JP2006088057A - Method for treating ammonia-containing water - Google Patents

Method for treating ammonia-containing water Download PDF

Info

Publication number
JP2006088057A
JP2006088057A JP2004277492A JP2004277492A JP2006088057A JP 2006088057 A JP2006088057 A JP 2006088057A JP 2004277492 A JP2004277492 A JP 2004277492A JP 2004277492 A JP2004277492 A JP 2004277492A JP 2006088057 A JP2006088057 A JP 2006088057A
Authority
JP
Japan
Prior art keywords
nitrogen
nitrification
nitrite
ammonia
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004277492A
Other languages
Japanese (ja)
Inventor
Hideyo Yamauchi
英世 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2004277492A priority Critical patent/JP2006088057A/en
Publication of JP2006088057A publication Critical patent/JP2006088057A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain water to be treated without residual nitrogen and having excellent water quality by carrying out nitrite nitrification in a nitrification tank and then denitrification. <P>SOLUTION: A method for treating ammonia-containing water comprises oxidizing around 60 percent of ammonia nitrogen in a raw water tank into nitrite nitrogen by using a sponge-like biological carrier as a biological carrier in the nitrification tank and also operating the nitrification tank at a nitrogen load of 3 to 5 kg-N/m<SP>3</SP>×day. The water to be treated having little residual nitrogen and excellent can be obtained by carrying out denitrification of this nitrified liquid with Anammox bacteria to roughly completely react the ammonia nitrogen and the nitrite nitrogen. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、アンモニア含有水をアンモニア酸化細菌の存在下に曝気して硝化する方法に係り、特に、この硝化槽において、アンモニア含有水中のアンモニア性窒素の約6割を亜硝酸性窒素に酸化することにより、アンモニア性窒素を電子供与体とし、亜硝酸性窒素を電子受容体とする脱窒細菌による脱窒処理の原水として好適な硝化液を得るアンモニア含有水の処理方法に関する。   The present invention relates to a method for aeration of ammonia-containing water in the presence of ammonia-oxidizing bacteria, and particularly in this nitrification tank, about 60% of ammonia nitrogen in ammonia-containing water is oxidized to nitrite nitrogen. Thus, the present invention relates to a method for treating ammonia-containing water to obtain a nitrification solution suitable as raw water for denitrification treatment by denitrifying bacteria using ammoniacal nitrogen as an electron donor and nitrite nitrogen as an electron acceptor.

排水中に含まれるアンモニア性窒素は河川、湖沼及び海洋などにおける富栄養化の原因物質の一つであり、排液処理工程で効率的に除去する必要がある。一般に、排水中のアンモニア性窒素は、アンモニア性窒素をアンモニア酸化細菌により亜硝酸性窒素に酸化し、更にこの亜硝酸性窒素を亜硝酸酸化細菌により硝酸性窒素に酸化する硝化工程と、これらの亜硝酸性窒素及び硝酸性窒素を従属栄養性細菌である脱窒菌により、有機物を電子供与体(酸素受容体)として利用して窒素ガスにまで分解する脱窒工程との2段階の生物反応を経て窒素ガスにまで分解される。電子供与体である有機物としては、メタノール、酢酸などの生分解性有機物を人為的に添加する場合と、排水中に含まれるBOD成分を利用する場合とがある。   Ammonia nitrogen contained in wastewater is one of the causative substances of eutrophication in rivers, lakes and oceans, and it is necessary to remove it efficiently in the drainage treatment process. In general, ammonia nitrogen in wastewater is nitrified by oxidizing ammonia nitrogen to nitrite nitrogen by ammonia oxidizing bacteria, and oxidizing this nitrite nitrogen to nitrate nitrogen by nitrite oxidizing bacteria, Nitrite nitrogen and nitrate nitrogen are denitrifying bacteria, which are heterotrophic bacteria, using a two-stage biological reaction with a denitrification process that uses organic matter as an electron donor (oxygen acceptor) to break down into nitrogen gas. After that, it is decomposed into nitrogen gas. As an organic substance which is an electron donor, there are a case where a biodegradable organic substance such as methanol and acetic acid is artificially added, and a case where a BOD component contained in waste water is used.

このような硝化脱窒処理では、アンモニア性窒素を酸化するために必要な曝気動力が運転コストのうちの大部分を占めている。   In such nitrification denitrification treatment, aeration power necessary for oxidizing ammonia nitrogen occupies most of the operating cost.

曝気のためのコストを低減する方法として、硝酸性窒素を生成させず、亜硝酸性窒素を生成させ、亜硝酸性窒素を脱窒する方法が考えられるが、従来においては、硝化工程において安定的に亜硝酸性窒素を生成させる亜硝酸型硝化を行うことが困難であった。即ち、硝化工程における硝化細菌を含む活性汚泥は、通常、アンモニア性窒素を亜硝酸性窒素に酸化する細菌類(Nitrosomonas sp.)と、亜硝酸性窒素を硝酸性窒素に酸化する細菌類(Nitrobacter sp.)とが混在しているため、アンモニア性窒素を選択的に亜硝酸性窒素に酸化することは非常に難しい。   As a method for reducing the cost for aeration, a method of generating nitrite nitrogen without denitrating nitrogen and denitrifying nitrite nitrogen can be considered, but conventionally, it is stable in the nitrification process. It was difficult to perform nitrite-type nitrification to produce nitrite nitrogen. That is, activated sludge containing nitrifying bacteria in the nitrification process is usually divided into bacteria that oxidize ammonia nitrogen to nitrite nitrogen (Nitrosomonas sp.) And bacteria that oxidize nitrite nitrogen to nitrate nitrogen (Nitrobacter sp.), it is very difficult to selectively oxidize ammoniacal nitrogen to nitrite nitrogen.

