JPS5949964A - High-heat resisting load composite structure - Google Patents

High-heat resisting load composite structure

Info

Publication number
JPS5949964A
JPS5949964A JP16088082A JP16088082A JPS5949964A JP S5949964 A JPS5949964 A JP S5949964A JP 16088082 A JP16088082 A JP 16088082A JP 16088082 A JP16088082 A JP 16088082A JP S5949964 A JPS5949964 A JP S5949964A
Authority
JP
Japan
Prior art keywords
composite structure
content
copper
alloy
tungsten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16088082A
Other languages
Japanese (ja)
Inventor
辰彦 松本
深沢 美治
由夫 五明
三木 信晴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP16088082A priority Critical patent/JPS5949964A/en
Publication of JPS5949964A publication Critical patent/JPS5949964A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、高熱流束負荷を受けても熱応力変形などが少
なく、しかも熱伝導特性に優れたタングステン(W)−
銅(Co)系の耐高熱負荷複合構造体に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention is directed to tungsten (W), which has minimal thermal stress deformation even under high heat flux loads and has excellent thermal conductivity.
The present invention relates to a copper (Co)-based high heat load resistant composite structure.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

X線発生装置の対陰極、プラズマ発生装置の不純物除去
板など高温下で高熱流束負荷を受ける部品は、直接高熱
流束負荷を受ける表面部分の部材と、負荷された熱を効
果的に除去して全体を冷却する冷却部分の部材とを接合
した構造の複合構造体である。一般に1表面部分の部材
には、X@発生効率、耐熱性若しくは耐スノ4ツタ性の
観点から。
Components that are subjected to high heat flux loads at high temperatures, such as anticathodes in X-ray generators and impurity removal plates in plasma generators, have surface parts that are directly subjected to high heat flux loads, and the applied heat is effectively removed. It is a composite structure in which the cooling part is joined to cool the entire body. Generally, one surface part of the member is given X@ from the viewpoint of generation efficiency, heat resistance, or sludge resistance.

W若しくはW −Re合金が用いられ、冷却部分の部材
には、熱伝導性が良好であることがらして銅若しくは銅
合金が用いられている。
W or a W-Re alloy is used, and copper or a copper alloy is used for the member of the cooling part because it has good thermal conductivity.

このようなW−C’u複合構造体における重要な問題は
1両部材間の接合に関することである。なぜならば、W
の熱膨張係数は4.3 X 10′/l: (20〜6
00℃) 、 Cuの熱膨張係数は14.7 X 10
−’/C(20〜600℃)と両者の間には大きな差異
があシ、負荷を受けて温度上昇したときに両部材の接合
部には大きな熱応力が発生するからである。
An important problem in such W-C'u composite structures is the bonding between the two members. Because, W
The coefficient of thermal expansion is 4.3 x 10'/l: (20~6
00℃), the thermal expansion coefficient of Cu is 14.7 x 10
-'/C (20 to 600°C) and there is a large difference between the two, and this is because when the temperature rises under load, a large thermal stress is generated at the joint between the two members.

一般に1両部材の接合方法には、ボルト締めなどの機械
的方法又は銅ろう、銀ろうなどを用いた冶金的方法があ
る。
Generally, methods for joining two members include a mechanical method such as bolt tightening, or a metallurgical method using copper solder, silver solder, or the like.

前者の方法の場合には、接合部の形状1間隔などを考慮
して両部材間の熱膨張差を逃がして熱応力の発生を避け
ることは可能であるが1反面、両部材間の密着度が低下
するため両者間の熱伝達は悪化し、効果的な冷却作用が
阻害される。そのため1例えばプラズマ発生装置におい
ては、プラズマディスラプションなどが発生して大きな
入熱が生じた場合には1表面部分の部材(W)の表面温
度が異常に上昇し、その結果、表面の溶融などの破損現
象がしばしば発生する。
In the case of the former method, it is possible to avoid the generation of thermal stress by releasing the difference in thermal expansion between the two members by considering the shape of the joint part, etc., but on the other hand, it is possible to avoid the generation of thermal stress. Since the heat transfer rate decreases, the heat transfer between the two deteriorates, and the effective cooling effect is inhibited. Therefore, 1. For example, in a plasma generator, if plasma disruption occurs and a large heat input occurs, the surface temperature of the member (W) on one surface will rise abnormally, and as a result, the surface will melt. Damage phenomena such as these often occur.

