JPH0712924B2 - Powdery highly crystalline graphite containing iron group element or alloy containing it - Google Patents

Powdery highly crystalline graphite containing iron group element or alloy containing it

Info

Publication number
JPH0712924B2
JPH0712924B2 JP62063229A JP6322987A JPH0712924B2 JP H0712924 B2 JPH0712924 B2 JP H0712924B2 JP 62063229 A JP62063229 A JP 62063229A JP 6322987 A JP6322987 A JP 6322987A JP H0712924 B2 JPH0712924 B2 JP H0712924B2
Authority
JP
Japan
Prior art keywords
graphite
nickel
highly crystalline
iron group
group element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62063229A
Other languages
Japanese (ja)
Other versions
JPS63230512A (en
Inventor
友成 鈴木
和田  弘
芳和 好本
勝 吉田
重夫 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP62063229A priority Critical patent/JPH0712924B2/en
Publication of JPS63230512A publication Critical patent/JPS63230512A/en
Publication of JPH0712924B2 publication Critical patent/JPH0712924B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は鉄族元素またはそれを含む合金を含有した粉末
状高結晶性黒鉛に関し、さらに詳しくは黒鉛層間化合物
を形成するに十分な高結晶性を有し、表面積が大きい粉
末状で、かつ、含有する鉄族金属により磁場中で強磁性
体的挙動を示す粉末状高結晶性黒鉛に関する。
Description: TECHNICAL FIELD The present invention relates to powdery highly crystalline graphite containing an iron group element or an alloy containing the same, and more particularly, to a highly crystalline material having a high crystallinity sufficient to form a graphite intercalation compound. The present invention relates to a powdery highly crystalline graphite having a large surface area and exhibiting a ferromagnetic behavior in a magnetic field due to an iron group metal contained therein.

従来の技術 層状構造のよく発達した高結晶性黒鉛は、その層間に種
々の原子種または分子種を規則正しく取り込むことによ
り、黒鉛層間化合物を形成し、その利用価値は高い。こ
のような高結晶性黒鉛は天然にも産出するがその産出量
は僅かである。
2. Description of the Related Art Highly crystalline graphite with a well-developed layered structure forms a graphite intercalation compound by regularly incorporating various atomic species or molecular species between its layers, and its utility value is high. Such highly crystalline graphite is naturally produced, but its production is small.

一方、人工合成によって得られる黒鉛の中で、層間化合
物を形成するに十分な高結晶性を有するものとしては、
メタン等の有機物の熱分解により得られた熱分解炭素を
高圧下の熱処理によって高配向化させた高配向化熱分解
黒鉛(HOPG)、鉄(Fe)溶液中からの再結晶法により合
成するキッシュ黒鉛および高分子繊維を高温処理するこ
とによって得られる繊維状炭素が知られているが、これ
らの高結晶性黒鉛の形態はそれぞれ板(あるいは膜)
状、鱗片状もしくは繊維状である。
On the other hand, among graphites obtained by artificial synthesis, those having high crystallinity sufficient to form an intercalation compound include:
Highly oriented pyrolytic graphite (HOPG) in which pyrolytic carbon obtained by thermal decomposition of organic matter such as methane is highly oriented by heat treatment under high pressure, and quiche synthesized by recrystallization from iron (Fe) solution Fibrous carbon obtained by subjecting graphite and polymer fibers to high temperature treatment is known, but the form of these highly crystalline graphites is plate (or film), respectively.
It is scaly, scaly or fibrous.