一方、近年、アンモニア性窒素を電子供与体とし、亜硝酸性窒素を電子受容体とする独立栄養性微生物(以下「ANAMMOX菌」と称す場合がある。)を利用し、アンモニア性窒素と亜硝酸性窒素とを反応させて脱窒する方法が提案された。この方法であれば、有機物の添加は不要であるため、従属栄養性の脱窒菌を利用する方法と比べて、コストを低減することができる。また、独立栄養性の微生物は収率が低く、汚泥の発生量が従属栄養性微生物と比較すると著しく少ないので、余剰汚泥の発生量を抑えることができる。更に、従来の硝化脱窒法で観察されるNOの発生がなく、環境に対する負荷を低減できるといった特長もある。 On the other hand, in recent years, ammonia nitrogen and nitrous acid have been utilized by utilizing an autotrophic microorganism (hereinafter sometimes referred to as “ANAMOX bacteria”) having ammonia nitrogen as an electron donor and nitrite nitrogen as an electron acceptor. A method for denitrification by reacting with reactive nitrogen was proposed. If this method is used, it is not necessary to add an organic substance, so that the cost can be reduced as compared with a method using heterotrophic denitrifying bacteria. Moreover, since the yield of autotrophic microorganisms is low and the amount of sludge generated is significantly less than that of heterotrophic microorganisms, the amount of surplus sludge generated can be suppressed. Furthermore, there is also a feature that the generation of N 2 O observed by the conventional nitrification denitrification method does not occur and the burden on the environment can be reduced.

このANAMMOX菌を利用する生物脱窒プロセスは、Strous, M, et al., Appl. Microbiol. Biotecnol., 50, p.589-596 (1998)に報告されており、以下のような反応で、1当量のアンモニア性窒素を1.3倍当量の亜硝酸性窒素と反応させて窒素ガスに分解する生物反応である。
NH4 ++1.32NO2 -+0.066HCO3 -+0.13H+
→1.02N2+0.26NO3 +0.066CH2O0.5N0.15+2.03H2O ………(1)
This biological denitrification process using ANAMOX bacteria has been reported in Strous, M, et al., Appl. Microbiol. Biotecnol., 50, p.589-596 (1998). It is a biological reaction in which 1 equivalent of ammonia nitrogen is reacted with 1.3 times equivalent of nitrite nitrogen to decompose it into nitrogen gas.
NH 4 + + 1.32NO 2 - + 0.066HCO 3 - + 0.13H +
→ 1.02N 2 + 0.26NO 3 + 0.066CH 2 O 0.5 N 0.15 + 2.03H 2 O ……… (1)

従って、ANAMMOX菌を利用する生物脱窒処理において、処理対象となる原水は、1当量のアンモニア性窒素と1.3倍当量の亜硝酸性窒素を含む水であることが好ましく、このような水を得るためには、アンモニア性窒素を含む排水をアンモニア酸化細菌の存在下に曝気して好気性処理を行い、アンモニア性窒素の約6割を亜硝酸性窒素に部分酸化することが望まれる。従って、この場合には、排水中のアンモニア性窒素をアンモニア酸化細菌により処理するにあたり、アンモニア性窒素の約6割を酸化すること、しかも、硝酸性窒素にまで酸化することなく、酸化を亜硝酸性窒素で止める亜硝酸型硝化を行う必要がある。   Accordingly, in the biological denitrification treatment using ANAMMOX bacteria, the raw water to be treated is preferably water containing 1 equivalent of ammonia nitrogen and 1.3 times equivalent of nitrite nitrogen. In order to obtain the above, it is desired that the waste water containing ammonia nitrogen is aerated in the presence of ammonia oxidizing bacteria to perform aerobic treatment, and about 60% of the ammonia nitrogen is partially oxidized to nitrite nitrogen. Therefore, in this case, when ammoniacal nitrogen in the wastewater is treated with ammonia oxidizing bacteria, about 60% of the ammoniacal nitrogen is oxidized, and the oxidation is reduced to nitrite without oxidizing to nitrate nitrogen. Nitrite-type nitrification, which is stopped with natural nitrogen, is necessary.

しかしながら、前述の如く、アンモニア性窒素を選択的に亜硝酸性窒素に酸化する亜硝酸型硝化を行うことは困難であり、まして、アンモニア性窒素の所定量のみをアンモニア性窒素に酸化することは非常に難しい。硝化槽の溶存酸素(DO)濃度を制御することにより、亜硝酸型硝化が達成できるとの知見も報告されているが、実用上、硝酸性窒素の生成をほぼ完全に抑制することはできていない。これは、アンモニア性窒素を亜硝酸性窒素に酸化する細菌類(Nitrosomonas sp.)と、亜硝酸性窒素を硝酸性窒素に酸化する細菌類(Nitrobacter sp.)は殆ど同様の棲息環境で増殖するため、pHやDOなどを多少変化させても通常の硝化槽の運転条件の範囲内では、選択的に亜硝酸酸化細菌を抑制することは困難であることに起因している。   However, as described above, it is difficult to perform nitrite-type nitrification that selectively oxidizes ammonia nitrogen to nitrite nitrogen, and it is not possible to oxidize only a predetermined amount of ammonia nitrogen to ammonia nitrogen. very difficult. Although it has been reported that nitrite-type nitrification can be achieved by controlling the dissolved oxygen (DO) concentration in the nitrification tank, practically the production of nitrate nitrogen could not be suppressed almost completely. Absent. This is because bacteria that oxidize ammonia nitrogen to nitrite nitrogen (Nitrosomonas sp.) And bacteria that oxidize nitrite nitrogen to nitrate nitrogen (Nitrobacter sp.) Grow in almost the same habitat. For this reason, even if pH, DO, etc. are slightly changed, it is difficult to selectively suppress nitrite-oxidizing bacteria within the normal operating conditions of the nitrification tank.

