ビスマスの低融点金属の硫化物を必要
に応じ、すなわち材質要求特性に応じ低融点金属
である鉛、ビスマスと混合してもよい。さらに、
低融点金属硫化物と低融点金属、低融点金属酸化
物の3種類を混合してもよい。材質成分上S含有
量が規定される場合には、低融点金属硫化物と低
融点金属の混合物を用いればよい。又、切削加工
上鋼中に酸化物を多数存在させ工具寿命を向上さ
せるニーズがある場合には、低融点金属硫化物、
低融点金属、低融点金属酸化物の3者の混合物を
用いる。なお、これらの混合物を用いた場合の低
融点金属の歩留及び鋼塊中の濃度のバラツキは、
低融点金属硫化物のみを用いる場合より若干悪化
する。しかし、従来法と比較すると極めて良好な
結果が得られる。 鋼の被削性をコントロールする上で鋼中の低融
点金属、すなわち鉛、ビスマスの形態をコントロ
ールすること重要であり、これら上記の添加物及
びその量の選定により鋼材中の低融点金属単体、
低融点金属硫化物、低融点金属の硫化物+酸化物
の比率を任意にコントロールして、要求される被
削性に応じた鋼を製造することができる。 次に本発明の効果について説明する。 本発明者らは本発明の効果を確認するため、
100ton溶鋼を用いた実験を行つた。 この実験における溶鋼の成分及び温度は第1表
に示す通りである。
The present invention relates to a method for producing free-cutting steel containing low melting point metals such as lead and bismuth and having excellent machinability. The machinability of steel can be obtained by adding machinability imparting components. In particular, it is known that addition of lead or bismuth imparts even better mechanical machinability to steel that contains large amounts of sulfur, phosphorus, etc. and has excellent machinability. The conventional method for adding lead and bismuth, which are machinability-imparting ingredients, to molten steel is to use solid pumping to add these additive metal particles together with an inert gas such as argon into molten steel or flowing molten steel. The most common method was to blow it into the air. Also, attempts have been made to insert these additive metals into molten steel in the form of iron-coated wires. However, these methods use the above-mentioned single low melting point metal as a low melting point metal source, and it is difficult to uniformly add the low melting point metal source to molten steel. The disadvantage is that steel is difficult to obtain.
In other words, the specific gravity of lead and bismuth is higher than that of iron (11.4 for Pb and 9.8 for Bi), so when these metal particles are added to molten steel, they quickly settle and most of them segregate at the bottom of the molten steel ladle, resulting in variations in material quality. It was difficult to manufacture free-cutting steel without In addition, such precipitation segregation phenomenon has the disadvantage that unless lead and bismuth are added in excess, steel cannot be obtained which entirely contains the desired amount of low melting point alloy. The present invention advantageously solves the above-mentioned drawbacks, and the gist thereof is to provide a method for producing molten steel containing a low melting point metal, in which a sulfide of a low melting point metal, which is substantially lead or bismuth, is added to the molten steel. A method for producing molten steel containing a low melting point metal, in which a mixture of a sulfide of a low melting point metal such as lead or bismuth and the low melting point metal is added to molten steel, and a sulfide of a low melting point metal that is substantially lead or bismuth; This is a method for producing molten steel containing a low melting point metal, in which a mixture consisting of the low melting point metal and its oxide is added to molten steel. First, the experiments and measurements conducted to arrive at the present invention will be described below. The present inventors conducted repeated experiments on means for uniformly dispersing lead and bismuth, which are low melting point metals, into molten steel, and conducted comprehensive studies. As a result, when lead and bismuth are used individually, sedimentation and segregation occurs even if the stirring conditions of molten steel and the addition conditions of lead and bismuth are varied, making it impossible to achieve uniform dispersion. I learned that. Therefore, in order to find a low melting point metal source that does not cause sedimentation segregation phenomenon, or if it does occur, it will be extremely small, we have selected (1) a metal source with a specific gravity close to that of iron;
Many experiments were conducted with the two important points being that (2) the low melting point metal source does not adversely affect the machinability and other material properties of the steel. The present inventors discovered lead or bismuth sulfide as such a low melting point metal source, and conducted experiments and measurements. As a result, the stable sulfide of lead, which improves the machinability of low-melting point metals, especially steel, has a specific gravity of 7.59, and the stable sulfide of bismuth has a specific gravity of 7.39, which improves the machinability of steel in particular.
It has become clear that the following conditions are met, and that steel hardly suspends in the molten steel and settles to the bottom of the ladle. In addition, since these low melting point metal sources are compounds with sulfur, that is, sulfides, which improve machinability, it is possible to obtain steel with even better machinability.
It was found that the following conditions were met. The present invention is based on the above experiment. Next, preferred grades and particle sizes of lead and bismuth sulfides used in the method of the present invention will be described.
In general, lead sulfide occurs naturally as galena, and bismuth sulfide occurs naturally as molestone. These ores are
The purity of PbS and Bi 2 S 3 is relatively high, and the ore can be used as it is as a low melting point metal source. Of course, chemically synthesized PbS and Bi 2 S 3 may also be used. The quality of PbS and Bi 2 S 3 in these sulfides may be 90% or more. If it is less than 90%, contamination of molten steel by impurities and erosion of ladle refractories will increase. In addition, the appropriate particle size range is 3 to 50 mm for the upward addition method in which the particles are added from the hopper to the surface of the molten steel. 3mm
If the diameter is less than 50mm, the suction ratio to the dust collection system will be high, and if it is greater than 50mm, a so-called shelf hanging phenomenon will occur in the hopper. In addition, in the injection extraction method in which inert gas is injected into the molten steel using an immersion lance, the appropriate range is 1.5 mm or less to ensure stable injection. If it exceeds 1.5 mm, the frictional resistance inside the pipe during blowing will increase, making stable blowing impossible. In the present invention, the method of adding the low melting point metal sulfide is not particularly limited. Further, sulfides of low melting point metals such as lead and bismuth may be mixed with lead and bismuth, which are low melting point metals, as necessary, that is, depending on the required characteristics of the material. moreover,
Three types of low melting point metal sulfides, low melting point metals, and low melting point metal oxides may be mixed. If the S content is determined by the material composition, a mixture of a low melting point metal sulfide and a low melting point metal may be used. In addition, if there is a need to increase tool life by having a large number of oxides in the steel during cutting, low melting point metal sulfides,
A mixture of a low melting point metal and a low melting point metal oxide is used. In addition, when using these mixtures, the yield of low melting point metal and the variation in concentration in the steel ingot are as follows:
It is slightly worse than when only low melting point metal sulfides are used. However, when compared with conventional methods, extremely good results can be obtained. In order to control the machinability of steel, it is important to control the form of the low melting point metals in the steel, namely lead and bismuth, and by selecting these additives and their amounts, the low melting point metals in the steel,
By arbitrarily controlling the ratio of low melting point metal sulfide and low melting point metal sulfide + oxide, it is possible to manufacture steel that meets the required machinability. Next, the effects of the present invention will be explained. In order to confirm the effects of the present invention, the present inventors
An experiment was conducted using 100 tons of molten steel. The composition and temperature of the molten steel in this experiment are shown in Table 1.