発明が解決しようとする問題点 黒鉛層間化合物の応用には種々の用途が考えられてお
り、たとえば金属塩化物−黒鉛層間化合物やアルカリ金
属−黒鉛層間化合物は各種の化学反応の触媒として用い
ることができる。またアルカリ金属−黒鉛層間化合物は
水素貯蔵あるいは水素同位体の濃縮に用いることができ
る。これら触媒、水素貯蔵、水素同位体濃縮などの応用
を考える場合、黒鉛の形態としては上記板状、鱗片状あ
るいは繊維状よりもより表面積の大なる粉末状であるほ
うが上記の機能を増大するものと期待される。しかし、
従来の方法では得られる高結晶性黒鉛は前記のように粉
末状ではないため、現在の技術では、粉砕という機械的
工程を経ずに粉末状高結晶性黒鉛を製造することは不可
能である。しかも得られた粉末状黒鉛は粒径が均一でな
いという欠点がある。
Problems to be Solved by the Invention Various applications have been considered for application of graphite intercalation compounds, and for example, metal chloride-graphite intercalation compounds and alkali metal-graphite intercalation compounds can be used as catalysts for various chemical reactions. it can. Further, the alkali metal-graphite intercalation compound can be used for hydrogen storage or hydrogen isotope concentration. When considering applications for these catalysts, hydrogen storage, hydrogen isotope enrichment, etc., the form of graphite increases the above functions when it is in the form of powder having a larger surface area than the plate, scale or fiber. Is expected. But,
Since the highly crystalline graphite obtained by the conventional method is not in the powder state as described above, it is impossible to produce the powdery highly crystalline graphite without the mechanical step of pulverization by the present technology. . Moreover, the obtained powdery graphite has a drawback that the particle size is not uniform.

また黒鉛および黒鉛層間化合物は上記の触媒以外にもた
とえば導電性材料としての応用が可能である。そのよう
に応用するにあたっては黒鉛および黒鉛層間化合物が大
きな磁化率を有すれば、それらの担持・移動を磁場を介
して行い得るという利点が生じる。しかしながら黒鉛お
よび黒鉛層間化合物はごく一部の黒鉛層間化合物を除
き、一般的には弱磁性体であり、これらを強磁性体にす
る方法はいまだに知られていない。
Further, the graphite and the graphite intercalation compound can be applied, for example, as a conductive material other than the above catalyst. In such application, if the graphite and the graphite intercalation compound have a large magnetic susceptibility, there is an advantage that they can be supported and moved through a magnetic field. However, the graphite and the graphite intercalation compound are generally weak magnetic substances except for a small part of the graphite intercalation compound, and a method for making them ferromagnetic is not yet known.

本発明の目的は鉄族金属またはそれを含む合金を含有す
る新規な黒鉛を提供することにあり、同黒鉛は層間化合
物を形成するに十分な高結晶性を有し、また強磁性を有
する粉末状であって、粉砕工程を経ずして合成すること
が可能である。
An object of the present invention is to provide a novel graphite containing an iron group metal or an alloy containing the same, which graphite has a sufficiently high crystallinity to form an intercalation compound and is a powder having a ferromagnetism. It can be synthesized without a grinding process.

問題点を解決するための手段 本発明による新規な黒鉛は、鉄族元素またはそれを含む
合金を有する粉末状高結晶性黒鉛であって、鉄族元素ま
たはそれを含む合金の発泡状メタルまたは粉末を堆積生
成用基材として用い、前記基材上で炭化水素化合物を化
学気相堆積法によって熱分解して製造された20emu/g〜5
0emu/gの磁化率を有することを特徴とする。
Means for Solving the Problems The novel graphite according to the present invention is a powdery highly crystalline graphite having an iron group element or an alloy containing the same, which is a foamed metal or powder of an iron group element or an alloy containing the same. 20 emu / g to 5 produced by pyrolyzing a hydrocarbon compound on the above substrate by a chemical vapor deposition method.
It is characterized by having a magnetic susceptibility of 0 emu / g.