一方、後者の方法によれば1両部材は密着して接合され
るので当初は熱の除去が有効に行なわれ円滑な冷却作用
を示すが、温度上昇して熱膨張差が増大すると接合面に
は熱応力が発生する。とくに、間欠的な運転モードをと
るトカマク型ゾラズマ発生装置などにおいては、上記し
た熱応力の変動に加えてプラズマからの電磁力も重畳さ
れることによシ、接合部のうち強度の小さい部分に疲労
クラックが発生するに至る。接合部にこのようなりラッ
クが生ずると、この部分では熱伝達の効率が劣化し、上
記と同様の理由により表面溶融による損傷の発生する虞
れがある。
On the other hand, according to the latter method, since the two members are closely joined, heat is removed effectively at first and a smooth cooling effect is exhibited, but as the temperature rises and the difference in thermal expansion increases, the joint surface generates thermal stress. In particular, in tokamak-type Zolazma generators that operate in intermittent operation mode, the electromagnetic force from the plasma is superimposed on top of the above-mentioned fluctuations in thermal stress, causing fatigue in parts of the joint where the strength is low. This leads to the occurrence of cracks. If such a rack is formed at the joint, the efficiency of heat transfer will deteriorate in this part, and there is a risk that damage will occur due to surface melting for the same reason as mentioned above.

〔発明の目的〕[Purpose of the invention]

本発明は、上記した欠点を解消し、接合部における熱応
力の発生が小さくかつ熱伝導が良好で冷却作用に優れた
W−Cu複合構造体の提供を目的とする。
An object of the present invention is to eliminate the above-described drawbacks, and to provide a W--Cu composite structure that generates less thermal stress at the joint, has good heat conduction, and has excellent cooling effect.

〔発明の概要〕[Summary of the invention]

本発明者らは、上記の欠点が両部材間接合部における熱
伝達効率の悪化に基づき、その悪化は両部材間の熱膨張
差に起因するという事実に着目し、接合部において両部
材間の熱膨張差を低減せしめれば上記欠点を解消し得る
との着想を得、鋭意研究を重ねた結果1本発明構造のW
−Cu複合構造体を開発するに到った。
The present inventors focused on the fact that the above drawback is based on the deterioration of heat transfer efficiency at the joint between the two members, and that the deterioration is caused by the difference in thermal expansion between the two members. I got the idea that the above drawbacks could be solved by reducing the difference in thermal expansion, and as a result of intensive research, I found that the W of the structure of the present invention was
-Cu composite structure was developed.

すなわち1本発明のW−Cu複合構造体は、W部材也C
u部材とを接合して成る複合構造体であって、該部材間
に、該W部材に接近する部分ではW含有量が多く、該C
u部材に接近する部分ではCu含有量の多いW−Cu合
金の層が介在することを特徴とするものである。
That is, the W-Cu composite structure of the present invention includes a W member and a C
A composite structure formed by joining a U member and a W member, in which the W content is high in the part between the members and close to the W member, and the C
It is characterized in that a layer of W--Cu alloy with a high Cu content is present in the portion close to the u member.

本発明の複合構造体は、W部材とCu部材の中間に後述
する”vV−Cu合金の層を介在させた構造である。
The composite structure of the present invention has a structure in which a layer of vV-Cu alloy, which will be described later, is interposed between a W member and a Cu member.

本発明の複合49η造休にあって、まず、W部材は。In the composite 49η construction of the present invention, first, the W member.

W単独又はReを0.2〜3重量%含有するW−Re合
金から構成される。)Leは、Wの高温強度を高め。
It is composed of W alone or a W-Re alloy containing 0.2 to 3% by weight of Re. ) Le increases the high temperature strength of W.

Wの再結晶温度を上昇させて高熱負荷を受けてもWの結
晶粒の成長を抑制して、該結晶粒による表面微4111
クラツクの発生を防止するために有効であるが、その含
有量が帆2重斌係未満の場合には上記効果をもたらさず
、また3重量係を超えても効果の顕著な向上は認めら九
ない。
By increasing the recrystallization temperature of W and suppressing the growth of W crystal grains even under high thermal load, the surface micro
Although it is effective in preventing the occurrence of cracks, it does not bring about the above effect if the content is less than 2 weights, and no significant improvement in the effect is observed even if it exceeds 3 weights. do not have.

