JPS6037045B2 - Production method of pyrographite - Google Patents

Production method of pyrographite

Info

Publication number
JPS6037045B2
JPS6037045B2 JP53089342A JP8934278A JPS6037045B2 JP S6037045 B2 JPS6037045 B2 JP S6037045B2 JP 53089342 A JP53089342 A JP 53089342A JP 8934278 A JP8934278 A JP 8934278A JP S6037045 B2 JPS6037045 B2 JP S6037045B2
Authority
JP
Japan
Prior art keywords
pyrographite
core metal
core
hydrocarbon liquid
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53089342A
Other languages
Japanese (ja)
Other versions
JPS5515977A (en
Inventor
潔 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoue Japax Research Inc
Original Assignee
Inoue Japax Research Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoue Japax Research Inc filed Critical Inoue Japax Research Inc
Priority to JP53089342A priority Critical patent/JPS6037045B2/en
Publication of JPS5515977A publication Critical patent/JPS5515977A/en
Publication of JPS6037045B2 publication Critical patent/JPS6037045B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、パィログラフアィト(グラフアィトであって
高い硬度を有する積層体をいう。
DETAILED DESCRIPTION OF THE INVENTION The present invention refers to a laminate made of pyrographite (graphite) and having high hardness.

)の製造を炭化水素液中で芯金を用いて行う方法に関す
る。従来、パィログラフアィトの製造法としては、通常
、真空炉中で高温度、例えば2500qoに、長時間、
例えば20加持間ほどに加熱した炭化水素気体を炉内物
質表面に吹きつけて気体から析出した炭素を積層させる
方法で行われてきた。
) in a hydrocarbon liquid using a cored metal. Conventionally, the method for producing pyrographite is to process it in a vacuum furnace at a high temperature, e.g. 2500 qo, for a long period of time.
For example, this has been carried out by blowing hydrocarbon gas heated for about 20 hours onto the surface of the material in the furnace, and depositing carbon deposited from the gas.

また他の方法として、電界または電界と磁界中に設けた
加熱グラフアィトに炭化水素気体を吹き付け、気体中の
炭素を析出さして分離して加熱グラフアィト上に沈着積
層するものが提案かれ行われてきた。これら、気体中の
析出法では、多少とも、設備が大容積を占め、高温で長
時間を要し、電界または電界と磁界中で行う前記方法で
も、析出速度を充分高めることはできなかった。このた
め従来から、より短時間に比較的低温で行い、その際に
高温で発生する再分解による損失を防止し、気体中で行
わないで、高生産性で高効率の製造を可能にする方法が
求められ、期待されてきた。本発明は、従来法の前記事
情に関し、より安定し、より低温と短時間で、パィログ
ラフアィトを製造する方法を提供することを目的とする
Another method has been proposed and practiced in which a hydrocarbon gas is sprayed onto heated graphite provided in an electric field or an electric and magnetic field, and carbon in the gas is precipitated and separated, and then deposited and laminated on the heated graphite. These deposition methods in a gas require a large volume of equipment and require a long time at high temperatures, and even the methods described above, which are performed in an electric field or an electric field and a magnetic field, have not been able to sufficiently increase the deposition rate. For this reason, conventional methods have been developed that enable high-productivity and high-efficiency manufacturing by performing the process in a shorter time and at a relatively low temperature, preventing loss due to re-decomposition that occurs at high temperatures, and not performing the process in gas. has been sought and expected. The present invention relates to the above-mentioned circumstances of the conventional method, and an object of the present invention is to provide a method for producing pyrographite more stably, at a lower temperature, and in a shorter time.

また炭化水素液を気化しないで液中で任意の芯金に析出
する方法を提供し、比較的小容量で、高生産性と設備効
率の高い製造法を提供することを目的とする。次に本発
明の概要を述べる。
Another object of the present invention is to provide a method for depositing a hydrocarbon liquid onto an arbitrary core metal in the liquid without vaporizing it, and to provide a manufacturing method with relatively small capacity, high productivity, and high equipment efficiency. Next, an outline of the present invention will be described.

第1図は、本発明の方法による製造の系統配置図を示し
た。炭化水素液槽10は、配置13をもって、反応器1
の液排出ロー1に連結し、ポンプ14と配管13Aをも
って液送入口12に連結し、本発明のパィログラファィ
ト析出用の炭化水素液循還と液調節のために反応器1の
内腔2に付設し、所定量の液を所定の時に使用可能にす
る。反応器1内に炭化水素液を充填する。反応器の外部
に、反応器と絶縁した加熱部9を設け、加熱コイル8を
装着し、通電回路6と加熱用高周波電源7を設け、外部
から高周波誘導加熱を可能にする。なお油槽10または
配管13,13Aを通電またはその他の加熱方法で、炭
化水素を反応容易な適当な温度を加熱することができる
。反応器1の内腔2には、モータ5、駆動軸4に鯛袋し
てあり、液中を所定の速度で所定の時間回転する芯金3
が設けられる。支持部15,16をもって駆動軸4が装
架される。芯金3は前記コイル8による高周波誘導加熱
によって所要の温度に加熱制御される。反応器1内に充
填した炭化水素液に、ケロシンを用い、タングステン製
の第1図に例示した形状の芯金3を用い、芯金の温度を
65500に保って、ケロシンは常温で反応容器1内に
充填し楯還して、芯金を回転して、芯金の外表面に析出
したパィログラフアィト量が厚さ150山′minの速
度で、芯金面に層をなした。
FIG. 1 shows a production system layout according to the method of the present invention. The hydrocarbon liquid tank 10 is connected to the reactor 1 with an arrangement 13.
It is connected to the liquid discharge row 1 of the reactor 1 and connected to the liquid inlet 12 with a pump 14 and piping 13A, and is connected to the inner cavity of the reactor 1 for circulation and liquid adjustment of the hydrocarbon liquid for pyrographite precipitation of the present invention. 2 to enable a predetermined amount of liquid to be used at a predetermined time. A reactor 1 is filled with a hydrocarbon liquid. A heating section 9 insulated from the reactor is provided outside the reactor, a heating coil 8 is attached thereto, and an energizing circuit 6 and a heating high-frequency power source 7 are provided to enable high-frequency induction heating from the outside. Note that the oil tank 10 or the pipes 13, 13A can be heated to an appropriate temperature at which the hydrocarbons can easily react by applying electricity or by other heating methods. In the lumen 2 of the reactor 1, there is a motor 5, a core metal 3 attached to the drive shaft 4, which rotates in the liquid at a predetermined speed for a predetermined time.
is provided. The drive shaft 4 is mounted with the support parts 15 and 16. The core metal 3 is heated and controlled to a required temperature by high frequency induction heating by the coil 8. Using kerosene in the hydrocarbon liquid filled in the reactor 1, using a tungsten core metal 3 having the shape illustrated in FIG. The core was filled in and shielded, and the core was rotated so that the amount of pyrographite precipitated on the outer surface of the core formed a layer on the surface of the core at a speed of 150 min.

このパィログラフアィトの特性は、常法の真空炉中に長
時間加熱した高温ガスを吹きこんで得たパィログラフア
イトと、同程度のものであった。炭化水素として用い得
る液は主として、パラフィン系、ナフテン系、アロマチ
ック系に大別される。
The properties of this pyrographite were comparable to those of pyrographite obtained by blowing high-temperature gas heated for a long time into a conventional vacuum furnace. Liquids that can be used as hydrocarbons are mainly classified into paraffinic, naphthenic, and aromatic.

これらは、プロパンの分解を第2図に、パラフィンの分
解を第3図に示したように、比較的高い温度で分解し、
ブタン、プロパン、プロピレン、エチレン、メタンなど
を、多く発生するようになる。この状態になって、パィ
ログラフアィト化する。したがって、分解温度としては
、多量の分解ガスが発生する。300〜800oo程度
の第2図と第3図の点線で示した温度範囲を、利用した
These decompose at relatively high temperatures, as shown in Figure 2 for the decomposition of propane and Figure 3 for the decomposition of paraffin.
Butane, propane, propylene, ethylene, methane, etc. will be generated in large quantities. In this state, it becomes pyrographic. Therefore, at the decomposition temperature, a large amount of decomposed gas is generated. The temperature range shown by the dotted line in FIGS. 2 and 3 of about 300 to 800 oo was utilized.

芯金としては、グラフアィト、炭化珪素、タングステン
、ニッケル、鉄、ニッケルクロム、白金ーニツケル、ニ
オブ、タンタル、モリブデン、ハフニゥムータンタル、
2けし、素モリブデン、2けい素タングステン、2けし
、素ニオブ、インコーネル、ハステロイなどを用いるこ
とができた。この作業過程において、パラフィンなどの
炭化水素液は、循還系槽10、管13,13Aなどに、
冷却する必要が生じた場合がある。液中の炭化水素の分
解に応じ、最適の温度条件を、加熱部9と誘導電流の制
御なども併用して、調節して行つoこれらの1運の実施
の結果を、在来のガス吹込方式と比較した場合、同量の
パィログラフアィトを、10ぴ音の速さで製造すること
ができ、芯金の周に積層した。
Core metals include graphite, silicon carbide, tungsten, nickel, iron, nickel chromium, platinum nickel, niobium, tantalum, molybdenum, hafnium tantalum,
2-Poppy, elementary molybdenum, 2-silicon tungsten, 2-Poppy, elementary niobium, inconel, hastelloy, etc. could be used. In this work process, hydrocarbon liquid such as paraffin is transferred to the circulation system tank 10, pipes 13, 13A, etc.
There may be a need for cooling. Depending on the decomposition of hydrocarbons in the liquid, the optimal temperature conditions are adjusted by controlling the heating section 9 and the induced current. When compared to the blowing method, the same amount of pyrographite could be produced at a speed of 10 ps and laminated around the core metal.

なお芯金は任意の形状体、部品を使用することができ、
表層に均一に高スピードでパィログラファィトの積層が
できる。芯金の加熱は誘導加熱以外の直接伝導加熱、間
接的な韓射加熱等が任意に利用できる。すでに述べたよ
うに、本発明の、任意の材質と形状をした芯金を、直接
または間接に加熱可能にし、炭化水素液を適当な分解温
度、比較的低温に加熱し、温度を制御して、反応器に通
電し高周波誘導電流を通し、芯金を回転して、パィログ
ラフアイトを、高生産性をもつて得ることができ、ガス
体を加熱吹込をする方法を用いる場合に比較して、設備
容積も比較的小容量で行うことができ、高効率である。
Note that any shape or part can be used for the core metal.
A layer of pyrographite can be layered uniformly on the surface layer at high speed. For heating the core metal, any method other than induction heating, such as direct conduction heating or indirect Korean radiation heating, can be used. As already mentioned, the core metal of the present invention made of any material and shape can be directly or indirectly heated, and the hydrocarbon liquid can be heated to an appropriate decomposition temperature and a relatively low temperature, and the temperature can be controlled. By energizing the reactor to pass a high-frequency induced current and rotating the core metal, pyrographite can be obtained with high productivity, compared to the method of heating and blowing a gas body. Therefore, the equipment capacity can be relatively small and the efficiency is high.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の1実施例の実施する方法を示した断面
図。 第2図はパラフィンのプロパン分解温度と生成ガスモル
数の関係図。第3図はパラフィンの分解温度とガス組成
を示す関係図。CH4……メタン、C3日8…・・・プ
ロパン、C2比……アセチレン、C2日6・”…ェタン
、C3比……プロピレン、1・・・・・・反応器、4・
・・・・・軸、3・・・・・・芯金、5・…・・モータ
、10・・・・・・炭化水素液槽、15,16…・・・
鞠支持部、13,13A・・・・・・配管、11・・・
…液排出口、12・・・・・・液注入口、8・・・・・
・コイル、6・・・・・・電源回路、9・・・・・・加
熱用高周波電源、14“”“ポンプ。 第1図 第2図 第3図
FIG. 1 is a sectional view showing a method of carrying out one embodiment of the present invention. Figure 2 is a diagram showing the relationship between the propane decomposition temperature of paraffin and the number of moles of gas produced. FIG. 3 is a relationship diagram showing the decomposition temperature of paraffin and gas composition. CH4...methane, C3 day 8...propane, C2 ratio...acetylene, C2 day 6...ethane, C3 ratio...propylene, 1...reactor, 4.
...shaft, 3 ... core metal, 5 ... motor, 10 ... hydrocarbon liquid tank, 15, 16 ...
Ball support part, 13, 13A... Piping, 11...
...Liquid outlet, 12...Liquid inlet, 8...
・Coil, 6... Power supply circuit, 9... High frequency power supply for heating, 14 """ pump. Fig. 1 Fig. 2 Fig. 3

Claims (1)

