JPS6038095A - Treatment of organic sewage - Google Patents

Treatment of organic sewage

Info

Publication number
JPS6038095A
JPS6038095A JP58144569A JP14456983A JPS6038095A JP S6038095 A JPS6038095 A JP S6038095A JP 58144569 A JP58144569 A JP 58144569A JP 14456983 A JP14456983 A JP 14456983A JP S6038095 A JPS6038095 A JP S6038095A
Authority
JP
Japan
Prior art keywords
sludge
tank
anaerobic
aerobic
sewage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58144569A
Other languages
Japanese (ja)
Other versions
JPS645958B2 (en
Inventor
Takao Ikehata
池幡 隆夫
Tatsuo Takechi
武智 辰夫
Yoshinari Fujisawa
能成 藤沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP58144569A priority Critical patent/JPS6038095A/en
Publication of JPS6038095A publication Critical patent/JPS6038095A/en
Publication of JPS645958B2 publication Critical patent/JPS645958B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PURPOSE:To simultaneously remove BOD, nitrogen and phosphorus in sewage, by a method wherein org. sewage is subjected to aerobic reaction due to a fixed microorganism and a floated microorganism and guided to a solid-liquid separation apparatus to obtain treated water while a part of the separated sludge is returned to an anaerobic region. CONSTITUTION:After org. sewage 55 and sludge are introduced into an anaerobic tank 51 to be subjected to anaerobic reaction due to a floated microorganism, the treated sewage is introduced into an aerobic tank 52 to receive the supply of oxygen and aerobic reaction is performed by the microorganism fixed to a filter material 56 and the floated microorganism in the aerobic tank 52. Subsequently, the treated sewage is guided to a precipitation tank 53 to obtain treated water 57 and a part of the separated sludge 54 is returned to the anaerobic tank 51. In this case, it is desirable that the contact of org. sludge 55 and sludge are accelerated in the anaerobic tank 51 and both of them are stirred and mixed by a stirrer or a pump in order to prevent sludge precipitation. As the filter material 56 for holding a biological membrane, a granular material or a honeycomb tube can be used.

Description

【発明の詳細な説明】 本発明は、有機性汚水の処理方法、とくにメタノール、
?)(調整剤、凝集剤等の薬剤を使用せず、簡単な装置
でもって汚水中のBOD 、窒素、リンを同時に除去す
ることができ、シ必も運転管理の容易な処理方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for treating organic wastewater, particularly methanol,
? ) (This is a treatment method that can simultaneously remove BOD, nitrogen, and phosphorus from wastewater with a simple device without using chemicals such as conditioners or coagulants, and which is necessarily easy to operate and manage.) .

下水、し尿等の汚水中には、BODとして測定。Measured as BOD in waste water such as sewage and human waste.

表示されることの多い有機性汚濁物質や、閉鎖性水域の
富栄養化の原因物質である窒素、リンが含まれている。
It contains organic pollutants that are often displayed, as well as nitrogen and phosphorus, which are substances that cause eutrophication in closed water bodies.

これらの汚濁物質を除去処理するにおいて、生物学的処
理法は、重要な位置を占めている。
Biological treatment methods play an important role in removing these pollutants.

BODの除去に関しては、活性汚泥法、ラダーン法、散
水P床法2回転円板法などの生物学的処理法が広く用い
られて来た。
Regarding the removal of BOD, biological treatment methods such as the activated sludge method, the ladder method, the sprinkled P bed method, and the double rotating disk method have been widely used.

窒素の除去に関しては、生物学的処理法がある。この生
物学的脱窒素反応は、2段階の反応である。すなわち、
第1段階は、好気的条件下での硝化菌の作用によって、
汚水中のアンモニア性窒素(Nf(4”−N )を亜硝
酸窒素< No2−N )・硝酸性窒素(No3”−N
 )に酸化する、いわゆる硝化工程である。この反応は
下記のように表わすことができる。
For nitrogen removal, there are biological treatment methods. This biological denitrification reaction is a two-step reaction. That is,
The first stage is due to the action of nitrifying bacteria under aerobic conditions.
Ammonia nitrogen (Nf (4”-N) in wastewater is converted to nitrite nitrogen < No2-N) and nitrate nitrogen (No3”-N)
) is the so-called nitrification process. This reaction can be expressed as follows.

NH4” + 1.50.、→NO2−+ 1(20+
2)I+ ・・・(1)No −+ 0.502→No
3− ・・・・・・・・・(2)式(1) 、 (2)
より NH4++202→NO3−+■I20+2H+ ・・
・・・・(3)続く@2段階はNo2−N 、 N05
−Nを、嫌気的条件下での脱窒菌の作用によって窒素ガ
ス(N2)に還元し、このN2を大気中に放散させて汚
水の脱窒素処理を完結するもので、脱窒工程と呼ばれ下
式のように示すことができる。
NH4" + 1.50., →NO2-+ 1 (20+
2) I+ ... (1) No −+ 0.502 → No
3- ・・・・・・・・・(2) Formula (1), (2)
From NH4++202→NO3-+■I20+2H+...
...(3) The following @2 stages are No2-N, N05
-N is reduced to nitrogen gas (N2) by the action of denitrifying bacteria under anaerobic conditions, and this N2 is released into the atmosphere to complete the denitrification treatment of wastewater, and is called the denitrification process. It can be shown as the following formula.