一方、特開2000−61494号公報には、硝化槽当たりのアンモニア性窒素負荷を1.5〜2.5kg−N/m・日に維持すると共に、硝化槽内のアンモニア性窒素濃度を250〜550mg/Lに維持することにより、亜硝酸型硝化反応が保持できると記載されている。しかしながら、この方法では、アンモニア態窒素濃度を250mg/L以下に処理することができず、後段で脱窒処理を行って硝化液中の硝酸性窒素及び亜硝酸性窒素をほぼ完全に除去できたとしても、硝化液に残存しているアンモニア態窒素は、そのまま脱窒処理水中に残留することになり、排水処理としては不完全である。
特開2000−61494号公報 Strous, M, et al., Appl. Microbiol. Biotecnol., 50,p.589-596 (1998)
On the other hand, in JP-A-2000-61494, the ammonia nitrogen load per nitrification tank is maintained at 1.5 to 2.5 kg-N / m 3 · day, and the ammonia nitrogen concentration in the nitrification tank is set to 250. It is described that the nitrite type nitrification reaction can be maintained by maintaining at ˜550 mg / L. However, in this method, the ammonia nitrogen concentration could not be processed to 250 mg / L or less, and nitrate nitrogen and nitrite nitrogen in the nitrification solution could be removed almost completely by performing a denitrification process at a later stage. However, the ammonia nitrogen remaining in the nitrification solution remains as it is in the denitrification water, and is incomplete as a waste water treatment.
JP 2000-61494 A Strous, M, et al., Appl. Microbiol. Biotecnol., 50, p. 589-596 (1998)

本発明は上記従来の問題点を解決し、硝化槽で亜硝酸型硝化を行って、その後の脱窒処理により、残留窒素のない良好な水質の処理水を得ることができるアンモニア含有水の処理方法を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, treatment of ammonia-containing water that can be treated with nitrite-type nitrification in a nitrification tank, and can obtain treated water of good water quality without residual nitrogen by subsequent denitrification treatment It aims to provide a method.

本発明のアンモニア含有水の処理方法は、アンモニア性窒素を含有する原水を生物担体が投入された硝化槽に導入して処理する方法において、該生物担体としてスポンジ状の生物担体を用いると共に、該硝化槽を3〜5kg−N/m・日の窒素負荷で運転することにより、該原水中のアンモニア性窒素の約6割を亜硝酸性窒素に酸化することを特徴とする。 The method for treating ammonia-containing water according to the present invention uses a sponge-like biological carrier as the biological carrier in the method for treating raw water containing ammoniacal nitrogen by introducing it into a nitrification tank into which the biological carrier has been charged, By operating the nitrification tank at a nitrogen load of 3 to 5 kg-N / m 3 · day, about 60% of the ammoniacal nitrogen in the raw water is oxidized to nitrite nitrogen.

なお、本発明において、上記「約6割」とは、一般に、50〜70モル%の範囲を包含する。   In the present invention, the “about 60%” generally includes a range of 50 to 70 mol%.

本発明に従って、スポンジ状の生物担体を用いて、3〜5kg−N/m・日という大きな窒素負荷で硝化槽を運転することにより、硝酸性窒素の生成を抑えた上で、原水中のアンモニア性窒素の約6割を亜硝酸性窒素に酸化することができる。この硝化液をANAMMOX菌により脱窒処理することにより、アンモニア性窒素と亜硝酸性窒素とをほぼ完全に反応させて、残留窒素の殆どない良好な処理水を得ることができる。 According to the present invention, by using a sponge-like biological carrier and operating the nitrification tank with a large nitrogen load of 3 to 5 kg-N / m 3 · day, the production of nitrate nitrogen is suppressed, About 60% of the ammoniacal nitrogen can be oxidized to nitrite nitrogen. By denitrifying this nitrification solution with ANAMMOX bacteria, ammonia nitrogen and nitrite nitrogen can be almost completely reacted to obtain good treated water with almost no residual nitrogen.

本発明において、スポンジ状の生物担体を用いることは、本発明による亜硝酸型硝化の維持のために重要である。即ち、浮遊菌体を用いる場合では硝化槽のDO濃度を厳密に一定濃度(例えば、1.0mg/L以下程度)に制御しないと、亜硝酸酸化細菌が増殖して硝酸性窒素が増加し、最終的には硝酸型の硝化反応になってしまうが、実際の排水では、原水の流入水量、窒素濃度が時々刻々と変動するため、硝化槽内のDOを厳密に制御することは実用上は困難であり、亜硝酸型の硝化を長期間にわたって維持することは困難である。   In the present invention, the use of a sponge-like biological carrier is important for maintaining the nitrite type nitrification according to the present invention. That is, in the case of using floating cells, unless the DO concentration in the nitrification tank is strictly controlled to a constant concentration (for example, about 1.0 mg / L or less), nitrite-oxidizing bacteria grow and nitrate nitrogen increases, In the end, the nitric acid-type nitrification reaction will occur, but in actual wastewater, the amount of raw water inflow and nitrogen concentration will fluctuate every moment, so it is practically necessary to strictly control DO in the nitrification tank. It is difficult to maintain the nitrite type nitrification for a long time.

しかし、スポンジ状の断片を生物担体として利用することにより、硝化槽のDOを厳密に制御しなくても、硝化槽を通常の曝気撹拌状態に保持するのみで、硝酸性窒素の生成を、原水中のアンモニア性窒素の約1%程度に抑えて、安定な亜硝酸型硝化を行うことができる。これは、スポンジ状の断片を生物担体として用いた場合には、硝化槽内のDOが3〜4mg/L程度になった場合でも、担体に付着した生物膜の内部にまでDOが到達することができず、このため、亜硝酸酸化細菌の活動、増殖が抑制されることにより、亜硝酸型硝化が維持されることによる。   However, by using sponge-like fragments as biological carriers, the production of nitrate nitrogen can be achieved only by maintaining the nitrification tank in a normal agitated state without strictly controlling the DO of the nitrification tank. Stable nitrite-type nitrification can be carried out by suppressing to about 1% of ammonia nitrogen in water. This is because when a sponge-like fragment is used as a biological carrier, DO reaches the inside of the biological film attached to the carrier even when the DO in the nitrification tank becomes about 3 to 4 mg / L. Therefore, the activity and proliferation of nitrite-oxidizing bacteria are suppressed, so that nitrite-type nitrification is maintained.

なお、本発明を適用しても、硝化液中には、3〜7mg/L程度の硝酸性窒素が検出されることから、亜硝酸酸化細菌は系内の生物群の中で全く増殖できない、或いは死滅した訳ではなく、単にその活動、増殖が抑制されているのみであると判断される。   In addition, even if the present invention is applied, since nitrate nitrogen of about 3 to 7 mg / L is detected in the nitrification solution, nitrite-oxidizing bacteria cannot grow at all in the organism group in the system, Alternatively, it is determined that the activity and proliferation are merely suppressed, not the death.

また、本発明では、このように亜硝酸型硝化条件が維持されている硝化槽を、3〜5kg−N/m・日の高負荷で運転することにより、アンモニア性窒素の約6割のみを亜硝酸性窒素に酸化し、約4割のアンモニア性窒素をそのまま残すことができ、このような割合でアンモニア性窒素と亜硝酸性窒素を含む硝化液は、ANAMMOX菌による脱窒処理の原水として好適である。 In the present invention, the nitrification tank in which the nitrite type nitrification conditions are maintained is operated at a high load of 3 to 5 kg-N / m 3 · day, so that only about 60% of the ammoniacal nitrogen is obtained. Can be oxidized to nitrite nitrogen, leaving about 40% of ammonia nitrogen as it is. Nitrification liquid containing ammonia nitrogen and nitrite nitrogen at this rate is the raw water for denitrification treatment by ANAMMOX bacteria. It is suitable as.

なお、以下において、本発明により原水中のアンモニア性窒素の約6割を亜硝酸性窒素に酸化する亜硝酸型硝化を「部分亜硝酸型硝化」と称す場合がある。   In the following, nitrite type nitrification in which about 60% of ammonia nitrogen in raw water is oxidized to nitrite nitrogen according to the present invention may be referred to as “partial nitrite type nitrification”.

本発明において、硝化槽内の残留アンモニア性窒素濃度は50mg−N/L以上となるように調節することが好ましく、これにより、亜硝酸酸化細菌の活動をより一層確実に阻害して、長期に亘り安定かつ効率的に部分亜硝酸型硝化を行うことができる。即ち、同じ濃度のアンモニア性窒素が存在した場合、亜硝酸酸化細菌はアンモニア酸化細菌よりもアンモニア性窒素からの阻害を強く受けるため、このような条件を維持することにより、亜硝酸型硝化を安定化させることができる。   In the present invention, it is preferable to adjust the residual ammoniacal nitrogen concentration in the nitrification tank to be 50 mg-N / L or more, thereby more reliably inhibiting the activity of nitrite oxidizing bacteria, Partial nitrite nitrification can be performed stably and efficiently. That is, when ammonia nitrogen is present at the same concentration, nitrite-oxidizing bacteria are more strongly inhibited by ammonia nitrogen than ammonia-oxidizing bacteria, so maintaining these conditions stabilizes nitrite-type nitrification. It can be made.

本発明において、硝化槽から流出する亜硝酸性窒素を含む硝化液は、更に、ANAMMOX菌により脱窒処理することが好ましい。   In the present invention, the nitrification liquid containing nitrite nitrogen flowing out from the nitrification tank is preferably further subjected to denitrification treatment by ANAMMOX bacteria.

本発明のアンモニア含有水の処理方法によれば、硝化槽において安定な部分亜硝酸型硝化を行って、原水中のアンモニア性窒素の約6割を亜硝酸性窒素に酸化することができる。この硝化槽で得られたアンモニア性窒素及び亜硝酸性窒素を含む硝化液は、ANAMMOX菌による脱窒処理に適しており、硝化液をANAMMOX菌で脱窒処理することにより、残留窒素濃度が著しく低減された高水質処理水を得ることができる。   According to the method for treating ammonia-containing water of the present invention, stable partial nitrite-type nitrification can be performed in a nitrification tank, and about 60% of ammonia nitrogen in raw water can be oxidized to nitrite nitrogen. The nitrification liquid containing ammoniacal nitrogen and nitrite nitrogen obtained in this nitrification tank is suitable for denitrification treatment with ANAMMOX bacteria, and the residual nitrogen concentration is remarkably reduced by denitrification treatment with ANAMMOX bacteria. Reduced high-quality treated water can be obtained.

以下に本発明の窒素含有排水の処理方法の実施の形態を詳細に説明する。   Embodiments of the method for treating nitrogen-containing wastewater of the present invention will be described in detail below.