【特許請求の範囲】 1 任意の形状の芯金を用いてその表層にパイログラフ
アイトを積層させる製造方法において、パイログラフア
イト析出用に充填した炭化水素液の反応器中の所定の個
所に前記芯金を配装し、前記炭化水素液を循還しながら
前記芯金を直接加熱する段階もしくは芯金を外部から間
接的に加熱する段階を行つて、前記任意の形状の芯金の
表層にパイログラフアイトを析出積層することを特徴と
したパイログラフアイトの製造法。 2 芯金を炭化水素液中で回転しながらパイログラフア
イトを表層全体に均一に積層させることを特徴とした特
許請求の範囲第1項に記載のパイログラフアイトの製造
法。 3 炭化水素液としてパラフイン系、ナフテン系、アロ
マチツク系を用い、この液中の浸漬した芯金の加熱温度
を300〜800℃に温度制御してパイログラフアイト
の積層を行うことを特徴とした特許請求の範囲第1項に
記載のパイログラフアイトの製造法。
[Scope of Claims] 1. In a manufacturing method in which pyrographite is laminated on the surface layer of a core metal having an arbitrary shape, the above-mentioned method is applied to a predetermined location in a reactor filled with a hydrocarbon liquid for pyrographite precipitation. Arranging a core metal and heating the core metal directly or indirectly heating the core metal from the outside while circulating the hydrocarbon liquid, the surface layer of the core metal having an arbitrary shape is heated. A method for producing pyrographite, characterized by depositing and layering pyrographite. 2. The method for producing pyrographite according to claim 1, which comprises uniformly layering pyrographite over the entire surface layer while rotating the core bar in a hydrocarbon liquid. 3. A patent characterized in that a paraffinic, naphthenic, or aromatic hydrocarbon liquid is used, and the heating temperature of the metal core immersed in the liquid is controlled to 300 to 800°C to stack pyrographicite. A method for producing pyrographite according to claim 1.
JP53089342A 1978-07-24 1978-07-24 Production method of pyrographite Expired JPS6037045B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53089342A JPS6037045B2 (en) 1978-07-24 1978-07-24 Production method of pyrographite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53089342A JPS6037045B2 (en) 1978-07-24 1978-07-24 Production method of pyrographite

Publications (2)

Publication Number Publication Date
JPS5515977A JPS5515977A (en) 1980-02-04
JPS6037045B2 true JPS6037045B2 (en) 1985-08-23

Family

ID=13968015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53089342A Expired JPS6037045B2 (en) 1978-07-24 1978-07-24 Production method of pyrographite

Country Status (1)

Country Link
JP (1) JPS6037045B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0712924B2 (en) * 1987-03-17 1995-02-15 シャープ株式会社 Powdery highly crystalline graphite containing iron group element or alloy containing it
JP2013023746A (en) * 2011-07-23 2013-02-04 Toshiyuki Onishi Method for forming graphite on metal surface

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4939398A (en) * 1972-08-12 1974-04-12

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4939398A (en) * 1972-08-12 1974-04-12

Also Published As

Publication number Publication date
JPS5515977A (en) 1980-02-04

Similar Documents

Publication Publication Date Title
KR100382879B1 (en) Method of synthesizing carbon nanotubes and apparatus being used therein.
US6896738B2 (en) Induction heating devices and methods for controllably heating an article
RU2410851C2 (en) Device for sealing porous material
US3172774A (en) Method of forming composite graphite coated article
CN101072900B (en) CVD reactor comprising an rf-heated treatment chamber
WO2017192047A1 (en) Apparatus and method for large-scale production of graphene
JPH04232274A (en) Coating method of drill with cvd diamond
JPH01225775A (en) Formation of ceramic coating film on inner surface of tubular material
JPS6037045B2 (en) Production method of pyrographite
US3458341A (en) Metal boride-metal carbide-graphite deposition
US3167449A (en) Method of forming carbon coating
JP2010269982A (en) Method for manufacturing carbon nanotube assembly
JPS6256234B2 (en)
CN109518275A (en) A kind of method of uniform distribution of temperature field degree during raising silicon carbide monocrystal growth
US3127641A (en) Tungsten tube manufacture
JP2807790B2 (en) Photoconductor production method
WO2000007752A1 (en) An improved continuous casting mold system and related processes
JPH0417887B2 (en)
JPS62202898A (en) Production of diamond film
Panarin et al. On the analogy of physical and chemical processes of the directed growth of crystals and carbon nanotubes
EP2597068B1 (en) Micro coil manufacturing method and manufacturing device thereof
Iwasaki et al. Synthesis of Nitrogen‐doped Carbon Nanocoils via One‐step Acetonitrile Catalytic CVD using a Ni‐F e Layered Double Hydroxide as Catalyst Precursor
JPS6184375A (en) Chemical vapor deposition method
US1010866A (en) Process of making composite conductors.
US1968154A (en) Process for the production of diphenyl