2NO−+ 6H−+N↑+2H,,O+20H−・・
・・・・(4)2 2 NO3−+ l0H−+N2↑+4 N20 + 
20H’″ ・・・・・・(5)硝化反応に伴って、式
(1) 、 (3)に示したようにPHが低下するため
、硝化工程では必要に応じてアルカリ剤を添加する。脱
窒反応においては、式(4) 、 (5)に示したよう
に還元剤が必要であるため、メタノール等の有機炭素源
を必要量添加する。脱窒工程では、pHが上昇する。
2NO-+ 6H-+N↑+2H,,O+20H-...
...(4)2 2 NO3-+ l0H-+N2↑+4 N20 +
20H''' (5) As the nitrification reaction occurs, the pH decreases as shown in equations (1) and (3), so an alkali agent is added as necessary in the nitrification process. In the denitrification reaction, since a reducing agent is required as shown in equations (4) and (5), a necessary amount of an organic carbon source such as methanol is added. In the denitrification process, the pH increases.

リンを生物学的に除去する方法も開発されている。これ
は、BODとリンとを含有する汚水を活性汚泥処理する
場合、汚泥を嫌気状態と好気状態とに繰り返しさらすこ
とによって汚泥中へのリンの取り込−1)f強化し、リ
ン含有量の多い汚泥を余剰汚泥として系外へ取り出すこ
とによりて、汚水中のリンを除去するものである。ただ
し、現在のところ、この生物学的リン除去メカニズムの
詳細については不明である。
Methods for biologically removing phosphorus have also been developed. When sewage containing BOD and phosphorus is treated with activated sludge, the sludge is repeatedly exposed to anaerobic and aerobic conditions to enhance the uptake of phosphorus into the sludge. Phosphorus in wastewater is removed by removing sludge with a large amount of phosphorus from the system as surplus sludge. However, the details of this biological phosphorus removal mechanism are currently unknown.

以上のように、生物作用を利用することによって、各種
の汚濁物質を除去することが可能であり、従来の処理フ
ローにはさまざまなものがある。
As described above, it is possible to remove various pollutants by utilizing biological effects, and there are various conventional treatment flows.

第1図は、従来のBODおよび窒素を除去するための7
0−シート図である。この方法ハ、1次処理水1を曝気
槽2および沈殿槽3力1らなる活性汚泥装置で処理し、
まずBOD除去を行う。
Figure 1 shows a conventional 7
0-sheet diagram. This method c. Treats the primary treated water 1 with an activated sludge device consisting of an aeration tank 2, a settling tank 3, and 1.
First, BOD is removed.

この処理水4を曝気槽5および沈殿槽6からなる活性汚
泥装置へ導き、硝化処理を行った後、脱窒槽7.再曝気
槽(脱気槽〕8.沈殿槽9からなる装置で脱窒処理し、
もって窒素除去処理水10を得る。必要に応じて、硝化
工程でアルカリ剤11を、脱窒工程でメタノールなどの
有機炭素源12f、添加する。
This treated water 4 is led to an activated sludge system consisting of an aeration tank 5 and a settling tank 6, where it is subjected to nitrification treatment, and then to a denitrification tank 7. Re-aeration tank (deaeration tank) 8. Denitrification treatment is carried out in a device consisting of a settling tank 9,
Thus, nitrogen-removed treated water 10 is obtained. If necessary, an alkali agent 11 is added in the nitrification step, and an organic carbon source 12f such as methanol is added in the denitrification step.

この方法によれば、汚泥が機能別に分れているので、返
送比、曝気風量、引き抜き汚泥量等の運転操作要因が多
く、その位置づけも明確である。このため、水温変動、
水質変動、水量変動などが生じてもこれに対する運転対
応が容易であり、安定した処理水が得られる。
According to this method, since the sludge is divided according to function, there are many operational factors such as return ratio, aeration air volume, and amount of sludge drawn out, and their positions are clear. For this reason, water temperature fluctuations,
Even if changes in water quality or quantity occur, it is easy to respond to these changes, and stable treated water can be obtained.

しかしその反面、設備数が多いために設備費が高くなる
とともに、脱窒工程でのメタノールの添加量が、脱窒処
理するNo、−Nの約2.5倍以上必要となり、その費
用が高いとい・)欠点がある。
However, on the other hand, the equipment cost is high due to the large number of equipment, and the amount of methanol added in the denitrification process is required to be approximately 2.5 times or more than the amount of No and -N to be denitrified, resulting in high costs. There are drawbacks.

第2図は、BODと窒素とを除去する別の従来法である
。この方法は、1次処理水21f、第1脱窒槽22に入
れた後、硝化槽23に入れ、その汚泥混合液の一部24
f:第1脱窒槽22に返送するとともに、汚泥混合液を
第2脱窒槽25に入れて、メタノール26を有機炭素源
として脱窒処理し、更に再曝気槽27を経て沈殿軸28
に入れ、この汚泥の一部29を上記第1脱窒槽22に返
送するものである。すなわちこの方法は、第1脱窒槽2
2と硝化槽23との間で汚泥混合液を循環させ、第1脱
窒槽22で1次処理水中のBODを利用して脱窒を起こ
させ、ここで脱窒処理し切れなふった分については第2
脱窒槽25でメタノールを補助的に添加して脱窒を完了
させる方法である。
FIG. 2 is another conventional method for removing BOD and nitrogen. In this method, the primary treated water 21f is put into the first denitrification tank 22, then into the nitrification tank 23, and a part of the sludge mixture 24f is put into the nitrification tank 23.
f: While returning to the first denitrification tank 22, the sludge mixture is put into the second denitrification tank 25, denitrified using methanol 26 as an organic carbon source, and further passed through the re-aeration tank 27 to the sedimentation shaft 28.
A portion 29 of this sludge is returned to the first denitrification tank 22. That is, in this method, the first denitrification tank 2
The sludge mixture is circulated between the sludge tank 2 and the nitrification tank 23, and denitrification is caused in the first denitrification tank 22 using BOD in the primary treated water. is the second
This is a method in which methanol is supplementarily added in the denitrification tank 25 to complete denitrification.