また、 Cu部材は、 Cu単独又はAtを帆1〜0.
3重t % ’f有するCu −At合金から構成され
る。八1はCuの再結晶温度を上列させ、200〜30
0℃での強度向上に有効な成分であシ、その含有量が0
.1重量%未満の場合には上記効果は得られず、0.3
重量チを超えても顕著な効果は認められない。
In addition, the Cu member may be Cu alone or At 1 to 0.
It is composed of a Cu-At alloy with triple t%'f. 81 lists the recrystallization temperature of Cu from 200 to 30
It is an effective ingredient for improving strength at 0℃, and its content is 0.
.. If it is less than 1% by weight, the above effect cannot be obtained, and 0.3
Even if the weight exceeds 1, no significant effect is observed.

さて1本発明の複合構造体における最大の特徴は、W部
材とCu部材の中間に介在するW−Cu合金の層にある
The most important feature of the composite structure of the present invention is the W--Cu alloy layer interposed between the W member and the Cu member.

該層にあっては、W部材に接近する部分ではW含有量が
多く、Cu部材に接近する部分ではCu含有蒙が多いこ
とを特徴とする。該層におけるW含有量(又はCu含有
鍛)は、W部材からCU部材までの間に変化するが、こ
の変化は連続的であっても不連続であってもよい。
This layer is characterized in that the portion close to the W member has a high W content, and the portion close to the Cu member has a high Cu content. The W content (or Cu-containing forging) in the layer changes from the W member to the CU member, and this change may be continuous or discontinuous.

本発明の複合構造体にあっては、熱膨張係数が大きく異
なるW部材とCu部利との中間に、該W部材から該Cu
部材にかけて、Wの含有量(又はCuの含有量)の変化
に対応してその熱膨張係数が連続的又は不連続に変化す
るW−Cu合金の層が介在するので、両部材間では熱膨
張差が緩慢に変化して熱応力の発生が抑制されることに
なる、本発明の複合構造体の態様は次のように2大別さ
れる。第1は、W−Cu合金層においてWの含有量又は
Cuの含有量が連続的に変化するものである。
In the composite structure of the present invention, the Cu portion is placed between the W member and the Cu portion, which have significantly different coefficients of thermal expansion.
There is a layer of W-Cu alloy whose thermal expansion coefficient changes continuously or discontinuously in response to changes in the W content (or Cu content), so there is no thermal expansion between the two parts. Aspects of the composite structure of the present invention in which the difference changes slowly and the generation of thermal stress is suppressed can be broadly classified into the following two types. The first is that the W content or the Cu content changes continuously in the W-Cu alloy layer.

これは例えば以下のような方法で製造される。This is manufactured, for example, by the following method.

まず、Wの粉末から常法の粉末冶金法によって多孔構造
のW焼結体のブロックを製造する。このとき、W粉末の
圧粉体を焼結する除には、高熱流束が負荷される側を高
温で、 Cu部材が接合される側をそれよシも低い温度
で焼結すると、得られたW焼結体の厚み方向においては
その高温側表面が緻密構造で、低温側表面にいく稈長孔
構造になる。
First, a block of W sintered body having a porous structure is manufactured from W powder by a conventional powder metallurgy method. At this time, instead of sintering the green compact of W powder, it is best to sinter the side to which high heat flux is applied at a high temperature and the side to which the Cu members are joined at a much lower temperature. In the thickness direction of the W sintered body, the high temperature side surface has a dense structure, and the culm elongated hole structure extends to the low temperature side surface.

すなわち、厚み方向に多孔度の勾配が形成される。That is, a porosity gradient is formed in the thickness direction.

これは、例えば焼結しようとする圧粉体を高周波加熱な
どにより加熱されたWブロック上におき、圧粉体の上部
は低温のH2によシ冷却するなどの焼結方法により1焼
結することができる。
For example, the powder compact to be sintered is placed on a W block heated by high-frequency heating, and the upper part of the powder compact is sintered by a sintering method such as cooling with low-temperature H2. be able to.

ついで、このW焼結体の低温側表面の上にCu又はCu
合金のブロックを載せてCu又はCu合金を溶融する。
Next, Cu or Cu is deposited on the low temperature side surface of this W sintered body.
Place the alloy block and melt Cu or Cu alloy.

融液はW焼結体の空孔に浸透する。もち論、最初から低
温側表面にCu又はCu合金の融液を流し込んでもよい
。このとき、W焼結体には多孔度の勾配が形成されでい
るので、融液は該W焼結体の低温側表面で、は最も多量
に、以後、高温側表面にいくにつれて順次少量となるよ
うにして空孔に浸入することになる。すなわち、Wをマ
トリックスとしその厚み方向ではCu含有量が変化した
W−Cu複合体が形成される。
The melt penetrates into the pores of the W sintered body. Of course, a melt of Cu or Cu alloy may be poured onto the low temperature side surface from the beginning. At this time, since a porosity gradient is formed in the W sintered body, the melt is in the largest amount on the low temperature side surface of the W sintered body, and then gradually decreases as it goes to the high temperature side surface. It will infiltrate the pores in this way. That is, a W--Cu composite is formed in which W is used as a matrix and the Cu content changes in the thickness direction.

なお、W−Cu複合構造体のW含有量(又はCu含有量
)はW焼結体の空孔の大小、その孔径分布。
Note that the W content (or Cu content) of the W-Cu composite structure is determined by the size of the pores in the W sintered body and the pore size distribution.

厚み方向における多孔度の勾配などによって規定される
が、それは、焼結時の圧力、焼結温度、温度のかけ方な
どによって任意に選定することができる。
It is defined by the porosity gradient in the thickness direction, and can be arbitrarily selected depending on the pressure during sintering, the sintering temperature, the way the temperature is applied, etc.

第2は、粉末冶金法で製造したWの板と通常のCuの板
又はブロックの間にsW含有量の異なるW−Cu合金の
板を複数板積層して介在させ、全一体を熱圧プレスして
一体化するものである。
The second method is to laminate and interpose multiple W-Cu alloy plates with different sW contents between a W plate manufactured by powder metallurgy and a normal Cu plate or block, and press the entire unit with hot pressure. It is intended to be integrated.

このとき、得られた複合構造体の厚み方向においては、
W含有量が不連続に変化することとなる。
At this time, in the thickness direction of the obtained composite structure,
The W content changes discontinuously.

〔発明の実施例〕[Embodiments of the invention]

実施例1゜ 平均粒径25μmのW粉末を所定の金型に充填して1i
on/caの圧力を印加し板状圧粉体を成形した。
Example 1゜ W powder with an average particle size of 25 μm was filled into a predetermined mold and 1i
A pressure of on/ca was applied to form a plate-shaped powder compact.

ついでH2雰囲気中において、この圧粉体の片面を21
50℃、他面を1500℃の温度で5時間焼結し、厚さ
15mの板状焼結体を得た。得られた焼結体の低温側表
面を上にしてカーボン型の中に収納し、更にこの上にC
uブロックを載置してH2雰囲気中で1150℃に昇温
した。Cuを溶融し、その融液を焼結体に含浸せしめた
。更に、焼結体の上面から高さ25mmに相当するCu
の融液を加え、全体を冷却固化した。
Then, in an H2 atmosphere, one side of this green compact was heated for 21 hours.
It was sintered at 50° C. and the other side at 1500° C. for 5 hours to obtain a plate-shaped sintered body with a thickness of 15 m. The obtained sintered body is placed in a carbon mold with the low-temperature side surface facing up, and then carbon is placed on top of the carbon mold.
A u-block was placed and the temperature was raised to 1150°C in an H2 atmosphere. Cu was melted and the sintered body was impregnated with the melt. Furthermore, Cu corresponding to a height of 25 mm from the top surface of the sintered body
molten liquid was added thereto, and the whole was cooled and solidified.

得られたW−Cu複合構造体において、1W焼結体の高
温側表面位置のW含有量は96%(Cuは4チ)。
In the obtained W-Cu composite structure, the W content at the high temperature side surface position of the 1W sintered body was 96% (Cu: 4%).

低温側表面位置のW含有量は60チ(Cuは40チ)で
あった。厚み25叫のCu層には水冷用の孔を穿設した
The W content at the surface position on the low temperature side was 60 inches (Cu was 40 inches). Holes for water cooling were drilled in the Cu layer with a thickness of 25 mm.

実施例2゜ 実施例1と同様にしてW焼結体を製造した。この焼結体
の高温側表面に、1100℃、WC4、H2+Arの混
合気流中で厚み50μmのW層を化学蒸着した。ついで
、これに実施例1と同様にしてCuを含浸せしめてW−
Cu複合、構造体とした。
Example 2 A W sintered body was produced in the same manner as in Example 1. A 50 μm thick W layer was chemically vapor deposited on the high temperature side surface of this sintered body at 1100° C. in a mixed gas flow of WC4, H2+Ar. Next, this was impregnated with Cu in the same manner as in Example 1 to obtain W-
A Cu composite structure was prepared.

実施例3゜ 常用のW粉末とCu粉末との混合焼結法およびWの圧粉
焼結体への溶融Cuの含漬法によって、W含有量が85
重量%、70重量%、55重量%、40重量%、30重
量%である5種類の厚さ各2間のW−Cu合金板を製造
した。
Example 3゜The W content was 85% by a commonly used mixing sintering method of W powder and Cu powder and a method of impregnating molten Cu into a compacted W powder sintered body.
Five types of W-Cu alloy plates were manufactured, each having a thickness of 2 to 50% by weight, 70% by weight, 55% by weight, 40% by weight, and 30% by weight.

ついで、片面に厚み10μmのCuメッキ層を形成した
厚み10燗のW板と、上記したW−Cu合金板を上記し
た順序で積層して、全体に0.5 Kg/crlの荷重
を加えて、H2雰囲気中、800℃、1時間熱圧プレス
し、さらにその後、上記複合体のCu含有量の多い側に
、所定の冷却水用孔を設けた厚み20mmのCu板を銀
ろうにて接合し、W−Cu複合構造体とした。
Next, a 10 mm thick W plate with a 10 μm thick Cu plating layer formed on one side and the above W-Cu alloy plate were laminated in the above order, and a load of 0.5 Kg/crl was applied to the whole. , in a H2 atmosphere at 800°C for 1 hour, and then a 20 mm thick Cu plate with predetermined holes for cooling water was bonded to the side of the composite with a higher Cu content using silver solder. Then, a W-Cu composite structure was obtained.

比較例1゜ 実施例3で用いたW板と、所定の冷却水用孔を設けた厚
み30tanのCu板との間に、厚み25μmの銀ろう
箔を挾み、全体に0 、5 %/crIlの荷重を加え
でH2気流中850℃に加熱して銀ろう接合した。
Comparative Example 1゜A 25 μm thick silver solder foil was sandwiched between the W plate used in Example 3 and a 30 tan Cu plate with predetermined holes for cooling water, and 0.5%/ It was heated to 850° C. in a H2 stream with a load of crIl applied, and silver solder bonded.

比較例2゜ 厚み10WrmのW板と比較例1で用いたCu板とをそ
のまま重ねて両者にあけられた孔にモリブデン製ボルト
を入れて結合した。
Comparative Example 2 A W plate with a thickness of 10 Wrm and the Cu plate used in Comparative Example 1 were stacked together as they were, and molybdenum bolts were inserted into the holes drilled in both to connect them.

以上5種類のW −Cu複合構造体につぎ以下の試験を
行なった。すなわち、Cu板の孔に冷却水(入口温度2
0℃)を流しながら、W板の表面に電子ビームによシ5
00 Wa t t/cdの熱流束を連続して加える加
熱試1@及び上記熱流束を60秒間加え30秒間休止す
るという、加熱−冷却を100回くシ返す熱サイクル試
験である。
The following tests were conducted on the above five types of W--Cu composite structures. In other words, cooling water (inlet temperature 2
An electron beam is applied to the surface of the W plate while passing a temperature of 0°C).
This is a heating test 1 @ in which a heat flux of 00 Watt t/cd is continuously applied, and a heat cycle test in which heating and cooling are repeated 100 times, in which the above heat flux is applied for 60 seconds and then paused for 30 seconds.

このときの加熱試験時のW板表面の温度及び熱サイクル
試験時の接合部での剥ト准などの異常発生を調べ、それ
らを一括して表に記した。
At this time, the temperature of the surface of the W plate during the heating test and the occurrence of abnormalities such as peeling at the joint during the thermal cycle test were investigated, and these were collectively recorded in the table.

〔発明の効果〕〔Effect of the invention〕

以上の説明で明らかなように1本発明のW−Cu複合構
造体は■反復する高熱流束負荷を受けても接合部におけ
るクラック発生現象はなく、■しかも充分効果的に冷却
効果が得られるのでその1苗的価値は大である。
As is clear from the above explanations, 1) the W-Cu composite structure of the present invention: 1) does not generate cracks at the joints even when subjected to repeated high heat flux loads; and 2) provides a sufficiently effective cooling effect. Therefore, the value of one seedling is great.