鉄族元素とはニッケル、鉄およびコバルトであり、それ
らを含む合金(例えばニッケル・クロム合金)も本発明
で使用可能である。以下、これらの金属を含有金属と記
す。含有金属は発泡状または粉末状のものが使用され
る。発泡状とは、いわゆるスポンジ状のものを意味し、
空孔率75%〜99%、好ましくは85%以上のものを用い
る。熱分解反応で炭素原子を生成するための出発物質で
ある炭化水素化合物として、たとえば置換基を有してい
てもよい脂肪族炭化水素、不飽和炭化水素、芳香族炭化
水素、脂環式炭化水素、好ましくは置換基を有していて
もよい不飽和炭化水素、芳香族炭化水素、脂環式炭化水
素が使用される。これらはいずれも約1000℃で熱分解さ
れうる化合物であり、具体的にはヘキサン、アセチレ
ン、アクリロニトリル、1.2−ジブロモエチレン、ベン
ゼン、トルエン、ピリジン、アニリン、フェノール、ジ
フェニル、アントラセン、ピレン、ヘキサメチルベンゼ
ン、スチレン、アリルベンゼン、ピロール、チオフェ
ン、シクロヘキサン等があげられる。
The iron group elements are nickel, iron and cobalt, and alloys containing them (for example, nickel-chromium alloy) can also be used in the present invention. Hereinafter, these metals will be referred to as containing metals. The contained metal is used in the form of foam or powder. Foamed means what is called a sponge,
A porosity of 75% to 99%, preferably 85% or more is used. As a hydrocarbon compound which is a starting material for generating a carbon atom in a thermal decomposition reaction, for example, an aliphatic hydrocarbon which may have a substituent, an unsaturated hydrocarbon, an aromatic hydrocarbon, an alicyclic hydrocarbon Unsaturated hydrocarbons, aromatic hydrocarbons and alicyclic hydrocarbons which may have a substituent are preferably used. All of these are compounds that can be thermally decomposed at about 1000 ° C., and specifically, hexane, acetylene, acrylonitrile, 1.2-dibromoethylene, benzene, toluene, pyridine, aniline, phenol, diphenyl, anthracene, pyrene, hexamethylbenzene. , Styrene, allylbenzene, pyrrole, thiophene, cyclohexane and the like.

ニッケル(Ni)コバルト(Co)および鉄(Fe)は種々の
有機物分子の熱分解反応に対する触媒作用を示し、とく
にこれらの金属はその表面に堆積する黒鉛の高結晶化を
促進する作用を有することが知られている。以下に含有
金属のうちニッケルを例にして本発明の反応機構を説明
する。
Nickel (Ni) Cobalt (Co) and Iron (Fe) act as catalysts for the thermal decomposition reaction of various organic molecules, and in particular, these metals have the effect of promoting high crystallization of graphite deposited on the surface. It has been known. The reaction mechanism of the present invention will be described below by taking nickel among the contained metals as an example.

ニッケル中への炭素の溶解度は大きく、1000℃前後で0.
8〜1.2atomic%という高い値を示す。したがって炭化水
素化合物を出発物質とした1000℃前後における熱分解化
学気相堆積(いわゆるCVD、以下CVDと記す)法におい
て、ニッケルを堆積生成用基材として用いると、高反応
速度の熱分解反応により生成した炭素原子が高結晶性黒
鉛として上記基材表面に堆積するとともに、同時に生成
した炭素原子のニッケル基材中への拡散・溶解が生じ
る。
The solubility of carbon in nickel is large, and it is 0 at around 1000 ° C.
A high value of 8 to 1.2 atomic% is shown. Therefore, in a thermal decomposition chemical vapor deposition (so-called CVD, hereinafter referred to as CVD) method at about 1000 ° C using a hydrocarbon compound as a starting material, when nickel is used as a base material for deposition, a high decomposition rate of the thermal decomposition reaction results. The generated carbon atoms are deposited as highly crystalline graphite on the surface of the base material, and at the same time, the generated carbon atoms are diffused / dissolved in the nickel base material.