この方法は、第1図に示す方法に比べてメタノール費を
軽減できるという長所があり、まな設備数も低減できる
という利点がある。し力1し増殖速度9作用等の全く異
なる硝化菌と脱窒菌とが全く同じ環境条件下で培養運転
され、混合されるため、水温低下、原水水質変動等の外
的条件に対応する運転管理が技術的に困難である。
This method has the advantage that methanol costs can be reduced compared to the method shown in FIG. 1, and the number of equipment can also be reduced. Since nitrifying bacteria and denitrifying bacteria, which have completely different effects such as 1 growth rate and 9 action, are cultured and mixed under exactly the same environmental conditions, operation management that responds to external conditions such as a drop in water temperature and fluctuations in raw water quality is possible. is technically difficult.

しかも汚泥が混合されて相互に希釈し合う結果、単位混
合汚泥量当りの硝化速度、脱窒速度がともに小さくなり
、このため、硝化槽、脱窒槽の容積をいずれも大きくし
なければならないという問題がある。
Moreover, as the sludge is mixed and diluted with each other, both the nitrification rate and the denitrification rate per unit amount of mixed sludge become small, resulting in the problem that the volumes of both the nitrification tank and the denitrification tank must be increased. There is.

第3図は、BODとリンとを除去する従来法の1例であ
る。この方法は、1次処理水31と、返送汚泥32とを
、嫌気槽33で接触反応させ、BODの嫌気的分解と汚
泥よりのリンの溶出をはかる。しかる後に、その汚泥混
合液を好気槽34に導き、BODの好気的分解と汚泥へ
のリンの取り込みをはかる。そして、汚泥混合液を沈殿
槽35に導き固液分離を行って、BODおよびリンを除
去したる処理水36と分離汚泥37とを得るものである
FIG. 3 is an example of a conventional method for removing BOD and phosphorus. In this method, primary treated water 31 and returned sludge 32 are caused to contact and react in an anaerobic tank 33 to achieve anaerobic decomposition of BOD and elution of phosphorus from the sludge. Thereafter, the sludge mixture is led to the aerobic tank 34 to aerobically decompose BOD and incorporate phosphorus into the sludge. The sludge mixture is then led to a settling tank 35 for solid-liquid separation to obtain treated water 36 from which BOD and phosphorus have been removed and separated sludge 37.

この方法は、凝集剤等の薬剤を用いることなく、比較的
簡単な装置でもって汚水中のBODおよびリンを除去し
得る。しかし、この方法における窒素除去能力は低い。
This method can remove BOD and phosphorus from wastewater using a relatively simple device without using any agents such as flocculants. However, the nitrogen removal capacity in this method is low.

第3図における処理方法を改良して、BOD 。BOD by improving the processing method in Fig. 3.

リンおよび窒素を除去することを目的として、第4図に
示す方法がある。この方法が第3図における方法と異る
点は好気槽34かも出た汚泥混合液の一部38を嫌気槽
33へ返送することである。すなわち、この返送によっ
て嫌気槽33、好気槽34の攪拌混合を助け、短絡流を
防止し、更に脱窒反応の結果生ずるPHの上昇〔式(4
) 、 (5)参照〕と硝化反応の結果生ずるpifの
低下〔式(1) 、 (3)参照〕とを平均化、中和化
し、もって、嫌気的反応および好気的反応の進行を助長
することができる。
There is a method shown in FIG. 4 for the purpose of removing phosphorus and nitrogen. This method differs from the method shown in FIG. 3 in that a portion 38 of the sludge mixture discharged from the aerobic tank 34 is returned to the anaerobic tank 33. That is, this return helps the stirring and mixing of the anaerobic tank 33 and the aerobic tank 34, prevents short-circuit flow, and further increases the pH caused by the denitrification reaction [Equation (4)
), (5)] and the decrease in pif resulting from the nitrification reaction (see formulas (1), (3)), thereby promoting the progress of anaerobic and aerobic reactions. can do.

従ってこの方法によって、メタノール、凝集剤等の薬剤
を用いることなく、比較的簡単な装置で汚水のBOD 
、窒素、リンの除去が可能となる。
Therefore, with this method, the BOD of wastewater can be reduced using relatively simple equipment without using chemicals such as methanol or coagulants.
, nitrogen, and phosphorus can be removed.

しホし、この方法においても、第2図、第3図の従来法
と同様に、機能と性質の異る菌が、全て浮遊混合状態で
使用されるため、運転操作が技術的に困難である。すな
わち、水温、水質。
However, in this method, as in the conventional method shown in Figures 2 and 3, all bacteria with different functions and properties are used in a suspended state, making operation technically difficult. be. i.e. water temperature, water quality.

水量等が変動する場合、活性汚泥型の処理法においては
、汚泥に対する負荷量が汚泥の持つ処理能力の範囲に収
まるように、返送孔全調節して反応槽内の汚泥濃度をコ
ントロールするのが運転対応の基本である。この場合、
返送ポンプの電力費節減の観点から必要最小の返送比と
することが望ましい。ところが、本状における汚泥には
、BOD除去菌、硝化菌、脱窒菌、脱リン菌が含まれて
おり、それらは増殖速度9反応速度、生育条件等が異な
る。このため、水温、水質、水量等が変化すると、混合
汚泥の中でのそれぞれの微生物の存在比も変化する。し
かるに、各種微生物の存在比と活性とを、短時間のうち
に41]握することが困難−Cあるため、従来の活性汚
泥法のように、汚泥混合液のSS濃度(MLSS)ある
いは活性汚泥沈殿率(S V!1G )といった指標全
負荷量調節のための指標として適用することには問題が
残る。つまり、混合汚泥の組成とその汚泥の持つ処理能
力が外的条件によって大きく変動するため、その汚泥単
位量当りの処理活性も変動し、処理運転対応のための汚
泥量調節が技術的に困難であるという欠点を免れ得ない
When the amount of water fluctuates, in the activated sludge treatment method, it is best to control the sludge concentration in the reaction tank by adjusting all return holes so that the load on the sludge falls within the range of the sludge's processing capacity. This is the basics of driving support. in this case,
It is desirable to set the necessary minimum return ratio from the viewpoint of reducing the electricity cost of the return pump. However, the sludge in this state contains BOD removing bacteria, nitrifying bacteria, denitrifying bacteria, and dephosphorizing bacteria, and these have different growth rates, reaction rates, growth conditions, etc. Therefore, when the water temperature, water quality, water amount, etc. change, the abundance ratio of each microorganism in the mixed sludge also changes. However, since it is difficult to determine the abundance ratio and activity of various microorganisms in a short time, it is difficult to determine the abundance ratio and activity of various microorganisms in a short time. Problems remain in applying an index such as sedimentation rate (SV!1G) as an index for adjusting the total load amount. In other words, since the composition of mixed sludge and the treatment capacity of that sludge vary greatly depending on external conditions, the treatment activity per unit amount of sludge also varies, making it technically difficult to adjust the amount of sludge to accommodate treatment operations. There is no escaping the drawback of being.

本発明は、上記事情に鑑みてなされたもので、その目的
とするところは、メタノールや一■調整剤や凝集剤等の
薬剤を使用することなく、比較的簡単な装置でもって、
汚水中のBOD 、窒素。
The present invention has been made in view of the above circumstances, and its purpose is to use a relatively simple device without using methanol, a regulator, a coagulant, or other chemicals.
BOD, nitrogen in wastewater.

リンを同時に除去することができ、し力1も、運転管理
の容易な有機性汚水の処理方法を提供するものである。
Shiriki 1 provides a method for treating organic wastewater that can remove phosphorus at the same time and is easy to operate and manage.

すなわち本発明に係る有機性汚水の処理方法は、有機性
汚水を嫌気性域へ導入して浮遊生物による嫌気性反応を
生ぜしめた後、生物固着炉材を設けた好気性域へ導入し
て酸素を供給し固着生物及び浮遊生物による好気性反応
を生ぜしめ、しかる後固液分離装置へ導いて処理水を得
るとともに、分離汚泥の一部を嫌気性域へ返送すること
を特徴とする。
That is, the method for treating organic sewage according to the present invention involves introducing organic sewage into an anaerobic area to cause an anaerobic reaction by suspended organisms, and then introducing it into an aerobic area provided with biofixation reactor material. It is characterized by supplying oxygen to cause an aerobic reaction by sessile and planktonic organisms, and then guiding it to a solid-liquid separator to obtain treated water, and returning a portion of the separated sludge to the anaerobic area.

以下本発明方法を図面を参照して説明する。The method of the present invention will be explained below with reference to the drawings.

第5図は、本発明方法によって有機性汚水に含まれるB
OD 、窒素、リンを同時に除去する処理装置の1例を
示すフローシート図である。この装置は、嫌気槽51と
P材56を設置した好気槽52と沈殿槽53とを順に配
置、この沈殿槽53の底部ふら上記嫌気槽51の入口部
へ返送管路54f、接続している。本発明方法は、原汚
水55(有機性汚水)と汚泥と金婚気槽51(嫌気性域
)へ導入して浮遊生物による嫌気性反応を生せしめる。
Figure 5 shows the amount of B contained in organic wastewater by the method of the present invention.
FIG. 2 is a flow sheet diagram showing an example of a processing device that simultaneously removes OD, nitrogen, and phosphorus. In this device, an anaerobic tank 51, an aerobic tank 52 in which P material 56 is installed, and a sedimentation tank 53 are arranged in order, and the bottom of the sedimentation tank 53 is connected to the inlet of the anaerobic tank 51 by a return pipe 54f. There is. In the method of the present invention, raw sewage 55 (organic sewage) and sludge are introduced into a gas tank 51 (anaerobic region) to cause an anaerobic reaction by suspended organisms.

この後好気槽52(好気性域)へ導入して酸素を供給し
、炉材56に固着した固着生物と好気槽52・内に浮遊
している浮遊生物とにより好気性反応を生ぜしめ、シホ
る後沈殿槽53(固液分箆装置)へ導いて処理水57を
得るとともに分離汚泥の一部54を嫌気槽51へ返送す
るものである。
Thereafter, it is introduced into the aerobic tank 52 (aerobic area) to supply oxygen, and an aerobic reaction is caused by the sessile organisms fixed on the furnace material 56 and the floating organisms floating in the aerobic tank 52. After sludge, the separated sludge is guided to a settling tank 53 (solid-liquid separator) to obtain treated water 57, and a portion 54 of the separated sludge is returned to the anaerobic tank 51.

