JPS60203436A - High heat-load-resistant composite structure - Google Patents

High heat-load-resistant composite structure

Info

Publication number
JPS60203436A
JPS60203436A JP5942284A JP5942284A JPS60203436A JP S60203436 A JPS60203436 A JP S60203436A JP 5942284 A JP5942284 A JP 5942284A JP 5942284 A JP5942284 A JP 5942284A JP S60203436 A JPS60203436 A JP S60203436A
Authority
JP
Japan
Prior art keywords
composite structure
content
tungsten
high heat
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5942284A
Other languages
Japanese (ja)
Inventor
深沢 美治
辰彦 松本
福原 由雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP5942284A priority Critical patent/JPS60203436A/en
Publication of JPS60203436A publication Critical patent/JPS60203436A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、高熱流束負荷を受けても熱応力の発生や変形
などが少なく、しかも熱伝導特性に優れたタングステン
(、)−モリブデン(MO)−銅(Cu)系の耐高熱負
荷複合構造体に関する。
Detailed Description of the Invention [Technical Field of the Invention] The present invention is directed to a tungsten (,)-molybdenum (MO) material that exhibits little thermal stress or deformation even when subjected to high heat flux loads, and has excellent thermal conductivity. )-Copper (Cu)-based high heat load resistant composite structure.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

X線発生装置の対陰極、プラズマ発生装置の不純物除去
板など高温下で高熱流束負荷を受ける部品は、直接高熱
流束負荷を受ける表面部分の部材と、負荷された熱を効
果的に除去して全体を冷却する冷却部分の部材とを接合
した構造より成る複合構造体である。一般に、表面部分
の部材にはX線の発生効率、耐熱性若しくは耐スパツタ
性などの観点からW若しくはW−Re合金が用いられ、
冷却部分の部材には、熱伝導特性が良好であることから
してC,若しくはCu合金が用いられている。
Components that are subjected to high heat flux loads at high temperatures, such as anticathodes in X-ray generators and impurity removal plates in plasma generators, have surface parts that are directly subjected to high heat flux loads, and the applied heat is effectively removed. It is a composite structure consisting of a structure in which a member of a cooling part is joined to cool the entire body. Generally, W or W-Re alloy is used for surface parts from the viewpoint of X-ray generation efficiency, heat resistance, spatter resistance, etc.
C or a Cu alloy is used for the cooling part because it has good thermal conductivity.

このようなW−Cu複合構造体を構成する際における重
要な問題は、両部材間の接合に関することである。なぜ
ならば、20℃〜600℃における平均熱膨張係数につ
いて見てみると、Wのそれは4.3X10”/℃、Cu
 のそれは14.7 X 10 ””’/℃と両者の間
には大きな差異があり、熱負荷を受けて温度上昇を生じ
たときには両部材の接合部には大きな熱応力が発生する
からである。
An important issue in constructing such a W-Cu composite structure is the bonding between the two members. This is because when we look at the average coefficient of thermal expansion between 20°C and 600°C, that of W is 4.3X10”/°C, and that of Cu
This is because there is a large difference between the two, 14.7 x 10 ''''/℃, and when the temperature rises due to heat load, a large thermal stress is generated at the joint between the two members. .

一般に両部材の接合方法には、ボルト締めなどの機械的
方法またはろう伺などを用いた冶金的方法がある。
Generally, the two members can be joined together using a mechanical method such as bolt tightening or a metallurgical method using brazing or the like.

前者の方法の場合には、接合部の形状9間隔などを考慮
して両部材間の熱膨張の差を逃がして熱応力の発生を避
けることは可能である。反面、両部材間の密着度が低下
するため両者間の熱伝達は低下し、効果的な冷却作用が
阻害される。そのため、例えば、プラズマ発生装置にお
いては、プラズマディスラプションなどの発生により大
きな熱負荷が加わった場合には、表面部分の部材(W)
の表面温度が大巾に上昇し、その結果、表面の溶融など
の破損現象が生ずるに至る。
In the case of the former method, it is possible to avoid the generation of thermal stress by taking into consideration the shape and spacing of the joint portion, etc., and releasing the difference in thermal expansion between the two members. On the other hand, since the degree of adhesion between the two members is reduced, heat transfer between the two members is reduced, and an effective cooling effect is inhibited. Therefore, for example, in a plasma generator, when a large heat load is applied due to occurrence of plasma disruption, etc., the surface part of the member (W)
The surface temperature of the material increases significantly, resulting in damage phenomena such as surface melting.

