JPS604050A - High heat-resistant load member - Google Patents

High heat-resistant load member

Info

Publication number
JPS604050A
JPS604050A JP11084383A JP11084383A JPS604050A JP S604050 A JPS604050 A JP S604050A JP 11084383 A JP11084383 A JP 11084383A JP 11084383 A JP11084383 A JP 11084383A JP S604050 A JPS604050 A JP S604050A
Authority
JP
Japan
Prior art keywords
high heat
layer
alloy
composite structure
resistant member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11084383A
Other languages
Japanese (ja)
Inventor
深沢 美治
辰彦 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP11084383A priority Critical patent/JPS604050A/en
Publication of JPS604050A publication Critical patent/JPS604050A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は熱伝導特性が良好で、且つ、高熱流速負荷下で
の熱応力、変形などの発生の少ないCLI−Mo合金複
合構造体で構成された耐高熱負荷部材に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention is composed of a CLI-Mo alloy composite structure that has good thermal conductivity and is less prone to thermal stress, deformation, etc. under high heat flow rate loads. The present invention relates to a high heat load resistant member.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

高温で高熱流速負荷を受ける部品、たとえばプラズマ発
生装置の不純物除去板において、耐熱性あるいは耐スパ
ツタ性の観点から、直接高熱流速負荷を受ける表層部に
はMo層が用いられる。一方、負荷されを熱を効果的に
冷却、除去するためには冷却部分にCu 又はCu合金
を使用する必要があシ、このためにCu−Moの複合構
造体で構成された耐高熱負荷部材の使用が試られ、くい
だ。この際Cu層とMo層との接合方法としては、ボル
ト締めなどの機械的な結合法か、あるいは銀ろう。
In components that are subjected to high heat flux loads at high temperatures, such as impurity removal plates for plasma generators, from the viewpoint of heat resistance or spatter resistance, a Mo layer is used in the surface layer that is directly subjected to high heat flow velocity loads. On the other hand, in order to effectively cool and remove the heat under load, it is necessary to use Cu or a Cu alloy in the cooling part, and for this purpose high heat load resistant members made of a Cu-Mo composite structure are used. The use of was tried and failed. At this time, the Cu layer and the Mo layer can be joined by a mechanical joining method such as bolt tightening, or by silver soldering.

銅ろう付けなどの冶金的な接合法が知られている。Metallurgical joining methods such as copper brazing are known.

しかしながらCu とMOとは熱膨張係数が例えば温度
範囲20℃〜600℃の間でCu : 14.7xlO
However, the thermal expansion coefficient of Cu and MO is, for example, 14.7xlO in the temperature range of 20°C to 600°C.
.

M o : 5.4 X 10′(単位deg−’ )
の如く大きな差があるため、Cu−Moの接合体では温
度変化により大きな熱応力が接合部に発生するという欠
点があった〇 また、この熱応力のために、通常温度をあげて行なわれ
る冶金的接合の形成自体が困難であつ九なお機械的な結
合法においては、結合部の形状。
Mo: 5.4 x 10' (unit deg-')
Because of this large difference, Cu-Mo bonded bodies had the disadvantage that large thermal stress was generated in the bonded area due to temperature changes. Also, due to this thermal stress, metallurgy, which is usually carried out at elevated temperatures, However, in mechanical bonding methods, it is difficult to form a bond itself, and the shape of the bond.