この方法において嫌気槽51では、原汚水55と汚泥と
の接触を促進し、汚泥の沈降を防ぐため、攪拌機もしく
はポンプによってa 拌混合することが望ましい。嫌気
槽51内のDoは0、5 my/lJ以下とする必要が
あるが、このDo条件が満足できれば窒素ガス、消化ガ
ス、炭酸ガス、あるいは空気等の吹き込みにrうて攪拌
混合を行うことも可能である。上記好気槽52は酸素含
有ガスの吹き込みもしくけ機械式曝気によって槽内の攪
拌混合を行うと共に、好気状態となす。この場合、槽内
のDoは0.5 m9/1以上とすることが望ましい。
In this method, in the anaerobic tank 51, in order to promote contact between the raw sewage 55 and the sludge and prevent the sludge from settling, it is preferable to mix the sludge with a stirrer or a pump. Do within the anaerobic tank 51 must be 0.5 my/lJ or less, but if this Do condition is satisfied, stirring and mixing may be performed by blowing nitrogen gas, digestive gas, carbon dioxide gas, or air, etc. is also possible. The aerobic tank 52 stirs and mixes the inside of the tank by blowing in oxygen-containing gas and mechanically aerating the tank to create an aerobic state. In this case, it is desirable that Do in the tank be 0.5 m9/1 or more.

この好気槽52内に設置されたF材56は、生物膜を保
持するもので、このF材56としては粒状炉材、ハニカ
ムチューブ、ひも状炉材、板状F材等を用いることがで
きる。ただし、肥厚した生物膜によって目づまりの起ら
ぬよう原水性状等を考慮して炉材形状を選ぶことが望ま
しい。炉材56の設置方法として、全水没型設置、半水
没半空中設置、全空中設置のいずれかを選ぶことができ
る。半水没型もしくは全空中型の場合には、汚泥混合液
と炉材との接触を促進するために、ポンプによる散布を
行うことも可能である。また、炉材56は好気槽52の
上面から見て全面もしくは、一部の面に設置することが
できるが炉材の設置方法は、原水の水質を考慮した設置
面積を確保し、散気もしくは機械曝気による水流を考慮
した設置位置とする必要がある。痙材設置位置は好気槽
の形状との関連が深いが、炉材面積はNH4−N負荷が
1.51 NH4−N/ m2−日以下となるよう設置
することが望ましい。原汚水の性状にもヨルカ、MLS
 S濃度3000mQ/l の場合嫌気槽51の滞留時
間は1時間以上、好気槽52の滞留時間は4時間以上と
することが望ましい1好気槽52から流出する汚泥混合
液は、沈殿槽53へ導いて固液分離し、分離水として処
理水57を得ると共に、沈殿汚泥を得る。この沈殿汚泥
の1部は、返送管路54を通じて嫌気槽51へ返送し、
沈殿汚泥の残部は余剰汚泥58として系外へ排出し、別
途処理処分する。
The F material 56 installed in this aerobic tank 52 retains biofilm, and granular furnace material, honeycomb tube, string-like furnace material, plate-like F material, etc. can be used as this F material 56. can. However, it is desirable to select the shape of the furnace material in consideration of the raw water properties, etc. to prevent clogging due to thickened biofilm. As a method of installing the furnace material 56, any of fully submerged installation, semi-submerged and semi-aerial installation, and all-aerial installation can be selected. In the case of a semi-submerged type or a fully aerial type, it is also possible to perform spraying using a pump in order to promote contact between the sludge mixture and the furnace material. Furthermore, the furnace material 56 can be installed on the entire surface or a part of the surface of the aerobic tank 52 when viewed from the top surface of the aerobic tank 52. Alternatively, the installation location must take into account water flow caused by mechanical aeration. The installation position of the spastic material is closely related to the shape of the aerobic tank, but it is desirable to install the furnace material area so that the NH4-N load is 1.51 NH4-N/m2-day or less. Yorca and MLS are also used for the properties of raw sewage.
When the S concentration is 3000 mQ/l, it is desirable that the residence time in the anaerobic tank 51 be at least 1 hour and the residence time in the aerobic tank 52 be at least 4 hours. The treated water 57 is obtained as separated water, and precipitated sludge is obtained. A part of this settled sludge is returned to the anaerobic tank 51 through the return pipe 54,
The remainder of the settled sludge is discharged outside the system as surplus sludge 58 and is separately processed and disposed of.

沈殿槽53の設計に当っては、水面積負荷を20〜3 
Q m S 7m 2 /日程塵、滞留時rJ1を2.
5時間程度とすることが好ましく、汚泥返送流量は原水
流量Qに対し、01〜0.5Qとすることが好ましい。
When designing the settling tank 53, the water area load should be set at 20 to 3
Q m S 7m 2 /day dust, rJ1 when staying 2.
It is preferable to set it to about 5 hours, and it is preferable to set the sludge return flow rate to 01 to 0.5 Q with respect to the raw water flow rate Q.

しt)シてこの方法では、嫌気槽51内で汚泥への吸着
、嫌気性消化、脱窒用有機炭素源としての消費、によっ
てBODを低減し、また、好気槽52内で固着生物およ
び浮遊生物による同化作用、異化作用によってBOD 
Q除去する。
In this method, BOD is reduced by adsorption to sludge in the anaerobic tank 51, anaerobic digestion, and consumption as an organic carbon source for denitrification, and sessile organisms and BOD due to assimilation and catabolism by planktonic organisms
Q is removed.

また、窒素については、好気槽52内の固着生物および
浮遊生物により硝化して、No2−N 。
Further, nitrogen is nitrified by sessile organisms and floating organisms in the aerobic tank 52, and becomes No2-N.