Claims (1)

【特許請求の範囲】 1、 タングステン部材と銅部材とを接合して成る複合
構造体であって。 該部材間に、該タングステン部材に接近する部分ではタ
ングステン含有量が多く、該銅部材に接近する部分では
銅含有量の多いタングステン−銅合金の層が介在するこ
とを特徴とする耐高熱負荷複合構造体。 2、該タングステン部材が0.2〜3重量%のレニウム
を含有するタングステン−レニウム合金である特許請求
の範囲第1項記載の耐高熱負荷複合構造体。 3、該銅部材が、0.1〜0.5重量係の銀を含有する
銅−銀合金である特許請求の範囲第1項記載の耐高熱負
荷複合構造体。
[Claims] 1. A composite structure formed by joining a tungsten member and a copper member. A high heat load resistant composite, characterized in that a layer of tungsten-copper alloy having a high tungsten content in a part close to the tungsten member and a high copper content in a part close to the copper member is interposed between the members. Structure. 2. The high heat load resistant composite structure according to claim 1, wherein the tungsten member is a tungsten-rhenium alloy containing 0.2 to 3% by weight of rhenium. 3. The high heat load resistant composite structure according to claim 1, wherein the copper member is a copper-silver alloy containing 0.1 to 0.5 weight factor of silver.
JP16088082A 1982-09-17 1982-09-17 High-heat resisting load composite structure Pending JPS5949964A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16088082A JPS5949964A (en) 1982-09-17 1982-09-17 High-heat resisting load composite structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16088082A JPS5949964A (en) 1982-09-17 1982-09-17 High-heat resisting load composite structure

Publications (1)

Publication Number Publication Date
JPS5949964A true JPS5949964A (en) 1984-03-22

Family

ID=15724364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16088082A Pending JPS5949964A (en) 1982-09-17 1982-09-17 High-heat resisting load composite structure

Country Status (1)

Country Link
JP (1) JPS5949964A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7348424B1 (en) * 2023-03-17 2023-09-20 ▲カン▼州晨光希土新材料有限公司 Tungsten electrode for rare earth molten salt electrolysis and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7348424B1 (en) * 2023-03-17 2023-09-20 ▲カン▼州晨光希土新材料有限公司 Tungsten electrode for rare earth molten salt electrolysis and its manufacturing method

Similar Documents

Publication Publication Date Title
US5050040A (en) Composite material, a heat-dissipating member using the material in a circuit system, the circuit system
JP5698947B2 (en) Heat sink for electronic device and method for manufacturing the same
CN102810487B (en) The method that cermet substrate is engaged with metallic object
JP2016208009A (en) Bonded body, substrate for power module with heat sink, heat sink, method for producing bonded body, method for producing substrate for power module with heat sink, and method for producing heat sink
JP5829403B2 (en) Insulating substrate for heat dissipation and manufacturing method thereof
JP2010098059A (en) Substrate for power module with heat sink, power module with heat sink, substrate for power module with buffer layer, and method of manufacturing substrate for power module with heat sink
EP0365275B1 (en) A composite material heat-dissipating member for a semiconductor element and method of its fabrication
JP2010098057A (en) Substrate for power module with heat sink, power module with heat sink and substrate for power module with buffer layer
JPS5949964A (en) High-heat resisting load composite structure
JPS604050A (en) High heat-resistant load member
JP2010098058A (en) Substrate for power module with heat sink, power module with heat sink and method of manufacturing substrate for power module with heat sink
JPS60203436A (en) High heat-load-resistant composite structure
JP4647746B2 (en) Structural members that can be thermally loaded
JP5648705B2 (en) Power module substrate with heat sink, power module with heat sink and power module substrate with buffer layer
WO2019159257A1 (en) METHOD FOR MANUFACTURING CERAMIC/AL-SiC COMPOSITE MATERIAL JOINED BODY, AND METHOD FOR MANUFACTURING HEAT SINK-EQUIPPED SUBSTRATE FOR POWER MODULE
JP4807378B2 (en) Power module substrate, power module, and method of manufacturing power module substrate
JPS60162591A (en) Cushion body for joining tungsten and copper
JPH0547618B2 (en)
JP5359943B2 (en) Power module substrate, power module, and method of manufacturing power module substrate
JP5640548B2 (en) Power module substrate manufacturing method
JPS62227596A (en) Ceramics-metal joining member
JP2001284509A (en) Al-SiC COMPOSITE BODY
JP2010098060A (en) Substrate for power module with heat sink and power module with heat sink
JP2011082350A (en) Heat dissipation substrate component for electronic equipment
JPS61183180A (en) Hot load resistant composite structure