一方、後者の冶金的接合方法によれば、両部材は密着し
て接合されるので当初は熱の除去が有効に行なわれ円滑
な冷却作用を示すが、温度上昇により熱膨張差が増大す
ると接合面には熱応力が発生する。特に間欠的な運転モ
ードをとるトカマク型プラズマ発生装置などにおいては
、上記した熱応力は変動し、さらにそれに加えてプラズ
マからの電磁力も重畳されることにより、接合部のうち
強度の小さい部分に疲労クラックが発生し、成長するに
至る。接合部にこのようなりラックが発生し、成長する
と、この部分では熱伝達の効率が劣化し、L記したと同
様の理由により表面溶融による損傷の発生する虞れがあ
る。
On the other hand, according to the latter metallurgical joining method, since both parts are joined in close contact, heat is removed effectively at first and a smooth cooling effect is exhibited, but when the difference in thermal expansion increases due to temperature rise, the joining Thermal stress occurs on the surface. In particular, in tokamak-type plasma generators that operate in intermittent operation mode, the above-mentioned thermal stress fluctuates, and on top of that, the electromagnetic force from the plasma is also superimposed, causing fatigue in parts of the joint where the strength is low. Cracks occur and grow. If such a rack is generated and grows at the joint, the efficiency of heat transfer will deteriorate in this part, and there is a risk that damage will occur due to surface melting for the same reason as described in L.

〔発明の目的〕[Purpose of the invention]

本発明は、上記した欠点を解消し、接合部における熱応
力の発生が小さく、かつ熱伝導が良好で冷却作用に優れ
たW−Mo−Cu複合構造体の提供を目的とする。
An object of the present invention is to eliminate the above-mentioned drawbacks, and to provide a W-Mo-Cu composite structure that generates less thermal stress at the joint, has good heat conduction, and has excellent cooling effect.

〔発明の概要〕[Summary of the invention]

本発明者らは、上記の欠点が両部材間接合部における熱
伝達の効率の低下により生じ、その低下は両部材間の熱
膨張の差に起因するという事実に着目し、接合部におい
て両部材間の熱膨張差を低減せしめれば上記欠点を解消
し得るとの着想を得、研究を行なった結果、本発明のW
 −Mo−Cu複合構造体を開発するに到った。
The present inventors focused on the fact that the above-mentioned drawback is caused by a decrease in the efficiency of heat transfer at the joint between the two members, and that the decrease is due to the difference in thermal expansion between the two members. We got the idea that the above-mentioned drawbacks could be solved by reducing the thermal expansion difference between the W
-We have developed a Mo-Cu composite structure.

すなわち、本発明のW −ki(1−Cu複合構造体は
W部材とCu 部材とを接合して成る複合構造体におい
て、該部材間に、該W部材に接する部分ではM。含有量
が多く、該Cu 部材に接する部分ではCu 含有量の
多いM。−〇〇 合金の層が介在することを特徴とする
ものである。(MO含有量が多いとは純M。である場合
も含む)なお、本発明の複合構造体にあって、W部材と
しては、W牟独でもよいが、実用上はRe を0.2〜
3重諷チ含有するW −Re合金を用いる事が好ましい
。Re は、Wの高温強度を高め、Wの再結晶温度を上
昇させて高熱負荷を受けた状態でWの結晶粒の成長を抑
制して、粗大結晶粒に起因する表面クラックの発生を防
止するために有効であるが、その含有量が0,2重量%
未満の場合には上記効果をもたらさず、また3重量%を
超えて添加しても効果の顕著な向上は認められない。
That is, the W-ki (1-Cu composite structure of the present invention is a composite structure formed by joining a W member and a Cu member), in which the M. content is large between the members and in the portion in contact with the W member. , the part in contact with the Cu member is characterized by the presence of a layer of M.-〇〇 alloy with a high Cu content. (The high MO content also includes the case of pure M.) Note that in the composite structure of the present invention, the W member may be a W member, but for practical purposes, Re should be 0.2 to 0.2.
It is preferable to use a W--Re alloy containing a triple layer. Re increases the high-temperature strength of W, increases the recrystallization temperature of W, suppresses the growth of W crystal grains under high thermal load, and prevents the occurrence of surface cracks caused by coarse crystal grains. The content is 0.2% by weight.
If the amount is less than 3% by weight, the above effects will not be obtained, and if it is added in an amount exceeding 3% by weight, no significant improvement in the effect will be observed.