ニッケル基材として発泡状、すなわちスポンジ状の形態
を有するニッケルを用いると、炭素原子のニッケル基材
中への拡散・溶解は、スポンジを形成するニッケル繊維
の機械的強度の低下をひきおこす。スポンジ状ニッケル
のニッケル繊維には適当な歪みがかかっているため、炭
素原子の拡散・溶解にともなう上記機械的強度の低下が
進行すると、ニッケル繊維の一部での折損が生じる。こ
の繊維の折損により黒鉛に覆われていないニッケル面が
露出すると、熱分解反応の反応速度が一層増大し、生成
する炭素量が増加するため、一箇所の折損から加速度的
に上記繊維の切断がひきおこされる。またニッケル繊維
の外側からの炭素の拡散のみならず、切断面を介して繊
維の内側からも炭素の拡散が起こるためにニッケル繊維
の細分化はさらに進行し、最終的にはニッケルを含有し
た粉末状高結晶性黒鉛が合成される。このニッケルを含
有した粉末状高結晶性黒鉛は、堆積生成用基材としてニ
ッケル粉末を用いても合成可能であり、この場合には上
記ニッケル粉末の粒径を変化させることにより、得られ
る粉末黒鉛の粒径を制御することができる。さらに、コ
バルト、鉄あるいはそれらもしくはニッケルを含む合金
を用いても同様の反応が生じる。これらの方法によって
生じた粉末状高結晶性黒鉛は、鉄族元素の粉末を含むた
め20emu/g〜50emu/gの高い磁化率を有する。
When nickel having a foamed form, that is, a sponge-like form is used as the nickel base material, diffusion / dissolution of carbon atoms into the nickel base material causes a decrease in mechanical strength of the nickel fiber forming the sponge. Since the nickel fiber of the sponge-like nickel is appropriately strained, if the mechanical strength is lowered due to the diffusion and dissolution of carbon atoms, a part of the nickel fiber is broken. When the nickel surface not covered with graphite is exposed due to the breakage of the fiber, the reaction rate of the thermal decomposition reaction is further increased and the amount of carbon produced is increased, so that the breakage of the above fiber is accelerated from one breakage. Triggered. Further, not only the diffusion of carbon from the outside of the nickel fiber, but also the diffusion of carbon from the inside of the fiber through the cut surface, further fragmentation of the nickel fiber further progresses, and finally the powder containing nickel. Highly crystalline graphite is synthesized. This powdery highly crystalline graphite containing nickel can also be synthesized by using nickel powder as a base material for deposit generation. In this case, the powdered graphite obtained by changing the particle size of the nickel powder is obtained. The particle size of can be controlled. Further, the same reaction occurs when cobalt, iron or an alloy containing them or nickel is used. The powdery highly crystalline graphite produced by these methods has a high magnetic susceptibility of 20 emu / g to 50 emu / g because it contains iron group element powder.

実施例 第1図は本発明の一実施例に用いられる装置の構成を示
すブロック図であり、熱分解CVD法による装置を示す。
EXAMPLE FIG. 1 is a block diagram showing the configuration of an apparatus used in an example of the present invention, showing an apparatus by a thermal decomposition CVD method.

次に第1図により、出発物質としてベンゼン、堆積生成
用基材としてニッケルを用いた場合の製造法の工程につ
いて説明する。
Next, referring to FIG. 1, the steps of the manufacturing method when benzene is used as a starting material and nickel is used as a base material for deposit formation will be described.

真空蒸留による精製操作を行なったベンゼンが収納され
たバブル容器1内にアルゴンガス制御系2からアルゴン
ガスを供給し、ベンゼンをバブルさせ、パイレックスガ
ラス管3を介して石英反応管4へベンゼン分子を給送す
る。この際バブル容器1内の液体ベンゼンの温度を一定
に保ち、アルゴンガスの流量をバルブ5で調節して、ベ
ンゼン分子の石英反応管4内への供給量を毎時数ミリモ
ルに制御する。一方、希釈ライン6よりアルゴンガスを
流し、石英反応管4へ給送される直前のガラス管3内に
おけるアルゴンガス中のベンゼンの分子数密度および流
量を最適化する。
Argon gas is supplied from an argon gas control system 2 into a bubble container 1 containing benzene which has been subjected to a purification operation by vacuum distillation, and benzene is bubbled to pass benzene molecules into a quartz reaction tube 4 through a Pyrex glass tube 3. To send. At this time, the temperature of the liquid benzene in the bubble container 1 is kept constant, the flow rate of the argon gas is adjusted by the valve 5, and the supply amount of benzene molecules into the quartz reaction tube 4 is controlled to several millimoles per hour. On the other hand, argon gas is flown from the dilution line 6 to optimize the molecular number density and flow rate of benzene in the argon gas in the glass tube 3 immediately before being fed to the quartz reaction tube 4.