本発明においては、硝化槽に生物担体としてスポンジ状の生物担体を投入し、3〜5kg−N/m・日の窒素負荷でアンモニア含有水の硝化処理を行うことにより、原水中のアンモニア性窒素の約6割を亜硝酸性窒素に酸化する部分亜硝酸型硝化を行う。 In the present invention, a sponge-like biological carrier is introduced as a biological carrier into a nitrification tank, and ammonia-containing water is nitrified with a nitrogen load of 3 to 5 kg-N / m 3 · day, so that ammonia in raw water is obtained. Partial nitrite-type nitrification is performed to oxidize about 60% of nitrogen to nitrite nitrogen.

本発明で用いるスポンジ状の生物担体としては特に制限はなく、ポリウレタンフォーム、ポリビニルアルコール発泡体等を用いることができる。このスポンジ状の生物担体は、前述の亜硝酸型硝化の維持効果を得るために、気孔率10〜90%、嵩比重0.8〜1.5g/cmで、寸法(一辺の大きさ又は粒径)0.1〜20mm程度であることが好ましい。 The sponge-like biological carrier used in the present invention is not particularly limited, and polyurethane foam, polyvinyl alcohol foam and the like can be used. This sponge-like biological carrier has a porosity of 10 to 90% and a bulk specific gravity of 0.8 to 1.5 g / cm 3 in order to obtain the above-mentioned nitrite-type nitrification maintenance effect. The particle size is preferably about 0.1 to 20 mm.

また、このようなスポンジ状の生物担体の投入量には特に制限はないが、硝化槽の有効容積に対して5〜40体積%程度とすることが好ましい。   Moreover, there is no restriction | limiting in particular in the input amount of such a sponge-like biological support | carrier, However, It is preferable to set it as about 5-40 volume% with respect to the effective volume of a nitrification tank.

このようなスポンジ状の生物担体は、硝化槽内の曝気流により流動して原水と効率的に接触することができ、高い硝化効率を得ることができる。なお、硝化槽の流出口側には、スポンジ状の生物担体の流出防止のためのスクリーン等の担体の流出防止手段を設けておくことが好ましい。   Such a sponge-like biological carrier can be flowed by an aeration air flow in the nitrification tank and efficiently contacted with raw water, and high nitrification efficiency can be obtained. In addition, it is preferable to provide a carrier outflow prevention means such as a screen for preventing the outflow of the sponge-like biological carrier on the outlet side of the nitrification tank.

なお、本発明においては、より一層安定な部分亜硝酸型硝化を行うために、硝化槽内のアンモニア性窒素濃度が50mg−N/L以上となるように調節することが好ましい。   In the present invention, in order to perform more stable partial nitrite type nitrification, it is preferable to adjust the ammonia nitrogen concentration in the nitrification tank to be 50 mg-N / L or more.

本発明においては、スポンジ状の生物担体を用い、窒素負荷を制御することにより、部分亜硝酸型硝化を安定かつ確実に行うことができるため、硝化処理条件としては、亜硝酸型硝化のための厳密な制限を行う必要はないが、好ましくは、アンモニア酸化細菌の活性を高く維持し、かつ亜硝酸酸化細菌の活性が低くなるように、硝化槽内の液pHは5〜9、特に7〜8、DO濃度は0〜6mg−N/L、温度が10〜40℃、特に20〜35℃になるように制御するのが好ましい。   In the present invention, partial nitrite type nitrification can be performed stably and reliably by using a sponge-like biological carrier and controlling the nitrogen load. Although it is not necessary to perform a strict restriction, the pH of the liquid in the nitrification tank is preferably 5 to 9, particularly 7 to 7 so that the activity of ammonia oxidizing bacteria is maintained high and the activity of nitrite oxidizing bacteria is low. 8. It is preferable to control the DO concentration to be 0 to 6 mg-N / L and the temperature to be 10 to 40 ° C, particularly 20 to 35 ° C.

本発明において、このような硝化槽で部分亜硝酸型硝化を行って得られたアンモニア性窒素及び亜硝酸性窒素を含む硝化液は、ANAMMOX菌による脱窒処理に好適であり、従って、この硝化液は次いでANAMMOX菌による脱窒処理を行うことが好ましい。この場合、硝化液中のアンモニア性窒素濃度と亜硝酸性窒素濃度との比は前述のANAMMOX反応当量とほぼ一致するため、アンモニア性窒素と亜硝酸性窒素の濃度比を調節する必要はなく、そのまま、ANAMMOX菌による脱窒反応の原水とすることができる。   In the present invention, the nitrification liquid containing ammonia nitrogen and nitrite nitrogen obtained by performing partial nitrite type nitrification in such a nitrification tank is suitable for denitrification treatment by ANAMMOX bacteria, and thus this nitrification The solution is then preferably subjected to a denitrification treatment with ANAMOX bacteria. In this case, since the ratio of the ammonia nitrogen concentration and the nitrite nitrogen concentration in the nitrification solution is almost the same as the above-mentioned ANAMMOX reaction equivalent, it is not necessary to adjust the concentration ratio of the ammonia nitrogen and the nitrite nitrogen. As it is, it can be used as raw water for the denitrification reaction by the ANAMOX bacteria.