また、Cu 部材はCu またはCu 合金から構成さ
れる。
Further, the Cu member is made of Cu or a Cu alloy.

さて、本発明の複合構造体における最大の特徴は、W部
材とCu 部材の中間に介在するM6−Cu 合金の層
にある0 該層にあっては、W部材に接する部分ではMo 含有量
が多く(純M。でもよい)、Cu 部材に接する部分で
はCu 含有量が多いことを特徴とする。該層における
M。含有量(またはCu 含有量)は、W部材からCu
 部材までの間で変化するが、この変化は連続的であっ
ても不連続的な段階的なものでもよい。
Now, the greatest feature of the composite structure of the present invention lies in the layer of M6-Cu alloy interposed between the W member and the Cu member. It is characterized by a high Cu content in the portion that is in contact with the Cu member (pure M may also be used). M in the layer. The content (or Cu content) is the Cu content from the W member.
This change may be continuous or discontinuous stepwise.

本発明の複合構造体にあっては、熱膨張係数が大きく異
なる。W部材とCu 部材との中間に、該W部材から該
Cu 部材にかけて、Mo の含有量(またはCu の
含有量)の変化に対応してその熱膨張係数が連続的また
は段階的に変化するMo−Cu の層が介在するので、
両部材間では熱膨張差が緩慢に変化して熱応力の発生が
抑制されることになる。
The composite structures of the present invention have significantly different coefficients of thermal expansion. Between the W member and the Cu member, there is a Mo whose coefficient of thermal expansion changes continuously or stepwise from the W member to the Cu member in response to changes in Mo content (or Cu content). -Cu layer is present, so
The thermal expansion difference changes slowly between the two members, and the generation of thermal stress is suppressed.

本発明の複合構造体の態様は次のように2大別される。Aspects of the composite structure of the present invention are broadly classified into the following two types.

第1はM。−Cu の合金層においてMoの含有量(C
u の含有量)が連続的に変化するものである。これは
例えば以下のような方法によって製造される。
The first is M. -Mo content (C
u content) changes continuously. This is manufactured, for example, by the following method.

まず、Mo の粉末から常法の粉末冶金法によって多孔
構造のM。焼結体の板材を製造する。
First, a porous structure of M is prepared from Mo powder using a conventional powder metallurgy method. Manufacture sintered plate materials.

このときMo 粉末の圧粉体を焼結する際に杜、W部材
が接合される側を高温で、Cu 部材が接合される側を
それよりも低い温度で焼結すると得られたMo 焼結体
の厚み方向においてはその高温側表面が緻密構造で、低
温側表面にいく程多孔構造になる。すなわち、板材の厚
み方向に多孔度の勾配が形成される0これは、例えば焼
結しようとする圧粉体を高周波加熱などにより加熱され
たWブロック上におき、圧粉体の上部は低温のH,ガス
により冷却するなどの焼結方法により達成することがで
きる。ついでこのM。
At this time, when sintering the Mo powder compact, the side where the Mori and W members are joined is sintered at a high temperature, and the side where the Cu member is joined is sintered at a lower temperature. In the thickness direction of the body, the high temperature side surface has a dense structure, and the closer you go to the lower temperature side surface, the more porous the structure becomes. In other words, a porosity gradient is formed in the thickness direction of the plate material.This is because, for example, the green compact to be sintered is placed on a W block heated by high-frequency heating, and the top of the green compact is placed at a low temperature. This can be achieved by a sintering method such as cooling with H or gas. Next, this M.

焼結体の高温で焼結された側にW板を接着する。A W plate is bonded to the side of the sintered body that has been sintered at a high temperature.

接着方法としてはW板とM。焼結体をMo ペーストを
介在させて加圧加熱して、拡散接合を行う方法、Mo 
焼結体表面にW層を化学蒸着法により形成せしめる方法
などがある。
The adhesion method is W board and M board. A method of performing diffusion bonding by pressurizing and heating a sintered body with Mo paste interposed, Mo
There is a method of forming a W layer on the surface of the sintered body by chemical vapor deposition.

ついで、このようにして得られたW−M。焼結体複合材
のM。の上にCu またはCu 合金のブロックを載せ
Cu またはCu 合金を溶融する。
Then, the WM thus obtained. M of sintered composite material. A block of Cu or Cu alloy is placed on top and the Cu or Cu alloy is melted.

融液はM。焼結体の空孔に浸透する。もち論、最初から
M。焼結体表面にCu またはCu 合金の融液を流し
込んでもより。このとき、Mo 焼結体には多孔度の勾
配が形成されているので、融液は該M0 焼結体の低温
側表面では最も多量に、以後、高温側にいくにつれて順
次少量となるようにして空孔部に浸入することになる。
The melt is M. Penetrates into the pores of the sintered body. Mochi theory, M from the beginning. It is also possible to pour a Cu or Cu alloy melt onto the surface of the sintered body. At this time, since a porosity gradient is formed in the Mo sintered body, the amount of melt is greatest on the low temperature side surface of the Mo sintered body, and then gradually decreases as it goes to the high temperature side. and enters into the pores.

すなわち、Mo を、マトリクスとしその厚み方向では
Cu 含有量が変化しだW−M(1−Cu 複合体が形
成される。
That is, using Mo as a matrix, the Cu content changes in the thickness direction to form a WM (1-Cu) composite.

なお、MO−Cu 合金層のMo 含有量(またはCu
 含有量)はM。焼結体の空孔の大小、その孔径分布、
厚み方向における多孔度の勾配などによって規定される
が、それは圧粉時の圧力。
Note that the Mo content (or Cu
content) is M. The size of the pores in the sintered body, the pore size distribution,
It is determined by the porosity gradient in the thickness direction, but it is also the pressure during powder compaction.

焼結温度およびその分布などによって任意に選定するこ
とができる。
It can be arbitrarily selected depending on the sintering temperature and its distribution.

第2はWの板とCu O板またはブロックの間にMO含
有量の異なるM@ −Cu 合金の板の複数枚積層して
介在させ、全体を熱圧ブレスやロク付などの方法により
一体化するものである0このとき、得られた複合構造体
のWとCu 0間に介在する層中においてはMo 含有
量(またはCu 含有量)が段階的に変化することとな
る。
The second method is to laminate and interpose multiple M@-Cu alloy plates with different MO contents between the W plate and the CuO plate or block, and then integrate the whole thing using methods such as hot pressure pressing or locking. At this time, the Mo content (or Cu content) in the layer interposed between W and Cu 0 of the obtained composite structure changes stepwise.

以上の2方法のいずれにおいてもW材とM。In both of the above two methods, W material and M material.

をもっとも多く含有する層との間にさらにW−M。Furthermore, between the layer containing the largest amount of W-M.

合金の層を介在させ不こともできる。It is also possible to use an alloy layer or not.

〔発明の実施例〕[Embodiments of the invention]

実施例工。 Example work.

平均粒径25μmのMo 粉末を所定の金型に充填して
0.5t0n/CI&の圧力を印加して板状圧粉体を成
形した。
A predetermined mold was filled with Mo 2 powder having an average particle size of 25 μm, and a pressure of 0.5 t0n/CI& was applied to form a plate-shaped green compact.

ついでH2雰囲気中において、この圧粉体の片面を18
00℃、他面を1350℃の温度に5時間保持し、厚さ
10w′Lの板状焼結体を得た。得られた焼結体の高温
側表面にモリブデンペーストをぬり、厚さ51mのW板
をのせ2ノ多−の圧力を印加し、真空中にて1350℃
の温度で18時間保持し、W板とM。焼結体の接合を行
った。
Then, in an H2 atmosphere, one side of this green compact was heated to 18
The other side was kept at a temperature of 00°C and 1350°C for 5 hours to obtain a plate-shaped sintered body with a thickness of 10w'L. Molybdenum paste was applied to the high temperature side surface of the obtained sintered body, a W plate with a thickness of 51 m was placed on it, a pressure of 2 mm was applied, and the temperature was heated to 1350°C in a vacuum.
W plate and M plate were kept at a temperature of 18 hours. The sintered bodies were joined.

得られた接合体のMo 側を上にしてカーボン型の中に
収納し、更にこの上にCu ブロックを載置してH7雰
囲気中で1120℃に昇温し、Cuを溶融し、その融液
をMo 焼結体に含浸せしめた。更に、焼結体の上面か
ら高さ25“に相当するCu の融液を加え、全体を冷
却固化したO得られたW −Mo−Cu複合構造体にお
いて、MO焼結体の高温側表面位置でのMo 含有量は
93%(Cu は7チ)、低温側表面位置でのMo 含
有量は55%(Cu は45s)であった0厚さ25w
nのCu 層には径101の水冷用の孔を穿設した。
The resulting bonded body was placed in a carbon mold with the Mo side up, and a Cu block was further placed on top of this, and the temperature was raised to 1120°C in an H7 atmosphere to melt the Cu, and the melt was impregnated into a Mo sintered body. Furthermore, a Cu melt corresponding to a height of 25" from the top surface of the sintered body was added, and the whole was cooled and solidified. In the obtained W-Mo-Cu composite structure, the surface position on the high temperature side of the MO sintered body was The Mo content at the surface position was 93% (Cu 7cm), and the Mo content at the low temperature side surface position was 55% (Cu 45s).
A hole for water cooling with a diameter of 101 was bored in the Cu layer of n.

実施例2 実施例1と同様にして厚さ15“のMo 焼結体を製造
した。この焼結体の高温側表面に1100℃にて、WC
t4+H1+Arの混合気流中で厚み100μmn0W
層を化学蒸着した0ついでこれに実施例1と同様にして
Cu を含浸せしめてW−λ46−Cu複合構造体とし
た。
Example 2 A 15" thick Mo sintered body was produced in the same manner as in Example 1. WC was applied to the high temperature side surface of this sintered body at 1100°C.
Thickness 100μmn0W in a mixed air flow of t4+H1+Ar
The layer was chemically vapor deposited and then impregnated with Cu as in Example 1 to form a W-λ46-Cu composite structure.

実施例3 常用のMo 粉末とCu 粉末との混合焼結法およびM
。の圧粉体への溶融Cu の含浸法によってMo 含有
量が90重量%、70:i量饅、55重量%、40重量
%、30重量%である5種類の厚さ各1. s If!
″′のM。−Cu 合金板を製造した。
Example 3 Commonly used mixed sintering method of Mo powder and Cu powder and M
. By impregnating the green compact with molten Cu, five thicknesses were obtained, each having a Mo content of 90% by weight, 70% by weight, 55% by weight, 40% by weight, and 30% by weight. s If!
An M.-Cu alloy plate of ″″ was manufactured.