石英反応管4には図示されていない堆積生成用基材の載
置された試料台7が配設されており、石英反応管4の外
周面には加熱炉8が設けられている。加熱炉8によって
石英反応管4内の上記堆積生成用基材は約1000℃の温度
に保持されている。ベンゼン分子が石英反応管4内に給
送されると、ベンゼン分子は石英反応管4内で熱分解
し、前記反応機構によって試料台7上には粉末状黒鉛が
生成される。石英反応管4内のガスは排気パイプ9を介
して排気系10へ導出され、石英反応管4から除去され
る。
The quartz reaction tube 4 is provided with a sample table 7 on which a substrate for deposition generation (not shown) is placed, and a heating furnace 8 is provided on the outer peripheral surface of the quartz reaction tube 4. The deposition production base material in the quartz reaction tube 4 is maintained at a temperature of about 1000 ° C. by the heating furnace 8. When the benzene molecules are fed into the quartz reaction tube 4, the benzene molecules are thermally decomposed in the quartz reaction tube 4, and powder graphite is produced on the sample table 7 by the reaction mechanism. The gas in the quartz reaction tube 4 is led to the exhaust system 10 via the exhaust pipe 9 and removed from the quartz reaction tube 4.

なお、本工程においてはアルゴンガスに代えて他の不活
性ガス、例えば窒素、ヘリウム等を使用できる。
In this step, other inert gas such as nitrogen or helium may be used instead of the argon gas.

上記製造工程において用いられる、炭化水素の供給条件
は一般に 供給速度0.1mmol/1hr〜8.0mmol/hr、 分子数密度1.0×108分子/cm3〜1.0×1019分子/cm3 流速0.1cm/min〜500cm/min である。熱分解温度は450℃〜1600℃、好ましくは、700
℃〜1200℃である。
The hydrocarbon feed conditions used in the above manufacturing process are generally: feed rate 0.1 mmol / 1 hr to 8.0 mmol / hr, molecular number density 1.0 × 10 8 molecule / cm 3 to 1.0 × 10 19 molecule / cm 3 flow rate 0.1 cm / min-500 cm / min. Pyrolysis temperature is 450 ℃ ~ 1600 ℃, preferably 700
℃ ~ 1200 ℃.

なお、上記第1図で示される装置においては、使用され
る炭化水素化合物の種類により異なるが、石英反応管4
への供給方法として例えばバブラー法、蒸発法または昇
華法を用いうる。供給量を多くするとスス状炭素堆積物
が生成され本発明の目的が達成されないので、毎時数ミ
リモル以下の供給量に制御される。
In the apparatus shown in FIG. 1, the quartz reaction tube 4 varies depending on the type of hydrocarbon compound used.
For example, a bubbler method, an evaporation method, or a sublimation method can be used as a method for supplying the liquid. If the supply amount is increased, soot-like carbon deposits are formed and the object of the present invention is not achieved. Therefore, the supply amount is controlled to several millimoles or less per hour.

本発明に係る黒鉛は、一般に粒径0.5〜10μmであり、
結晶子の大きさはC軸方向が約500Å〜1500Å、C軸に
垂直方向が約300Å〜約1000Åであり、ニッケル含有量
は約30〜400%、磁化率は約20emu/g〜約50emu/gであ
る。
The graphite according to the present invention generally has a particle size of 0.5 to 10 μm,
The crystallite size is about 500Å to 1500Å in the C-axis direction, about 300Å to about 1000Å in the direction perpendicular to the C-axis, the nickel content is about 30 to 400%, and the magnetic susceptibility is about 20 emu / g to about 50 emu / It is g.

実施例1 第1図の装置において、空孔率96%の発泡状ニッケル13
0mgを堆積生成用基材として用い、ベンゼンを3.8mmol/1
hrで供給して950℃で40分間熱分解を行なうと、420mgの
黒色粉末が得られた。
Example 1 In the apparatus shown in FIG. 1, nickel foam 13 having a porosity of 96% was used.
Using 0 mg as the base material for deposition generation, 3.8 mmol / 1 of benzene
When supplied for hr and pyrolyzed at 950 ° C. for 40 minutes, 420 mg of a black powder was obtained.

この粉末をCuKα線によるX線回折に付した結果を第2
図に示す。
The result of subjecting this powder to X-ray diffraction using CuKα rays is the second
Shown in the figure.