No 3−Nの形に転換し、これを返送経路54を通じ
て嫌気槽5ノへ返送し、嫌気槽51内の汚泥中の脱窒菌
の作用によって、原有機性汚水55中のBODを有機炭
素源として脱窒する。
The BOD in the organic wastewater 55 is converted into an organic carbon source by the action of denitrifying bacteria in the sludge in the anaerobic tank 51. denitrification as

この方法において、好気槽52内で固着生物を作用させ
るが、その理由は硝化菌を固着炉材56に保持すること
によって硝化菌の現存fKk確保するためである。すな
わち硝化菌は、増殖速度が遅く、硝化反応を起こさせる
ためには、通常の活性汚泥法で汚泥令を10日以上とす
る必要がある。このためBOD負荷が上昇した場合、あ
るいは水温が低下した場合、BOD除去菌と硝化菌との
混合培養では、前者の比率が増大し、硝化が起らなくな
る。しかるに固着生物膜はほぼ固定された状態にあり、
汚泥令は無限大に近く、硝化反応を維持することができ
る。従って固着生物を併用するこの方法においては、か
ふる事態を防ぐことができると共に、好気jfj52を
コンパクト化できる。
In this method, the sessile organisms are allowed to act in the aerobic tank 52, and the reason for this is to retain the nitrifying bacteria in the sessile furnace material 56 to ensure the existing fKk of the nitrifying bacteria. That is, nitrifying bacteria have a slow growth rate, and in order to cause a nitrification reaction, it is necessary to maintain the sludge age for 10 days or more using a normal activated sludge method. Therefore, when the BOD load increases or the water temperature decreases, in a mixed culture of BOD removing bacteria and nitrifying bacteria, the ratio of the former increases and nitrification no longer occurs. However, sessile biofilms are almost fixed;
The sludge age is close to infinity and the nitrification reaction can be maintained. Therefore, in this method of using sessile organisms, it is possible to prevent the situation of suffocation and also to make the aerobic jfj52 compact.

またこの方法では、浮遊汚泥を嫌気状態と好気状態とに
繰り返しさらすため、生物学的脱リン反応を起こさせる
こともできる。すなわち、返送汚泥は、汚泥自身の含有
するリンを、嫌気jiff 51内の嫌気的条件下で放
出し、好気槽52内の好気的条件下で、1放出した量販
上のリンを汚泥体内に取り込むことによって原有機性汚
水55中のリンを除去する。このリンは余剰汚泥の形態
で系外へ排出される。
In addition, in this method, the suspended sludge is repeatedly exposed to anaerobic conditions and aerobic conditions, so that a biological dephosphorization reaction can occur. In other words, the returned sludge releases the phosphorus contained in the sludge itself under anaerobic conditions in the anaerobic jiff 51, and then releases the commercially available phosphorus into the sludge under aerobic conditions in the aerobic tank 52. The phosphorus in the raw organic wastewater 55 is removed by taking it into the organic wastewater 55. This phosphorus is discharged outside the system in the form of excess sludge.

硝化反応に伴って−1が低下し、脱窒反応に伴ってPI
Iが上昇するが、この方法においては、1つの系内で2
つの反応が起り、返送汚泥と原汚水を含めて攪拌混合す
るため、声は原汚水の−と大きく変わることなく、原汚
水の−が中性付近にあれば声調荒削の添加は不要である
-1 decreases with the nitrification reaction, and PI decreases with the denitrification reaction.
I increases, but in this method 2
Since two reactions occur and the returned sludge and raw sewage are mixed together, the voice does not differ much from the original sewage, and if the raw sewage is around neutral, there is no need to add tone roughening. .

脱窒用有機炭素源としては、原汚水中のBODを利用す
るため、メタノール等の有機炭素源用薬剤の添加も、通
常は不要である。ただし原汚水中のBOD濃度が、窒素
、リンの濃度に比して低く、処理水中の窒素、リン濃度
を極めて良好にぜんとする場合には、メタノール等のB
OD源を嫌気槽5ノもしくは好気槽52もしく鉱その両
者に、補助的に添加してもよい。
Since BOD in the raw wastewater is used as the organic carbon source for denitrification, it is usually unnecessary to add an organic carbon source agent such as methanol. However, if the BOD concentration in the raw wastewater is low compared to the nitrogen and phosphorus concentrations and the nitrogen and phosphorus concentrations in the treated water are to be eliminated very well, BOD such as methanol can be used.
An OD source may be supplementarily added to the anaerobic tank 5 or the aerobic tank 52 or both.

更にこの方法で使用する装置は比較的簡単であり、既存
の2次処理用活性汚泥装置に対しても、簡単な改造によ
って水沫を適用することができる。運転管理すべきもの
は主に、送気量と返送量のみであるため、従来の活性汚
泥法と同様、高度の運転管理技術を必要とせず、水温。
Furthermore, the equipment used in this method is relatively simple, and water droplets can be applied to existing activated sludge equipment for secondary treatment by simple modification. The only things that need to be managed during operation are the amount of air supplied and the amount of return, so similar to the conventional activated sludge method, advanced operation management technology is not required and water temperature can be controlled.

水量、水質の変動に対しては、固着生物の併用と返送に
よる循環によって処理の安定化をはかることができる。
In response to fluctuations in water quantity and quality, treatment can be stabilized by using sessile organisms and circulation through return.

第6図は、本発明方法の別の実施例を示したものである
。第6図の実施例が第5図の実施例と異る点は、好気槽
52カ・ら嫌気槽51への循環経路59を設けたことで
ある。この装置によれば循環を行うことによって、系内
の攪拌混合を促進し、生物反応の安定化、効率化をは力
へることができ、好気槽52内の炉材間を流れる汚泥混
合液の流速を大として、目づまりをよく防止し生物の間
引き効果を得ることができる。
FIG. 6 shows another embodiment of the method of the invention. The embodiment shown in FIG. 6 differs from the embodiment shown in FIG. 5 in that a circulation path 59 is provided from the aerobic tank 52 to the anaerobic tank 51. According to this device, by performing circulation, stirring and mixing within the system can be promoted, stabilization and efficiency of biological reactions can be reduced, and the sludge flowing between the furnace materials in the aerobic tank 52 can be mixed. By increasing the flow rate of the liquid, clogging can be effectively prevented and the effect of thinning out living organisms can be obtained.

次に、第5図および第6図に示したフローにもとづいて
、本発明の有機性汚水処理を行った実施例につき説明す
る。
Next, an example in which organic sewage treatment of the present invention was carried out will be described based on the flows shown in FIGS. 5 and 6.

この実施例では、原汚水として給食センター排水を用い
た。その組成は、第1表に示す通りである。比較のため
の従来方法として第2図および第4図に示したフローを
用いた実験も併せC行った。
In this example, school lunch center wastewater was used as raw wastewater. Its composition is shown in Table 1. As a conventional method for comparison, experiments using the flows shown in FIGS. 2 and 4 were also conducted.

第 1 表 第1表から得られた処理水の水質は、BOD 。Table 1 The quality of the treated water obtained from Table 1 is BOD.

窒素、およびリン濃度がきわめて低いものとなり、従来
法により得た処理水に比して優れていることが確認され
た。
The nitrogen and phosphorus concentrations were extremely low, and it was confirmed that the treated water was superior to treated water obtained by conventional methods.

以上の説明から明らかなように、本発明方法によれば、
メタノールやPII調整剤や凝集剤等の薬剤を使用する
ことなく、簡単な装置でもって汚水中のBOD 、窒素
、リンを同時に除去することができる。しX5Σもこの
方法では、固着生物と浮遊生物とを機能別に組み合わせ
て併用し、しかもそれぞれの汚泥の組成と作用が明確で
あるために、水温、水質、負荷量等の変動に対して容易
に運転管理対応することが可能である。とくに好気性域
に生物固着炉材を設けているので、硝化反応を良好に維
持することができる。
As is clear from the above explanation, according to the method of the present invention,
BOD, nitrogen, and phosphorus in wastewater can be removed simultaneously with a simple device without using chemicals such as methanol, PII regulators, or flocculants. This method uses sessile organisms and planktonic organisms in combination according to their functions, and since the composition and action of each type of sludge are clear, it can easily respond to changes in water temperature, water quality, load amount, etc. It is possible to handle operation management. In particular, since the biofixed furnace material is provided in the aerobic area, the nitrification reaction can be maintained well.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第4図は従来の有機性汚水の処理方法を示
すフローシート図、第5図は本発明に係る有機性汚水の
処理方法の一例を示すフローシート図、第6図は本発明
に係る有機性汚水の処理方法の□他の例を示すフローシ
ート図である。 51・・・嫌気槽、52・・・好気槽、53・・・沈殿
槽、54・・・返送管路、55・・・原汚水、56・・
・生物固7(f ’F材、57・・・処理水、58・・
・余剰汚泥、59・・・循環経路。
1 to 4 are flow sheet diagrams showing a conventional method for treating organic sewage, FIG. 5 is a flow sheet diagram showing an example of a method for treating organic sewage according to the present invention, and FIG. 6 is a flow sheet diagram showing an example of the method for treating organic sewage according to the present invention. It is a flow sheet diagram showing another example of the method for treating organic wastewater according to □. 51... Anaerobic tank, 52... Aerobic tank, 53... Sedimentation tank, 54... Return pipe, 55... Raw sewage, 56...
・Biosolidification 7 (f 'F material, 57...treated water, 58...
・Excess sludge, 59...Circulation route.

Claims (2)

【特許請求の範囲】[Claims] (1)有機性汚水を嫌気性域へ導入して浮遊生物による
嫌気性反応を生ぜしめた後、生物固着炉材を設けた好気
性域へ導入して酸素を供給し固着生物及び浮遊生物によ
る好気性侵応を生せしめ、しかる後固液分離装置へ導い
て処理水を得るとともに、分離汚泥の一部を嫌気性域へ
返送することを特徴とする有機性汚水の処理方法。
(1) Organic wastewater is introduced into an anaerobic area to cause an anaerobic reaction by floating organisms, and then introduced into an aerobic area equipped with biofixation reactor material to supply oxygen and cause sessile and floating organisms to react. A method for treating organic sewage, which is characterized by causing an aerobic reaction and then guiding it to a solid-liquid separator to obtain treated water, and returning a portion of the separated sludge to an anaerobic area.
(2)汚泥混合液を嫌気性域と好気性域との間に循環さ
せることを特徴とする特許請求の範囲第1項記載の有機
性汚水の処理方法。
(2) The method for treating organic wastewater according to claim 1, characterized in that the sludge mixture is circulated between an anaerobic region and an aerobic region.
JP58144569A 1983-08-08 1983-08-08 Treatment of organic sewage Granted JPS6038095A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58144569A JPS6038095A (en) 1983-08-08 1983-08-08 Treatment of organic sewage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58144569A JPS6038095A (en) 1983-08-08 1983-08-08 Treatment of organic sewage

Publications (2)

Publication Number Publication Date
JPS6038095A true JPS6038095A (en) 1985-02-27
JPS645958B2 JPS645958B2 (en) 1989-02-01

Family

ID=15365261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58144569A Granted JPS6038095A (en) 1983-08-08 1983-08-08 Treatment of organic sewage

Country Status (1)

Country Link
JP (1) JPS6038095A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60166098A (en) * 1984-02-09 1985-08-29 Hitachi Plant Eng & Constr Co Ltd Microbiological denitrifying and dephosphorizing method of waste water
US6444125B2 (en) * 2000-04-26 2002-09-03 Sang Bae Han Method of treating waste water for removing nitrogen and phosphorus and apparatus therefor
US6946073B2 (en) * 2003-09-02 2005-09-20 Ch2M Hill, Inc. Method for treating wastewater in a membrane bioreactor to produce a low phosphorus effluent
KR100755486B1 (en) * 2006-07-21 2007-09-05 주식회사 부강테크 Anaerobic wastewater treatment process using external pressure type membrane washed vortex flow
GB2454797A (en) * 2007-11-16 2009-05-20 Javel Ltd Treatment of wastewater
US7927493B2 (en) 2007-05-11 2011-04-19 Ch2M Hill, Inc. Low phosphorus water treatment methods
US8721887B2 (en) 2009-12-07 2014-05-13 Ch2M Hill, Inc. Method and system for treating wastewater

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS537976A (en) * 1976-05-12 1978-01-24 Autotrol Corp Method and apparatus for treating waste water
JPS56150493A (en) * 1980-04-22 1981-11-20 Ebara Infilco Co Ltd Disposal of organic waste water
JPS586294A (en) * 1981-07-03 1983-01-13 Daido Steel Co Ltd Device and method for treatment of water
JPS58216790A (en) * 1982-05-07 1983-12-16 Kurita Water Ind Ltd Method and device for denitrifying and dephosphorizing sewage biologically

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS537976A (en) * 1976-05-12 1978-01-24 Autotrol Corp Method and apparatus for treating waste water
JPS56150493A (en) * 1980-04-22 1981-11-20 Ebara Infilco Co Ltd Disposal of organic waste water
JPS586294A (en) * 1981-07-03 1983-01-13 Daido Steel Co Ltd Device and method for treatment of water
JPS58216790A (en) * 1982-05-07 1983-12-16 Kurita Water Ind Ltd Method and device for denitrifying and dephosphorizing sewage biologically

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60166098A (en) * 1984-02-09 1985-08-29 Hitachi Plant Eng & Constr Co Ltd Microbiological denitrifying and dephosphorizing method of waste water
JPS6324440B2 (en) * 1984-02-09 1988-05-20 Hitachi Plant Eng & Constr Co
US6444125B2 (en) * 2000-04-26 2002-09-03 Sang Bae Han Method of treating waste water for removing nitrogen and phosphorus and apparatus therefor
US6946073B2 (en) * 2003-09-02 2005-09-20 Ch2M Hill, Inc. Method for treating wastewater in a membrane bioreactor to produce a low phosphorus effluent
KR100755486B1 (en) * 2006-07-21 2007-09-05 주식회사 부강테크 Anaerobic wastewater treatment process using external pressure type membrane washed vortex flow
US7927493B2 (en) 2007-05-11 2011-04-19 Ch2M Hill, Inc. Low phosphorus water treatment methods
US8105490B2 (en) 2007-05-11 2012-01-31 Ch2M Hill, Inc. Low phosphorus water treatment systems
GB2454797A (en) * 2007-11-16 2009-05-20 Javel Ltd Treatment of wastewater
GB2454797B (en) * 2007-11-16 2010-10-27 Javel Ltd Treatment of wastewater
US8721887B2 (en) 2009-12-07 2014-05-13 Ch2M Hill, Inc. Method and system for treating wastewater

Also Published As

Publication number Publication date
JPS645958B2 (en) 1989-02-01

Similar Documents

Publication Publication Date Title
US4415454A (en) Nitrification treatment of wastewater
JP2006281003A (en) Biological waste water treatment method
JP2017144402A (en) Nitrification denitrification method and device for ammoniac nitrogen-containing liquid to be treated
JP3925902B2 (en) Biological nitrogen removal method and apparatus
JP4302341B2 (en) Biological nitrogen removal method and apparatus
JPS6038095A (en) Treatment of organic sewage
JPH08318292A (en) Waste water treatment method and apparatus
JPS6038094A (en) Treatment of organic sewage
JP2953835B2 (en) Biological nitrification and denitrification equipment
JPS6117559B2 (en)
JPS59199098A (en) Treatment of organic filthy water
JP3125628B2 (en) Wastewater treatment method
JP2006088057A (en) Method for treating ammonia-containing water
JP3345873B2 (en) Ammonia-containing wastewater treatment equipment
JPH0125633B2 (en)
JP2540150B2 (en) Biological denitrification equipment
JP2673488B2 (en) Method and apparatus for treating organic wastewater
US10934196B2 (en) Lagoon-based wastewater treatment with denitrification
JPS5936600A (en) Treatment of waste water
JP3837763B2 (en) Method for treating selenium-containing water
JP2000279993A (en) Waste water treatment and apparatus therefor
JPH06304593A (en) Biologically denitrifying method of organic waste liquid
JP3755167B2 (en) Method for treating selenium-containing water
JP2000279992A (en) Waste water treatment and apparatus therefor
JPS6311078B2 (en)