ついで片面に厚みそれぞれ10μfflと20μmのN
i メッキ層およびCu メッキ層を順次形成した厚さ
7.5”のW板と上記したMO−Cu 合金板を上記し
た順序で積層して、全体に0.5 破−の荷重を加えて
H2雰囲気中、800℃、4時間熱圧プレスし、さらに
その後、上記複合体のCu 含有量の多い側に、径10
”7の冷却水用孔を設けた厚み25”のCu ブロック
をロウ付にて接合し、W−Cu複合構造体とした0比較
例1 実施例3で用いたと同様のW板と所定の冷却水用孔を設
けた厚み32.5Tu′のCu ブロックとの間に厚み
25μmのロウ箔を挾み、全体に0、5 ”/ =の荷
重を加えてH2雰囲気中850℃に加熱してロウ付接合
した。
Next, N was applied to one side with a thickness of 10 μffl and 20 μm, respectively.
i A 7.5" thick W plate on which a plating layer and a Cu plating layer were sequentially formed and the MO-Cu alloy plate described above were laminated in the above order, and a load of 0.5 rupture was applied to the entire body for H2. Hot-pressing was carried out in an atmosphere at 800°C for 4 hours, and after that, a diameter of 10
A 25-thick Cu block with 7 holes for cooling water was joined with brazing to form a W-Cu composite structure. Comparative Example 1 A W plate similar to that used in Example 3 and a predetermined cooling A 25 μm thick wax foil was sandwiched between a 32.5 Tu′ thick Cu block with water holes, a load of 0.5”/= was applied to the whole, and the wax was heated to 850°C in an H2 atmosphere. It was attached.

比較例2 厚さ7.58のW板と比較例1で用いたと同様のCu 
ブロックとをそのまま重ね両者にあけられた孔にNb 
類ボルトを入れて結合した0以上5種類のW 7 M(
1−CuおよびW−Cu複合構造体につき以下の試験を
行なった0すなわち、Cu 板の孔に冷却水(入口温度
20℃)を流しながら、W板の表面に電子ビーム照射に
より500 w/、11の熱流束を連続して加える加熱
試験及び上記熱流束を60秒間加え30秒間休止すると
いう、加熱−冷却を100 回くり返す熱サイクル試験
である。
Comparative Example 2 W plate with a thickness of 7.58 and Cu similar to that used in Comparative Example 1
Stack the blocks as they are and insert the Nb
0 or more 5 types of W 7 M (
The following tests were conducted on 1-Cu and W-Cu composite structures. In other words, while cooling water (inlet temperature 20°C) was flowing through the holes in the Cu plate, the surface of the W plate was irradiated with an electron beam at a rate of 500 W/, A heating test in which 11 heat fluxes were applied continuously, and a thermal cycle test in which heating and cooling were repeated 100 times, in which the above heat flux was applied for 60 seconds and then paused for 30 seconds.

このときの加熱試験時のW板表面の温度及び熱サイクル
試験後の接合部での剥離など異常発生の有無を調べ、そ
れらを一括して表に記した0表 以下(白 〔発明の効果〕 以上の説明で明らかなように、本発明のW M6 Cu
複合構造体は■反復する高熱流束負荷を受けても接合部
における剥離、クラックなどの発生現象はなく、■しか
も充分効果的に冷却効果が得られるのでその工業的価値
は犬である0
At this time, the temperature of the surface of the W plate during the heating test and the presence or absence of abnormalities such as peeling at the joint after the thermal cycle test were investigated, and these were summarized in a table below 0 (white [Effects of the invention] As is clear from the above explanation, the W M6 Cu of the present invention
The composite structure ■ ■ does not develop phenomena such as peeling or cracking at the joints even when subjected to repeated high heat flux loads, ■ Moreover, it provides a sufficiently effective cooling effect, so its industrial value is extremely high.