各回折ピークは図示するように、黒鉛の(002),(11
0),(004),(112)反射およびニッケルの(100),
(111),(200)で反射があり、これによって生成され
た粉末が黒鉛とニッケルとの混合物であることがわか
る。
As shown in the figure, each diffraction peak is (002), (11
0), (004), (112) reflection and nickel (100),
There is reflection at (111) and (200), and it can be seen that the powder generated by this is a mixture of graphite and nickel.

X線回折での黒鉛の(002)反射の回折ピークから、ブ
ラッグ式により面間隔dを求める。
From the diffraction peak of (002) reflection of graphite in X-ray diffraction, the interplanar spacing d is determined by the Bragg equation.

d=λ/2・sinθ(λ=1.5418Å) …(1) (ただしλは入射波長、θは回折角度を表わす。)得ら
れた(002)反射の平均面間隔は3.37Åであった。また
(002)反射および(110)反射の回折ピークの半値幅β
から次式 L=K・λ/β・cosθ (2) (ただしλ=1.5418Å、K=0.9)により求めたC軸方
向およびこれと垂直な方向の結晶子の大きさはそれぞれ
912Åおよび622Åであった。これにより得られた粉末黒
鉛は大きな結晶子より成る、層状構造のよく発達した高
結晶性黒鉛であることが判明した。
d = λ / 2 · sin θ (λ = 1.5418Å) (1) (where λ represents the incident wavelength and θ represents the diffraction angle) The average spacing of the (002) reflections obtained was 3.37Å. The full width at half maximum β of the diffraction peaks of (002) reflection and (110) reflection
From the following formula, L = K · λ / β · cosθ (2) (where λ = 1.5418Å, K = 0.9)
They were 912Å and 622Å. It was proved that the powdered graphite thus obtained was a highly crystalline graphite having a well-developed layered structure composed of large crystallites.

またこのようにして得られた粉末黒鉛を磁気天秤によっ
て測定した結果、その磁化率は45emu/gであった。さら
に、第3図に示されるように走査電子顕微鏡によりその
粒径が2.5〜3.5μmの均一な球状であることが判明し
た。
The magnetic susceptibility of the powdered graphite thus obtained was measured by a magnetic balance, and the magnetic susceptibility was 45 emu / g. Further, as shown in FIG. 3, it was found by scanning electron microscopy that the particles had a uniform spherical shape with a particle size of 2.5 to 3.5 μm.

実施例2 実施例1と同様の製造法で、粒径2.6〜3.3μmのニッケ
ル粉末を堆積生成用基材に用いて、60分間の熱分解反応
によって100mgのニッケル粉末から137mgのニッケルを含
有した粉末黒鉛が得られた。この場合の粉末粒径は3.0
〜4.0μmで、X線回折により調べた結晶性および磁気
天秤により測定した磁化率は実施例1と同様であった。
Example 2 In the same manufacturing method as in Example 1, nickel powder having a particle diameter of 2.6 to 3.3 μm was used as a base material for deposition generation, and 137 mg of nickel was contained from 100 mg of nickel powder by a thermal decomposition reaction for 60 minutes. A powdered graphite was obtained. The powder particle size in this case is 3.0
The crystallinity examined by X-ray diffraction and the magnetic susceptibility measured by a magnetic balance were the same as in Example 1 at ˜4.0 μm.