間隔などの考慮によシ、熱膨張差を逃がし、熱応力の発
生をさけることが可能であるが、結合部における熱伝達
の効率は悪く、このため効果的な熱負荷の除去が困難で
あり、プラズマ発生装置において、プラズマディスラプ
ションなどの大きな入熱が生じた場合には表面温度が上
昇し、表面溶融などの破損を生ずる恐れがある。一方、
冶金的接合法を採用すれば、当初は熱の除去は有効に行
なわれるが、熱膨張差によシ熱応力が接合面に発生し、
特に間欠的な運転モードをとるトカマク型プラズマ発生
装置などにおいては、熱応力の変動およびプラズマから
の電磁力も重量され、特に強度の弱い接合部等に疲労ク
ラックを生ずるに至る。
Although it is possible to release the difference in thermal expansion and avoid the generation of thermal stress by considering the spacing, etc., the efficiency of heat transfer at the joint is poor, making it difficult to effectively remove the heat load. In a plasma generating device, when a large heat input such as plasma disruption occurs, the surface temperature increases, and there is a possibility that damage such as surface melting may occur. on the other hand,
If a metallurgical bonding method is used, heat is initially removed effectively, but thermal stress is generated on the bonding surface due to the difference in thermal expansion.
Particularly in tokamak-type plasma generators that operate in an intermittent operation mode, fluctuations in thermal stress and electromagnetic force from the plasma are also significant, leading to fatigue cracks, especially in weak joints.

そしてこのクラック発生によυ熱伝達の効率は劣化し、
同様に表面温度の上昇によシ、最終的には表面溶融など
の損傷を生ずるという欠点があった〔発明の目的〕 本発明は以上の欠点の改良した、熱伝導が良好で、且つ
、熱応力発生の少ないCu−Mo合金の複合構造体で構
成された耐高熱負荷部材を提供することを目的とする。
Due to the occurrence of this crack, the efficiency of υ heat transfer deteriorates,
Similarly, there is a drawback that an increase in surface temperature ultimately causes damage such as surface melting.[Object of the Invention] The present invention aims to improve the above-mentioned drawbacks and to provide a heat conductive material with good heat conductivity. It is an object of the present invention to provide a high heat load resistant member made of a Cu-Mo alloy composite structure that generates less stress.

〔発明の概要〕 本発明の耐高熱負荷部材は第1図の複合構造体の断面図
に示される表層部がMo層(1)、他端部がCu層(4
)で構成され、その両者の中間層部分は、Mo層(1)
に近い側(2)でMo含有量がCu層(4)端部に近い
側(3)におけるMo含有量よりも多い、いいかえれば
Moからなる表層部に近い側(2)からCuからなる他
端部に近い側(3)までのMo含有比率が100〜Ow
t%まで変化したCu−Mo合金層で構成されている。
[Summary of the Invention] The high heat load resistant member of the present invention has a Mo layer (1) on the surface layer and a Cu layer (4) on the other end as shown in the cross-sectional view of the composite structure in FIG.
), and the intermediate layer between them is a Mo layer (1).
The Mo content on the side (2) near the Cu layer (4) is higher than the Mo content on the side (3) near the end of the Cu layer (4), in other words, from the side (2) near the surface layer made of Mo, Mo content ratio up to the side (3) near the end is 100~Ow
It is composed of a Cu-Mo alloy layer with a content of up to t%.

本発明に係る耐高熱負荷部材を構成するCu −M。Cu-M constituting the high heat load resistant member according to the present invention.

合金の複合構造体は複合構造体の中間部分をM。For alloy composite structures, the middle part of the composite structure is M.

およびCuの中間の熱膨張係数を有するCu −M。and Cu-M, which has a coefficient of thermal expansion intermediate to that of Cu.

合金層とし高熱負荷時の熱膨張係数差による熱応力発生
を小さくできること、また従来法によるCuとMoとの
接合面における熱伝達効率の劣化を防止できることを究
明してなされたものである。
This was achieved after discovering that the alloy layer can reduce the generation of thermal stress due to the difference in thermal expansion coefficients during high heat loads, and that it can prevent the deterioration of heat transfer efficiency at the bonding surface between Cu and Mo, which is caused by conventional methods.

〔発明の実施例〕[Embodiments of the invention]

実施例1 平均粒径5μmのMo粉末を金型の下面に所
定の厚さtlだけ入れる。
Example 1 Mo powder having an average particle size of 5 μm is put into the lower surface of a mold to a predetermined thickness tl.

次に、この上面に平均粒径25μmのMo粉末を 1厚
さt!たけ入れる。さらにこのt2の上面に平均粒径5
0μmのMo粉末を厚さt、だけ入れ、1ton/cJ
の圧力で成形、厚さ20s+aの板状圧粉体を成形した
Next, Mo powder with an average particle size of 25 μm is coated on this top surface to a thickness of 1 t! Put it in. Furthermore, on the upper surface of this t2, an average grain size of 5
Add 0 μm Mo powder to a thickness of t, 1 ton/cJ
A plate-shaped green compact with a thickness of 20 s+a was formed at a pressure of .

ついで、板状圧粉体の平均径5μmのMo粉末側を18
50℃、他端を1300℃に保ち、水素気流中にて5h
r の焼結を行なった。焼結体をついで、カーボンるつ
は中に高温で焼結され密度の上った側(平均粒径5μm
のMo粉末側)を下方にして設置し、為雰囲気中で11
50℃に昇温した後、カーボンるつぼ上部にCu を装
入溶融し、Mo焼結体中に含浸せしめた。Cu は多め
に加え、圧粉焼結体の上部さらに25■のCu層を形成
せしめ、冷却固化させた。
Next, the Mo powder side of the plate-shaped powder compact with an average diameter of 5 μm was
Keep the other end at 50℃ and 1300℃ for 5 hours in a hydrogen stream.
sintering of r. After the sintered body is placed, the carbon melt is sintered at high temperature to increase the density (average grain size 5 μm).
(Mo powder side) facing downward, and 11
After raising the temperature to 50° C., Cu was charged into the upper part of the carbon crucible and melted to impregnate it into the Mo sintered body. A large amount of Cu was added to form an additional 25 cm Cu layer on the top of the compacted sintered body, which was then cooled and solidified.

得られたCUを含浸させたCu−Mo合金の複合構造体
は第2図に示されるように、Cu層(4)中に水冷用の
孔(5)をあけて、C(1−Mo合金の複合構造体で形
成された耐高熱負荷部材(6)とした。
As shown in Fig. 2, the resulting composite structure of Cu-Mo alloy impregnated with CU is prepared by making holes (5) for water cooling in the Cu layer (4). A high heat load resistant member (6) was formed from a composite structure of.

なお、Cu−Mo合金の複合構造体のMO焼結体部分に
おいて表層部である平均粒径5μmのMo粉末焼結体側
(2)、すなわち高温焼結側でのMo含有量は重量%で
約95%、低温焼結側(3)でのMo含有比率は重量%
で約60%であった。
In addition, in the MO sintered body part of the Cu-Mo alloy composite structure, the Mo content on the surface layer side (2) of the Mo powder sintered body with an average grain size of 5 μm, that is, on the high temperature sintered side, is about % by weight. 95%, Mo content ratio on low temperature sintering side (3) is wt%
It was about 60%.

(比較例1) 厚110m+の粉末冶金法によシ製造し
たMo層(1′)の片面に10μmの厚さにCuメッキ
(8)を行なった後、冷却水用円孔を設けた厚さ30s
amのCu層(41)との間に厚さ25μmの銀ろう箔
(9)をおいて重ね、2#/−の荷重のもとでH1気流
中で850℃に加熱、徐冷してCu−Mo複合体で形成
された第3図に示す耐高熱負荷部材(lCJとした。
(Comparative Example 1) One side of a Mo layer (1') manufactured by powder metallurgy with a thickness of 110 m+ was plated with Cu (8) to a thickness of 10 μm, and then a circular hole for cooling water was provided. 30s
A silver soldering foil (9) with a thickness of 25 μm is placed between the Cu layer (41) of am and the Cu layer (41) is stacked, heated to 850°C in H1 air flow under a load of 2#/-, and slowly cooled to form a Cu layer. A high heat load resistant member (1CJ) shown in FIG. 3 was formed of a -Mo composite.

以上の実施例1および比較例1の製法による耐高熱負荷
部材を冷却水を通しつつ、そのMO表面に電子ビームに
よpsooW/dの熱流束を60秒加え、30秒休止す
る加熱サイクル試駆を50回行なった。
A heating cycle trial run in which a heat flux of psooW/d was applied to the MO surface of the MO surface by an electron beam for 60 seconds, and then paused for 30 seconds, while cooling water was passed through the high heat load resistant member produced by the manufacturing methods of Example 1 and Comparative Example 1. was performed 50 times.

そして、加熱の60秒終了時のMO表面温度の測定およ
び加熱サイクル試験後の接合部のはがれや割れ等の発生
状況を観察した。
Then, the MO surface temperature was measured at the end of 60 seconds of heating, and the occurrence of peeling, cracking, etc. at the joint after the heating cycle test was observed.

これらの試験結果を第1表に示す。The results of these tests are shown in Table 1.

以下f、臼 第 1 表 以上のように本発明によるCu−Mo合金の複合構造体
から成る本発明例の高耐熱負荷部材は良好な熱伝導度を
もち、また熱応力の発生が少ないため高耐熱負荷部材と
して用いるのに十分適している。
As shown in Table 1, the high heat-resistant load member of the present invention, which is made of a composite structure of Cu-Mo alloy according to the present invention, has good thermal conductivity and generates little thermal stress, so it has high heat resistance. It is fully suitable for use as a heat-resistant load member.

〔発明の効果〕〔Effect of the invention〕

以上説明したようにCu−Mo合金の複合構造体よシ成
る耐高熱負荷部材は、熱膨張係数の大きく異なるMo 
とCu との間にその両者の中間の熱膨張係数を有する
Cu−Mo合金層を有するため、高熱負荷の繰返しにお
いても、接合部が無いため、接合部のはがれが起らず、
充分な除熱効果がある。
As explained above, a high heat load resistant member made of a composite structure of Cu-Mo alloy is made of Mo
Since there is a Cu-Mo alloy layer with a thermal expansion coefficient between the two and Cu, there is no joint, even under repeated high heat loads, so the joint does not peel off.
Has sufficient heat removal effect.

さらに、本発明に係る耐高熱負荷部材は、Mo とCu
 との中間層のCu−Mo合金の熱膨張係数が連続的に
変化するため高熱負荷の繰返しに伴なうMOとCu O
熱膨張係数の差から生ずる熱応力あるいは熱ひずみが小
さくなp、Mo表面の割れ発生を押さえることも可能と
なシ、工業上類る有用である。
Furthermore, the high heat load resistant member according to the present invention includes Mo and Cu.
Due to the continuous change in the thermal expansion coefficient of the Cu-Mo alloy in the intermediate layer between MO and CuO,
It is also industrially useful because it is possible to suppress the occurrence of cracks on the surface of P and Mo, which have small thermal stress or thermal strain caused by the difference in thermal expansion coefficients.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の耐高熱負荷部材の断面図、第2図は本
発明の耐高熱負荷部材の断面図、第3図は従来例の耐高
熱負荷部材の断面図、(11、(1つはMo 、 (2
) 、 (31は組成の変化するCu−Mo合金層、(
41、(4’)はcu 、 (6) 、 Qlは耐高熱
負荷部材。 代理人 弁理士 則 近 憲 佑 (他1名))
Fig. 1 is a sectional view of a high heat load resistant member of the present invention, Fig. 2 is a sectional view of a high heat load resistant member of the present invention, and Fig. 3 is a sectional view of a conventional high heat load resistant member. One is Mo, (2
), (31 is a Cu-Mo alloy layer whose composition changes, (
41, (4') is cu, (6), Ql is a high heat load resistant member. Agent: Patent attorney Kensuke Chika (and 1 other person)

Claims (1)

【特許請求の範囲】[Claims] Mo層とCu層とが前記Mo層側からCu層側までMo
含有比率が重量%で100〜0チまで変化したCu−M
o合金層を介して積層された複合構造体で構成されてい
ることを特徴とする高耐熱負荷部材。
The Mo layer and the Cu layer are Mo layered from the Mo layer side to the Cu layer side.
Cu-M whose content ratio changed from 100 to 0% by weight
o A high heat-resistant load member comprising a composite structure laminated with an alloy layer interposed therebetween.
JP11084383A 1983-06-22 1983-06-22 High heat-resistant load member Pending JPS604050A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11084383A JPS604050A (en) 1983-06-22 1983-06-22 High heat-resistant load member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11084383A JPS604050A (en) 1983-06-22 1983-06-22 High heat-resistant load member

Publications (1)

Publication Number Publication Date
JPS604050A true JPS604050A (en) 1985-01-10

Family

ID=14546066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11084383A Pending JPS604050A (en) 1983-06-22 1983-06-22 High heat-resistant load member

Country Status (1)

Country Link
JP (1) JPS604050A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61244716A (en) * 1985-04-15 1986-10-31 旭精機工業株式会社 Wire-rod bundling device
US5100740A (en) * 1989-09-25 1992-03-31 General Electric Company Direct bonded symmetric-metallic-laminate/substrate structures
CN103057202A (en) * 2013-01-05 2013-04-24 江苏鼎启科技有限公司 Lamination-structured heat sink material and preparation method
JP2014151337A (en) * 2013-02-07 2014-08-25 Toyota Industries Corp Electrode for resistance-welding
CN110814078A (en) * 2019-09-24 2020-02-21 无锡乐普金属科技有限公司 Preparation method of molybdenum-copper stepped material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61244716A (en) * 1985-04-15 1986-10-31 旭精機工業株式会社 Wire-rod bundling device
JPH0468212B2 (en) * 1985-04-15 1992-10-30 Asahi Seiki Mfg
US5100740A (en) * 1989-09-25 1992-03-31 General Electric Company Direct bonded symmetric-metallic-laminate/substrate structures
CN103057202A (en) * 2013-01-05 2013-04-24 江苏鼎启科技有限公司 Lamination-structured heat sink material and preparation method
JP2014151337A (en) * 2013-02-07 2014-08-25 Toyota Industries Corp Electrode for resistance-welding
CN110814078A (en) * 2019-09-24 2020-02-21 无锡乐普金属科技有限公司 Preparation method of molybdenum-copper stepped material

Similar Documents

Publication Publication Date Title
US5981085A (en) Composite substrate for heat-generating semiconductor device and semiconductor apparatus using the same
JP4985129B2 (en) Bonded body, electronic module, and bonding method
TWI304006B (en) Tin/indium lead-free solders for low stress chip attachment
WO2009148168A1 (en) Substrate for power module, power module, and method for producing substrate for power module
JP2010179336A (en) Joint product, semiconductor module, and method for manufacturing the joint product
WO2009139472A1 (en) Substrate for power module, power module, and method for producing substrate for power module
JP2016168625A (en) Method for manufacturing conjugate, method for manufacturing power module substrate with heat sink, and method for manufacturing heat sink
WO2006016479A1 (en) Heat sink member and method for manufacture thereof
JPH07227690A (en) Solder alloy and target structural body
JPH10150124A (en) Heat generating semiconductor device mounting composite substrate and semiconductor device using the substrate
JPS604050A (en) High heat-resistant load member
JP2004253736A (en) Heat spreader module
JP4935753B2 (en) Power module substrate, power module, and method of manufacturing power module substrate
JPH0547618B2 (en)
JP4807378B2 (en) Power module substrate, power module, and method of manufacturing power module substrate
JP6887184B1 (en) Laminated body and manufacturing method of laminated body
JP2503778B2 (en) Substrate for semiconductor device
JP2503779B2 (en) Substrate for semiconductor device
CN110711970B (en) Preparation method of anti-oxidation gold-tin solder
JPS59141395A (en) Brazing filler material
JP2014147966A (en) Joining material, joining method, joining structure, and semiconductor device
JPS59169694A (en) Solder and joining method thereof
JPS5949964A (en) High-heat resisting load composite structure
WO2019146587A1 (en) Joining layer of semiconductor module, semiconductor module, and method for manufacturing same
JPS60203436A (en) High heat-load-resistant composite structure