【表】 該溶鋼に低融点金属源として金属鉛粒、硫化鉛
および酸化鉛(品位98%以上、工業合成製品)、
金属ビスマス、硫化ビスマス、酸化ビスマス
(Bi2S3、Bi2O3、品位98%以上、工業合成製品)
で粒度が3〜10mmのものを上方添加法によりPb
あるいはBi換算で溶鋼に対して0.4%添加した。
添加は金属単体(従来法)、硫化物単体(実施例
1)、金属分の重量比で硫化物:金属=1:1(実
施例2)、同じく金属分の重量比で硫化物:金
属:酸化物=2:1:1(実施例3)とした(各
例においてはビスマス、は鉛)。 その結果、第1図に示す如く鉛源添加溶鋼、ビ
スマス源添加溶鋼ともに、単体の金属粒で添加す
る従来法に比べ硫化物として添加する本発明法は
鉛又はビスマスの歩留が著しく向上したことが確
認された。 これにより低融点金属添加コストの大幅な低減
が図られた。 また本発明法によつて得られた鋼塊中の任意の
複数部位のそれぞれPb、i分析値間のバラツキ
は平均値に対して実施例1:±0.02%、実施例
2:±0.04%、実施例3:±0.025%であつたの
に対し、従来法による鋼塊では±0.08%とバラツ
キが大であつた。 さらに本発明法は従来法のようにこれらの低融
点金属添加時に激しく発生する粉塵もほとんど皆
無であつた。 以上の効果確認の実験から明らかなように、本
発明によれば、機械切削性に優れ、かつ品質のバ
ラツキが極めて少ない鉛あるいはビスマスを含有
する快削鋼を低コストで製造することが可能とな
つた。さらに金属添加時の粉塵発生等の環境問題
も有利に解決され、鉄鋼業にとつて極めて有益な
ものである。
[Table] Metallic lead particles, lead sulfide, and lead oxide (grade 98% or higher, industrially synthesized product) are added to the molten steel as low-melting point metal sources.
Bismuth metal, bismuth sulfide, bismuth oxide (Bi 2 S 3 , Bi 2 O 3 , grade 98% or higher, industrially synthesized product)
Pb with a particle size of 3 to 10 mm is added using the upward addition method.
Alternatively, 0.4% Bi was added to the molten steel.
Additions were made of a single metal (conventional method), a single sulfide (Example 1), a metal weight ratio of sulfide:metal=1:1 (Example 2), and a metal weight ratio of sulfide:metal: The oxide ratio was 2:1:1 (Example 3) (in each example, bismuth was lead). As a result, as shown in Figure 1, in both lead source-added molten steel and bismuth source-added molten steel, the yield of lead or bismuth was significantly improved by the method of the present invention in which lead is added as a sulfide, compared to the conventional method in which it is added as a single metal particle. This was confirmed. This resulted in a significant reduction in the cost of adding low-melting point metals. In addition, the variation between the Pb and i analysis values of arbitrary multiple parts in the steel ingot obtained by the method of the present invention is ±0.02% for Example 1, ±0.04% for Example 2, and Example 3: It was ±0.025%, whereas the steel ingot produced by the conventional method had a large variation of ±0.08%. Furthermore, unlike the conventional method, the method of the present invention produced almost no dust, which is violently generated when these low melting point metals are added. As is clear from the above experiments to confirm the effectiveness, according to the present invention, it is possible to produce free-cutting steel containing lead or bismuth, which has excellent machinability and extremely little variation in quality, at a low cost. Summer. Furthermore, environmental problems such as dust generation when metals are added are advantageously solved, which is extremely beneficial to the steel industry.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は低融点金属源種類と添加歩留の関係を
示す図面である。
FIG. 1 is a diagram showing the relationship between the type of low melting point metal source and the addition yield.