発明の効果 上記のように芳香族炭化水素化合物または不飽和炭化水
素化合物等の炭化水素化合物を出発物質とした熱分解化
学気相堆積(いわゆるCVD)法において、発泡状または
粉末状の形態を有する鉄族元素またはそれを含む合金を
堆積生成用基材として用いることにより、それら金属を
含有した高結晶性黒鉛粉体を合成することができる。本
発明に係る上記金属を含有した粉末状高結晶性黒鉛は、
粒径が均一化され、大なる表面積を有することにより高
い触媒活性等が期待し得る粉末状であり、また20emu/g
〜50emu/gの高い磁化率を有するので、磁場によって当
該粉末黒鉛の担持や移動を可能とする。
EFFECTS OF THE INVENTION As described above, in a pyrolysis chemical vapor deposition (so-called CVD) method using a hydrocarbon compound such as an aromatic hydrocarbon compound or an unsaturated hydrocarbon compound as a starting material, it has a foamed or powdered form. By using an iron group element or an alloy containing the same as a base material for deposit formation, a highly crystalline graphite powder containing these metals can be synthesized. Powdery highly crystalline graphite containing the above metal according to the present invention,
With a uniform particle size and a large surface area, it is a powder that can be expected to have high catalytic activity, etc.
Since it has a high magnetic susceptibility of up to 50 emu / g, it enables the powder graphite to be supported and moved by a magnetic field.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例1に用いられる装置の構成を示
すブロック図、第2図は同実施例によって得られた粉末
黒鉛のCuKα線によるX線回折を示す図、第3図は同実
施例によって得られた粉末黒鉛の走査電子顕微鏡像であ
る。 1…バブル容器、2…アルゴンガス制御系、3…パイレ
ックスガラス管、4…石英反応管、5…バルブ、6…希
釈ライン、7…試料台、8…加熱炉、9…排気パイプ、
10…排気系、11…粉末黒鉛
FIG. 1 is a block diagram showing the configuration of an apparatus used in Example 1 of the present invention, FIG. 2 is a diagram showing X-ray diffraction by CuKα line of powder graphite obtained in the same example, and FIG. 3 is the same. It is a scanning electron microscope image of the powdered graphite obtained by the example. 1 ... Bubble container, 2 ... Argon gas control system, 3 ... Pyrex glass tube, 4 ... Quartz reaction tube, 5 ... Valve, 6 ... Dilution line, 7 ... Sample stage, 8 ... Heating furnace, 9 ... Exhaust pipe,
10 ... Exhaust system, 11 ... Powder graphite

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉田 勝 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内 (72)発明者 中島 重夫 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内 (56)参考文献 特開 昭61−239019(JP,A) 特開 昭55−15977(JP,A) 特開 昭49−98786(JP,A) 特開 昭61−136992(JP,A) 特公 昭51−10185(JP,B1) 特公 昭49−43078(JP,B1) JOURNAL OF MATERIA LS SCIENCE 17(1982)P. 309〜322 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masaru Yoshida 22-22 Nagaike-cho, Abeno-ku, Osaka-shi, Osaka Within Sharp Corporation (72) Inventor Shigeo Nakajima 22-22 Nagaike-cho, Abeno-ku, Osaka-shi, Osaka Osaka (56) References JP 61-239019 (JP, A) JP 55-15977 (JP, A) JP 49-98786 (JP, A) JP 61-136992 (JP, A) JP-B-51-10185 (JP, B1) JP-B-49-43078 (JP, B1) JOURNAL OF MATERIA LS SCIENCE 17 (1982) P. 309-322

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】鉄族元素またはそれを含む合金の発泡状メ
タルまたは粉末を堆積生成用基材として用い、前記基材
上で炭化水素化合物を化学気相堆積法によって熱分解し
て製造され磁化率が20emu/g〜50emu/gであることを特徴
とする鉄族元素またはそれを含む合金を有する粉末状高
結晶性黒鉛。
1. Magnetization produced by thermally decomposing a hydrocarbon compound by a chemical vapor deposition method on a base material for deposit formation, which uses a foamed metal or powder of an iron group element or an alloy containing the iron group element. A powdery highly crystalline graphite having an iron group element or an alloy containing the same, characterized in that the rate is 20 emu / g to 50 emu / g.
JP62063229A 1987-03-17 1987-03-17 Powdery highly crystalline graphite containing iron group element or alloy containing it Expired - Fee Related JPH0712924B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62063229A JPH0712924B2 (en) 1987-03-17 1987-03-17 Powdery highly crystalline graphite containing iron group element or alloy containing it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62063229A JPH0712924B2 (en) 1987-03-17 1987-03-17 Powdery highly crystalline graphite containing iron group element or alloy containing it

Publications (2)

Publication Number Publication Date
JPS63230512A JPS63230512A (en) 1988-09-27
JPH0712924B2 true JPH0712924B2 (en) 1995-02-15