ANAMMOX菌による脱窒槽の反応槽の型式には特に制限はなく、汚泥懸濁方式の他、固定床、流動床、グラニュール法、担体添加法等の生物膜法によるものであっても良い。ANAMMOX脱窒槽の後段には、沈殿槽、膜分離装置などの固液分離装置を設けても良い。また、ANAMMOX脱窒槽は窒素ガスを用いたガスリフト型反応槽であっても良く、ANAMMOX菌のグラニュール汚泥床を形成したUSB(Upflow Sludge Bed;上向流汚泥床)反応槽であっても良い。このような反応槽であれば、後段の沈殿槽を省略することができる。   There is no particular limitation on the type of reaction tank of the denitrification tank by the ANAMOX bacteria, and it may be a biofilm method such as a fixed bed, a fluidized bed, a granule method, a carrier addition method, etc. in addition to a sludge suspension method. A solid-liquid separation device such as a precipitation tank or a membrane separation device may be provided after the ANAMOX denitrification tank. The ANAMOX denitrification tank may be a gas lift type reaction tank using nitrogen gas, or a USB (Upflow Sludge Bed) reaction tank in which a granular sludge bed of ANAMMOX bacteria is formed. . With such a reaction tank, the subsequent precipitation tank can be omitted.

ANAMMOX菌による脱窒槽の好適な反応条件は次の通りである。
pH :6〜9、特に6.5〜8.0
DO濃度 :0〜2.5mg/L、特に0〜0.2mg/L
温度 :10〜40℃、特に20〜35℃
BOD濃度:0〜50mg/L、特に0〜20mg/L
窒素負荷 :0.1〜10kg−N/m・day、特に0.2〜5kg−
N/m・day
The preferred reaction conditions for the denitrification tank with ANAMOX bacteria are as follows.
pH: 6-9, especially 6.5-8.0
DO concentration: 0 to 2.5 mg / L, especially 0 to 0.2 mg / L
Temperature: 10-40 ° C, especially 20-35 ° C
BOD concentration: 0-50 mg / L, especially 0-20 mg / L
Nitrogen load: 0.1 to 10 kg-N / m 3 · day, especially 0.2 to 5 kg-
N / m 3 · day

このANAMMOX菌による脱窒槽の後段には更に残留窒素を除去するための脱窒槽を設けても良いが、ANAMMOX菌による脱窒槽の処理水の窒素除去率が例えば80%以上と高く、残留窒素が殆どない場合には、このような後段の脱窒槽は不要である。   A denitrification tank for removing residual nitrogen may be provided after the denitrification tank by the ANAMMOX bacteria, but the nitrogen removal rate of the treated water in the denitrification tank by the ANAMOX bacteria is as high as 80% or more, for example. In the case where there is almost no such a denitrification tank in the latter stage is necessary.

以下に実施例及び比較例を挙げて本発明をより具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.

実施例1
図1に示す如く、発泡ウレタンフォーム(気孔率50%、嵩比重1.1g/cm)を3mm角に切断したものを担体1として、硝化槽2の容量に対して30%量投入し、底部より散気球3を用いて曝気を行った。この硝化槽2の流出口側には、担体1の流出を防止するために、スクリーン4を設けた。この硝化槽2に、定量ポンプ5により、硫酸アンモニウムを主成分とする合成排水(NH−Nとして700mg/L)を原水として、原水槽6から連続通液して硝化処理を行った。なお、硝化槽2は温水浴槽に浸漬し、槽内温度を30℃に維持した。また、硝化反応により、硝化槽2内液のpHが低下するのでpH調節器を設置し、アルカリ(NaOH)を添加して硝化槽内液のpHを7.5前後に維持した。硝化槽2内のDO濃度は4.0mg/Lであった。
Example 1
As shown in FIG. 1, a foamed urethane foam (porosity 50%, bulk specific gravity 1.1 g / cm 3 ) cut into 3 mm square is used as a carrier 1, and 30% of the capacity of the nitrification tank 2 is charged. Aeration was performed from the bottom using an air diffuser 3. A screen 4 is provided on the outlet side of the nitrification tank 2 in order to prevent the carrier 1 from flowing out. The nitrification tank 2 was subjected to nitrification treatment by continuously passing through the raw water tank 6 using synthetic waste water mainly composed of ammonium sulfate (700 mg / L as NH 4 -N) as raw water by a metering pump 5. In addition, the nitrification tank 2 was immersed in a hot water bath, and the temperature in the tank was maintained at 30 ° C. In addition, since the pH of the solution in the nitrification tank 2 was lowered by the nitrification reaction, a pH controller was installed, and alkali (NaOH) was added to maintain the pH of the solution in the nitrification tank at around 7.5. The DO concentration in the nitrification tank 2 was 4.0 mg / L.

窒素負荷が3kg−N/m・day(HRT=5.5hr)を超える35kg−N/m・day(HRT=4.8hr)の条件において、処理水のアンモニア性窒素濃度は300〜350mg/L前後、亜硝酸性窒素濃度は350〜400mg/L前後であった。また硝酸性窒素濃度は5〜10mg/Lであり部分亜硝酸型硝化が維持できた(Run1)。 Under the condition of 35 kg-N / m 3 · day (HRT = 4.8 hr) where the nitrogen load exceeds 3 kg-N / m 3 · day (HRT = 5.5 hr), the ammonia nitrogen concentration of the treated water is 300 to 350 mg. The concentration of nitrite nitrogen was around 350 to 400 mg / L. The nitrate nitrogen concentration was 5 to 10 mg / L, and partial nitrite type nitrification could be maintained (Run 1).

硝化槽の流入水のアンモニア性窒素濃度を250mg/Lに下げ、窒素負荷を3kg−N/m・dayを超える3.5kg−N/m・day(HRT=1.7hr)としたところ、硝化槽内のアンモニア性窒素濃度が80〜100mg/L程度、亜硝酸性窒素濃度が140〜160mg/L程度となった。処理水の硝酸性窒素濃度は10〜15g/Lと低濃度に維持され、部分亜硝酸型硝化が維持された(Run2)。 The ammonia nitrogen concentration of the inflow water of the nitrification tank is lowered to 250 mg / L, and the nitrogen load is set to 3.5 kg-N / m 3 · day (HRT = 1.7 hr) exceeding 3 kg-N / m 3 · day. The ammonia nitrogen concentration in the nitrification tank was about 80 to 100 mg / L, and the nitrite nitrogen concentration was about 140 to 160 mg / L. The nitrate concentration of treated water was maintained at a low concentration of 10 to 15 g / L, and partial nitrite type nitrification was maintained (Run 2).

上記Run1及びRun2の処理水の結果をまとめると、表1に示す通りであり、いずれの場合も、原水中のアンモニア性窒素の約6割が亜硝酸性窒素に酸化された。   The results of the treated water of Run1 and Run2 are summarized as shown in Table 1. In each case, about 60% of the ammoniacal nitrogen in the raw water was oxidized to nitrite nitrogen.

Figure 2006088057
Figure 2006088057

実施例2
実施例1のRun1及びRun2で得られた処理水を、それぞれANAMMOX菌を保持した脱窒槽に導入して脱窒処理したところ、得られた処理水中のNO−N濃度、NO−N濃度及びNH−N濃度は表2に示す通りであり、良好な処理水が得られた。
Example 2
The treated water obtained in Run 1 and Run 2 of Example 1 was introduced into a denitrification tank holding ANAMMOX bacteria and denitrified, and the NO 2 -N concentration and NO 3 -N concentration in the obtained treated water were obtained. and NH 4 -N concentration is as shown in Table 2, good treated water was obtained.

Figure 2006088057
Figure 2006088057

比較例1
実施例1のRun1及びRun2において、硝化槽の負荷を2.5kg−N/m・dayとしたこと以外はそれぞれ同様にして処理を行ったところ、いずれの場合も、原水中のアンモニア性窒素の約80%がアンモニアのまま残留した。この硝化液を、それぞれANAMMOX菌を保持した脱窒槽に導入して脱窒処理したところ、得られた処理水中のNO−N濃度、NO−N濃度及びNH−N濃度は表3に示す通りであり、良好な処理水は得られなかった。
Comparative Example 1
In Run 1 and Run 2 of Example 1, treatment was performed in the same manner except that the load of the nitrification tank was 2.5 kg-N / m 3 · day. In each case, ammonia nitrogen in the raw water About 80% of the remaining ammonia remained. When this nitrification solution was introduced into a denitrification tank holding each ANAMMOX bacteria and denitrified, the NO 2 -N concentration, NO 3 -N concentration and NH 4 -N concentration in the obtained treated water are shown in Table 3. As shown, good treated water could not be obtained.

Figure 2006088057
Figure 2006088057

比較例2
実施例1のRun1,2において、硝化槽の負荷を6.0kg−N/m・dayとしたこと以外はそれぞれ同様にして処理を行ったところ、いずれの場合も原水の約80%がアンモニアのまま残留した。この硝化液をそれぞれANAMMOX菌を保持した脱窒槽に導入して脱窒処理を行ったところ、表4のように良好な処理水質は得られなかった。
Comparative Example 2
In Runs 1 and 2 of Example 1, the same treatment was performed except that the load of the nitrification tank was changed to 6.0 kg-N / m 3 · day. In each case, about 80% of the raw water was ammonia. Remained. When this nitrification solution was introduced into a denitrification tank holding each of the ANAMMOX bacteria and subjected to denitrification treatment, good treated water quality as shown in Table 4 was not obtained.

Figure 2006088057
Figure 2006088057

実施例1で用いた硝化装置を示す概略的な構成図である。1 is a schematic configuration diagram showing a nitrification apparatus used in Example 1. FIG.

符号の説明Explanation of symbols

1 担体
2 硝化槽
3 散気球
4 スクリーン
5 定量ポンプ
6 原水槽
1 Carrier 2 Nitrification Tank 3 Aeration Ball 4 Screen 5 Metering Pump 6 Raw Water Tank

Claims (3)

アンモニア性窒素を含有する原水を生物担体が投入された硝化槽に導入して処理する方法において、
該生物担体としてスポンジ状の生物担体を用いると共に、該硝化槽を3〜5kg−N/m・日の窒素負荷で運転することにより、該原水中のアンモニア性窒素の約6割を亜硝酸性窒素に酸化することを特徴とするアンモニア含有水の処理方法。
In a method of treating raw water containing ammonia nitrogen by introducing it into a nitrification tank charged with a biological carrier,
By using a sponge-like biological carrier as the biological carrier and operating the nitrification tank at a nitrogen load of 3 to 5 kg-N / m 3 · day, about 60% of the ammonia nitrogen in the raw water is nitrous acid. A method for treating ammonia-containing water, which comprises oxidizing to basic nitrogen.
請求項1において、該硝化槽内のアンモニア性窒素の残留濃度を50mg/L以上とすることを特徴とするアンモニア含有水の処理方法。   The method for treating ammonia-containing water according to claim 1, wherein the residual concentration of ammonia nitrogen in the nitrification tank is 50 mg / L or more. 請求項1又は2において、該硝化槽から流出する硝化液を、アンモニア性窒素を電子供与体とし、亜硝酸性窒素を電子受容体とする脱窒細菌の作用により脱窒することを特徴とするアンモニア含有水の処理方法。   The nitrification liquid flowing out from the nitrification tank according to claim 1 or 2 is denitrified by the action of a denitrifying bacterium using ammonia nitrogen as an electron donor and nitrite nitrogen as an electron acceptor. A method for treating ammonia-containing water.
JP2004277492A 2004-09-24 2004-09-24 Method for treating ammonia-containing water Pending JP2006088057A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004277492A JP2006088057A (en) 2004-09-24 2004-09-24 Method for treating ammonia-containing water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004277492A JP2006088057A (en) 2004-09-24 2004-09-24 Method for treating ammonia-containing water