Claims (1)

【特許請求の範囲】 1 実質的に鉛もしくはビスマスである低融点金
属の硫化物を溶鋼に添加する低融点金属含有溶鋼
の製造方法。 2 実質的に鉛もしくはビスマスである低融点金
属の硫化物と当該低融点金属との混合物を溶鋼に
添加する低融点金属含有溶鋼の製造方法。 3 実質的に鉛もしくはビスマスである低融点金
属の硫化物と当該低融点金属とその酸化物とから
なる混合物を溶鋼に添加する低融点金属含有溶鋼
の製造方法。
[Scope of Claims] 1. A method for producing molten steel containing a low melting point metal, which comprises adding a sulfide of a low melting point metal, which is essentially lead or bismuth, to molten steel. 2. A method for producing molten steel containing a low melting point metal, in which a mixture of a sulfide of a low melting point metal, which is essentially lead or bismuth, and the low melting point metal is added to molten steel. 3. A method for producing molten steel containing a low melting point metal, which comprises adding to molten steel a sulfide of a low melting point metal that is essentially lead or bismuth, and a mixture of the low melting point metal and its oxide.
JP15549083A 1983-08-25 1983-08-25 Preparation of molten steel containing low melting point metal Granted JPS6046311A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15549083A JPS6046311A (en) 1983-08-25 1983-08-25 Preparation of molten steel containing low melting point metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15549083A JPS6046311A (en) 1983-08-25 1983-08-25 Preparation of molten steel containing low melting point metal

Publications (2)

Publication Number Publication Date
JPS6046311A JPS6046311A (en) 1985-03-13
JPH0256405B2 true JPH0256405B2 (en) 1990-11-30

Family

ID=15607182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15549083A Granted JPS6046311A (en) 1983-08-25 1983-08-25 Preparation of molten steel containing low melting point metal

Country Status (1)

Country Link
JP (1) JPS6046311A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1986002949A1 (en) * 1984-11-05 1986-05-22 Extramet Industrie S.A. Method for the treatment of metals and alloys for the refining thereof

Also Published As

Publication number Publication date
JPS6046311A (en) 1985-03-13

Similar Documents

Publication Publication Date Title
JP7122979B2 (en) Cast iron inoculant and method for producing cast iron inoculant
KR102410368B1 (en) Cast iron inoculum and method of producing cast iron inoculant
EP3478858A1 (en) Cast iron inoculant and method for production of cast iron inoculant
KR20200100155A (en) Cast iron inoculant and method of producing cast iron inoculant
KR20200100805A (en) Cast iron inoculant and method of producing cast iron inoculant
KR20200101437A (en) Cast iron inoculant and method of producing cast iron inoculant
JPS62501081A (en) Processing methods for refining metals and alloys
JPH0256405B2 (en)
US3865578A (en) Composition for treating steels
US3892561A (en) Composition for treating steels
Cengizler et al. Silicon and manganese partition between slag and metal phases and their activities pertinent to ferromanganese and silicomanganese production
US3304174A (en) Low oxygen-silicon base addition alloys for iron and steel refining
US1951935A (en) Process for sintering fine ores or the like
US4686081A (en) Method for addition of low-melting point metal
US2757083A (en) Method of making a metal alloy
CN112400028A (en) Calcium, aluminium and silicon alloy and method for producing same
TWI825639B (en) Ferrosilicon vanadium and/or niobium alloy, production of a ferrosilicon vanadium and/or niobium alloy, and the use thereof
US1020512A (en) Zinc and method of purifying and improving the same.
SU800229A1 (en) Charge for smelting low-phosphate slag
JP2944820B2 (en) Operation method of ferronickel firing furnace
US906173A (en) Method of treating aluminum silicate.
US4076523A (en) Pyrometallurgical process for lead refining
US4483710A (en) Addition agent for adding vanadium to iron base alloys
US2302616A (en) Briquette for the addition of tungsten to ferrous alloys
US2799574A (en) Electric smelting process for manganese ores