Claims (3)

【特許請求の範囲】[Claims] (1) タングステン部材と銅部材とを接合して成る複
合構造体において、該部材間に、該タングステン部材に
接する部分ではモリブデン含有量が多く、かつ該銅部材
に接する部分では銅含有量の多いモリブデン−銅合金の
層が介在することを特徴とする耐高熱負荷複合構造体。
(1) In a composite structure formed by joining a tungsten member and a copper member, the molybdenum content is high in the part in contact with the tungsten member, and the copper content is high in the part in contact with the copper member between the members. A high heat load resistant composite structure characterized by interposing a layer of molybdenum-copper alloy.
(2)該タングステン部材が粉末冶金法、溶解法もしく
は表面処理法によって形成されたタングステンあるいは
タングステン合金である特許請求の範囲第1項記載の耐
高熱負荷複合構造体。
(2) The high heat load resistant composite structure according to claim 1, wherein the tungsten member is tungsten or a tungsten alloy formed by a powder metallurgy method, a melting method, or a surface treatment method.
(3)該タングステン部材が0.2〜3重量−のレニウ
ムを含有するタングステン−レニウム合金である特許請
求の範囲第1項記載の耐高熱負荷複合構造体。
(3) The high heat load resistant composite structure according to claim 1, wherein the tungsten member is a tungsten-rhenium alloy containing 0.2 to 3 weight of rhenium.
JP5942284A 1984-03-29 1984-03-29 High heat-load-resistant composite structure Pending JPS60203436A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5942284A JPS60203436A (en) 1984-03-29 1984-03-29 High heat-load-resistant composite structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5942284A JPS60203436A (en) 1984-03-29 1984-03-29 High heat-load-resistant composite structure

Publications (1)

Publication Number Publication Date
JPS60203436A true JPS60203436A (en) 1985-10-15

Family

ID=13112803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5942284A Pending JPS60203436A (en) 1984-03-29 1984-03-29 High heat-load-resistant composite structure

Country Status (1)

Country Link
JP (1) JPS60203436A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102312186A (en) * 2010-07-02 2012-01-11 中国科学院上海硅酸盐研究所 Method for improving bonding strength of vacuum plasma spraying tungsten coating
CN103194712A (en) * 2012-01-09 2013-07-10 中国科学院上海硅酸盐研究所 High-heat-conductivity tungsten-copper heat sink and electronic packaging material, and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102312186A (en) * 2010-07-02 2012-01-11 中国科学院上海硅酸盐研究所 Method for improving bonding strength of vacuum plasma spraying tungsten coating
CN103194712A (en) * 2012-01-09 2013-07-10 中国科学院上海硅酸盐研究所 High-heat-conductivity tungsten-copper heat sink and electronic packaging material, and preparation method thereof
CN103194712B (en) * 2012-01-09 2015-10-21 中国科学院上海硅酸盐研究所 A kind of tungsten-copper composite material of high thermal conductivity is as the application of tungsten copper heat-sink and electronic package material

Similar Documents

Publication Publication Date Title
KR101105065B1 (en) Laminated component for fusion reactors
US5126102A (en) Fabricating method of composite material
US4667871A (en) Tin based ductile brazing alloys
JP5698947B2 (en) Heat sink for electronic device and method for manufacturing the same
JPS59209498A (en) Method of combining metallic part
US3957194A (en) Liquid interface diffusion method of bonding titanium and/or titanium alloy structure
JP2006001232A (en) Composite having high heat conduction/low heat expansion and manufacturing process of the same
US20070243407A1 (en) Machinable Metallic Composites
US11919288B2 (en) Method for producing heat radiation member
EP0365275B1 (en) A composite material heat-dissipating member for a semiconductor element and method of its fabrication
KR940008937B1 (en) Fabricating method of composite material
JP5275555B2 (en) Composite member with structured tungsten element
JPH06268117A (en) Heat radiating substrate for semiconductor device and its manufacture
JP3554835B2 (en) Backing plate manufacturing method
JPH08186204A (en) Heat sink and its manufacture
JPS60203436A (en) High heat-load-resistant composite structure
Xian Joining of sialon ceramics by Sn-5 at% Ti based ternary active solders
JPS604050A (en) High heat-resistant load member
JPS5949964A (en) High-heat resisting load composite structure
JP2503775B2 (en) Substrate for semiconductor device
JPS61183180A (en) Hot load resistant composite structure
JP2020189307A (en) Joining sheet and method of manufacturing joining body
JPS6221768A (en) Graphite joining method
JPS59141395A (en) Brazing filler material
JPS59141393A (en) Brazing filler material