Publications (1)

Publication Number Publication Date
JP2006088057A true JP2006088057A (en) 2006-04-06

Family

ID=36229534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004277492A Pending JP2006088057A (en) 2004-09-24 2004-09-24 Method for treating ammonia-containing water

Country Status (1)

Country Link
JP (1) JP2006088057A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010046592A (en) * 2008-08-20 2010-03-04 Kanto Natural Gas Development Co Ltd Method for treating ammonia contained in underground brine
JP2011189249A (en) * 2010-03-12 2011-09-29 Nippon Steel Corp Biological nitrogen treatment method for ammonia-containing waste water
WO2011134011A1 (en) * 2010-04-28 2011-11-03 The University Of Queensland Production of nitrite
JP6112692B1 (en) * 2016-08-16 2017-04-12 日本施設株式会社 Molded filter media, biological filtration device and circulation breeding system
WO2019198389A1 (en) * 2018-04-11 2019-10-17 株式会社日立製作所 Nitrogen processing method
JP2020099873A (en) * 2018-12-21 2020-07-02 水ing株式会社 Water treatment method and water treatment apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003010883A (en) * 2001-07-04 2003-01-14 Kurita Water Ind Ltd Nitration method of ammonia nitrogen-containing water
JP2003053387A (en) * 2001-08-10 2003-02-25 Kurita Water Ind Ltd Method for biologically removing nitrogen
WO2004074191A1 (en) * 2003-02-21 2004-09-02 Kurita Water Industries Ltd. Method for treating water containing ammonia nitrogen

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003010883A (en) * 2001-07-04 2003-01-14 Kurita Water Ind Ltd Nitration method of ammonia nitrogen-containing water
JP2003053387A (en) * 2001-08-10 2003-02-25 Kurita Water Ind Ltd Method for biologically removing nitrogen
WO2004074191A1 (en) * 2003-02-21 2004-09-02 Kurita Water Industries Ltd. Method for treating water containing ammonia nitrogen

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010046592A (en) * 2008-08-20 2010-03-04 Kanto Natural Gas Development Co Ltd Method for treating ammonia contained in underground brine
JP2011189249A (en) * 2010-03-12 2011-09-29 Nippon Steel Corp Biological nitrogen treatment method for ammonia-containing waste water
WO2011134011A1 (en) * 2010-04-28 2011-11-03 The University Of Queensland Production of nitrite
JP6112692B1 (en) * 2016-08-16 2017-04-12 日本施設株式会社 Molded filter media, biological filtration device and circulation breeding system
JP2018027032A (en) * 2016-08-16 2018-02-22 日本施設株式会社 Molding filter medium, biological filter device, and circulation rearing system
WO2019198389A1 (en) * 2018-04-11 2019-10-17 株式会社日立製作所 Nitrogen processing method
JP2019181377A (en) * 2018-04-11 2019-10-24 株式会社日立製作所 Nitrogen treatment method
CN111954644A (en) * 2018-04-11 2020-11-17 株式会社日立制作所 Nitrogen treatment method
JP2020099873A (en) * 2018-12-21 2020-07-02 水ing株式会社 Water treatment method and water treatment apparatus
JP7181078B2 (en) 2018-12-21 2022-11-30 水ing株式会社 Water treatment method and water treatment equipment

Similar Documents

Publication Publication Date Title
JP6227509B2 (en) Waste water treatment apparatus and waste water treatment method
JP4910266B2 (en) Nitrification method and treatment method of ammonia-containing nitrogen water
JP4496735B2 (en) Biological treatment of BOD and nitrogen-containing wastewater
JP4735256B2 (en) Ammonia nitrogen-containing water treatment method
JP2005305410A (en) Method and apparatus for removing nitrogen
JP2003053387A (en) Method for biologically removing nitrogen
JP5115908B2 (en) Waste water treatment apparatus and treatment method
JP4649911B2 (en) Treatment of organic matter and nitrogen-containing wastewater
JP4882175B2 (en) Nitrification method
JP4872171B2 (en) Biological denitrification equipment
JP4876343B2 (en) Denitrification method and denitrification apparatus
JP4734996B2 (en) Biological treatment method and apparatus for nitrogen-containing water
JP2005246135A (en) Method for biologically removing nitrogen
JP4302341B2 (en) Biological nitrogen removal method and apparatus
JP2006082053A (en) Method and apparatus for treating nitrogen-containing drainage
JP5292658B2 (en) A method for nitrification of ammonia nitrogen-containing water
JP2014097478A (en) Effluent treatment method and effluent treatment apparatus
JP2003154393A (en) Biological method for removing nitrogen and apparatus therefor
JP4848144B2 (en) Waste water treatment equipment
JP5292659B2 (en) A method for nitrification of ammonia nitrogen-containing water
JP2004230338A (en) Method for removing ammonia nitrogen compound from waste water
JP2004298841A (en) Method for treating nitrogen-containing wastewater
JP3202510B2 (en) Equipment for treating wastewater containing nitrogen and fluorine
JP2003033784A (en) Method and device for denitrification
JP2006088057A (en) Method for treating ammonia-containing water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101008

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101026