Family

ID=13223170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62063229A Expired - Fee Related JPH0712924B2 (en) 1987-03-17 1987-03-17 Powdery highly crystalline graphite containing iron group element or alloy containing it

Country Status (1)

Country Link
JP (1) JPH0712924B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0722018B2 (en) * 1988-03-04 1995-03-08 シャープ株式会社 Method of manufacturing graphite electrode
JPH02296710A (en) * 1989-05-10 1990-12-07 Idemitsu Kosan Co Ltd Production of carbonaceous magnetic material
TW423176B (en) * 1997-03-07 2001-02-21 Petoca Ltd Graphite material for use in negative electrode of lithium-ion secondary battery and process for producing the same
US6503660B2 (en) 2000-12-06 2003-01-07 R. Terry K. Baker Lithium ion battery containing an anode comprised of graphitic carbon nanofibers

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4943078A (en) * 1972-08-30 1974-04-23
JPS4998786A (en) * 1973-01-29 1974-09-18
JPS5110185A (en) * 1974-07-17 1976-01-27 Dainippon Ink & Chemicals EKISHOSOSEI BUTSU
JPS6037045B2 (en) * 1978-07-24 1985-08-23 株式会社井上ジャパックス研究所 Production method of pyrographite
EP0184317A3 (en) * 1984-12-04 1987-05-20 General Motors Corporation Graphite fibre growth employing nuclei derived from iron pentacarbonyl
US4855091A (en) * 1985-04-15 1989-08-08 The Dow Chemical Company Method for the preparation of carbon filaments

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JOURNALOFMATERIALSSCIENCE17(1982)P.309〜322

Also Published As

Publication number Publication date
JPS63230512A (en) 1988-09-27

Similar Documents

Publication Publication Date Title
Rodriguez A review of catalytically grown carbon nanofibers
Kumar et al. Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production
US7687109B2 (en) Apparatus and method for making carbon nanotube array
Dresselhaus et al. Synthesis of graphite fibers and filaments
Qin et al. Growing carbon nanotubes by microwave plasma-enhanced chemical vapor deposition
EP0555080B1 (en) Carbon composite electrode material
Mauron et al. Synthesis of oriented nanotube films by chemical vapor deposition
CN100526217C (en) Preparation method of quasi one-dimensional boron nitride nanostructure
CN101454241A (en) Method for preparing uniform single walled carbon nanotubes
CN101370734A (en) Carbon nanotubes functionalized with fullerenes
MXPA01002186A (en) Carbon media for storage of hydrogen.
CN1057869A (en) Isotopic pure single crystal epitaxial diamond films and preparation method thereof
Baker et al. The formation of filamentous carbon from decomposition of acetylene over vanadium and molybdenum
Song et al. Crystal Facet Engineering of Single‐Crystalline TiC Nanocubes for Improved Hydrogen Evolution Reaction
Wang et al. Growth mechanism of carbon nanotubes from Co-WC alloy catalyst revealed by atmospheric environmental transmission electron microscopy
Keller et al. Carbon nanotube formation in situ during carbonization in shaped bulk solid cobalt nanoparticle compositions
KR102001454B1 (en) The preparation method of multi-layer core-shell nano particles comprising porous carbon shell and core-shell nano particles thereby
JPH0712924B2 (en) Powdery highly crystalline graphite containing iron group element or alloy containing it
CN1448335A (en) Metal catalyst for low-temp. thermochemical gas-phase precipitation synthesis of carbon nanotubes and synthetic method of carbon nanotubes using the same
Mishakov et al. Interaction of chlorinated hydrocarbons with nichrome alloy: From surface transformations to complete dusting
Somorjai Surface science and catalysis
Ibrahimov et al. Ni-γ-Al 2 O 3 catalysts for obtaining nanocarbon by decomposition of natural gas
Wang et al. Mechanism of self-reaction evolution of Fe@ Al2O3 catalyst for growing carbon nanotube array
JPS63230513A (en) Powdery titanium carbide containing iron family element or alloy containing said element
Zhang et al. Temperature-sensitivity of CNTs growth from tar model compound over Ni/Al2O3 with and without hydrogen addition

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees