JPS6034021A - Protective film forming apparatus - Google Patents

Protective film forming apparatus

Info

Publication number
JPS6034021A
JPS6034021A JP58142551A JP14255183A JPS6034021A JP S6034021 A JPS6034021 A JP S6034021A JP 58142551 A JP58142551 A JP 58142551A JP 14255183 A JP14255183 A JP 14255183A JP S6034021 A JPS6034021 A JP S6034021A
Authority
JP
Japan
Prior art keywords
substrate
thin film
heater
gas
phosphosilicate glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58142551A
Other languages
Japanese (ja)
Inventor
Shinpei Iijima
飯島 晋平
Hidetomo Nojiri
秀智 野尻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Microcomputer System Ltd
Hitachi Ltd
Original Assignee
Hitachi Ltd
Hitachi Microcomputer Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Microcomputer Engineering Ltd filed Critical Hitachi Ltd
Priority to JP58142551A priority Critical patent/JPS6034021A/en
Publication of JPS6034021A publication Critical patent/JPS6034021A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • H01L21/02129Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC the material being boron or phosphorus doped silicon oxides, e.g. BPSG, BSG or PSG

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)

Abstract

PURPOSE:To avoid the generation of an oxide on the surface of a thin film formed on a heated substrate by a chemical vapor phase deposition method by a method wherein a density of oxygen in the atmosphere on the substrate is so controlled by inert gas such as nitrogen, argon and helium as not to exceed 20ppm from the beginning of the substrate heating till the thin film formation. CONSTITUTION:A plurality of semiconductor substrates 1 on which layers of high melting point metal such as W and Mo are formed are put on flat surface parts of an endless belt 6 moved by a driving source 8 and PSG films are formed on them. A pre-heater 30 and main heaters 31 and 32 are provided beneath the belt 6 along the direction of the transfer of the substrate 1 and SiH4 +PH3 and oxygen gas are spouted out from a gas nozzle 4 provided to the center to form a PSG film. A cover 7 with a piping 9 for spouting out a gas such as N2 is put on the belt above the heater 30 to maintain the temperature of the substrate not higher than 150 deg.C. The similar cover 7 is provided on the belt above the heater 32 of the latter stage to control the content of O2 not to exceed 20ppm.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は半導体集積回路の製造工程における保護膜形成
方法に係シ、特にタングステンやモリブデンなどの低温
で酸化されやすい物質の上にそれらの酸化膜を成長させ
ることなく燐硅酸ガラスなどの保護膜を形成させるのに
好適な保護膜形成装置に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a method for forming a protective film in the manufacturing process of semiconductor integrated circuits, and particularly relates to a method for forming a protective film in the manufacturing process of semiconductor integrated circuits, and in particular, the invention relates to a method for forming a protective film in the manufacturing process of semiconductor integrated circuits. The present invention relates to a protective film forming apparatus suitable for forming a protective film such as phosphosilicate glass without growing it.

〔発明の背景〕[Background of the invention]

従来、半導体基板上に燐硅酸ガラスを被着する場合の最
も一般的な方法として以下に述べる方法が用いられてき
た。従来装置の概略図を第1図に示す。■試料台2が熱
源3によって400〜450℃に加熱されている状態で
半導体基板1を試料台2上に載置する。■ペルジャー1
0を閉じ、反応室11に残留している空気を窒素ガスに
よジ置換する。■キャリアガスを窒素としてモノシラン
(SIH4)、ホスフィン(PHs)、および酸素(0
2)を反応室4内に供給すると、半導体基板l上に燐硅
酸ガラスが堆積被着する。この方法は膜厚およびその均
一性の制御、あるいは被着したガラス膜中の燐濃度の制
御をガス流量の調整だけで容易に達成することができる
利点があるため半導体製造工程で欠かすこ1、とのでき
ない燐硅酸ガラスの被着方法として古くから用いられて
きた。しかし、従来は燐硅酸ガラスを被着する前の半導
体基板表面を構成する材料がSi酸化膜、Si窒化膜、
あるいは多結晶Siなどの既に酸化物になっているか、
あるいは450℃程度では酸化されない物質であったた
め上記被着方法で何らの問題も生じなかった。ところが
最近、高集積回路の高性能化の要求に伴なってその構成
材料のひとつとしてタングステンやモリブデンが用いら
れるようになり、それらの材料の上に燐硅酸ガラスを被
着する必要が生じてきた。ここで用いられるタングステ
ンやモリブデンは融点が各々3377℃、2617℃と
高く高温熱処理に耐えられるという優れた特徴がある反
面、非常に酸化されやすく空気中では150 ’c程度
の低温で表面が酸化され始め、その酸化物が高温熱処理
雰囲気にさらされると昇華。
Conventionally, the method described below has been used as the most common method for depositing phosphosilicate glass on a semiconductor substrate. A schematic diagram of a conventional device is shown in FIG. (2) The semiconductor substrate 1 is placed on the sample stand 2 while the sample stand 2 is being heated to 400 to 450° C. by the heat source 3. ■Pelger 1
0, and the air remaining in the reaction chamber 11 is replaced with nitrogen gas. ■ Monosilane (SIH4), phosphine (PHs), and oxygen (0
When 2) is supplied into the reaction chamber 4, phosphosilicate glass is deposited and adhered onto the semiconductor substrate l. This method is indispensable in the semiconductor manufacturing process because it has the advantage of being able to easily control the film thickness and its uniformity, or the phosphorus concentration in the deposited glass film by simply adjusting the gas flow rate. It has been used for a long time as a method for depositing phosphosilicate glass that cannot be coated. However, in the past, the materials constituting the surface of the semiconductor substrate before phosphosilicate glass were Si oxide film, Si nitride film,
Or is it already an oxide such as polycrystalline Si?
Alternatively, since the material was not oxidized at about 450° C., no problems occurred with the above deposition method. However, recently, with the demand for higher performance in highly integrated circuits, tungsten and molybdenum have been used as one of their constituent materials, and it has become necessary to coat phosphosilicate glass on top of these materials. Ta. The tungsten and molybdenum used here have high melting points of 3,377°C and 2,617°C, respectively, and are able to withstand high-temperature heat treatment, but on the other hand, they are extremely susceptible to oxidation and the surface oxidizes at temperatures as low as 150°C in air. Initially, when the oxide is exposed to a high-temperature heat treatment atmosphere, it sublimes.

再結晶などが行なわれ表面形態が変化し・その後の製造
工程における歩留シを著しく低減するという欠点がある
。したがって、タングステンやモリブデンの上に燐硅酸
ガラスを被着する場合においては、その表面に酸化物を
形成することなく燐硅酸ガラスを被着させる必要がある
。しかし、従来法では半導体基板を載置する時の試料台
温度は400〜450tの範囲で加熱されておシ、雰囲
気は空気であるため半導体基板上にタングステンなどが
形成されている場合には試料台に半導体基板を載置する
と同時にタングステン表面に酸化膜が成長し始める。し
たがって、従来法をその′fま適用してタングステンの
上に酸化物を形成させることなく燐硅酸ガラスを被着さ
せることは困難である。
There is a drawback that the surface morphology changes due to recrystallization and the like, which significantly reduces the yield in the subsequent manufacturing process. Therefore, when phosphosilicate glass is deposited on tungsten or molybdenum, it is necessary to deposit the phosphosilicate glass without forming an oxide on the surface. However, in the conventional method, the sample stage temperature when placing the semiconductor substrate is heated in the range of 400 to 450 t, and the atmosphere is air, so if tungsten etc. are formed on the semiconductor substrate, the sample As soon as the semiconductor substrate is placed on the table, an oxide film begins to grow on the tungsten surface. Therefore, it is difficult to apply conventional methods to the extent that phosphosilicate glass can be deposited on tungsten without forming an oxide.

〔発明の目的〕[Purpose of the invention]

本発明の目的はタングステンやモリブデンなどの高融点
金属の上に燐硅酸ガラスを被着堆積させる工程において
、それらの金属表面に酸化物を成長させることなく燐硅
酸ガラスを被着堆積させる方法ならびに装置を提供する
ことにある。
The object of the present invention is a method for depositing phosphosilicate glass on high-melting point metals such as tungsten and molybdenum without growing oxides on the metal surfaces. and to provide equipment.

〔発明の概要〕[Summary of the invention]

前記の高融点金属に燐硅酸ガラスを被着する際その金属
表面の酸化を防止する手段としては■ 試料台温度が4
00℃以上になっていても金属表面が酸化されないよう
に装置全体を窒素などの不活性ガス雰囲気内に設置する
When applying phosphosilicate glass to the above-mentioned high melting point metal, the method for preventing oxidation of the metal surface is as follows: ■ The sample stage temperature is 4.
The entire apparatus is installed in an inert gas atmosphere such as nitrogen so that the metal surface will not be oxidized even if the temperature exceeds 00°C.

■ 試料台温度を100 ’c以下の温度に保った状態
で半導体基板を載置し、少なくとも試料台の昇温開始時
点から燐硅酸ガラスを被着させ得る所定の温度に達し、
半導体基板上に燐硅酸ガラスが被着し始め、タングステ
ン表面が燐硅酸ガラスで保護されるまでの間のみ半導体
基板を空気に触れないようにする。
■ Place the semiconductor substrate while maintaining the sample stage temperature at 100'C or below, and reach a predetermined temperature at which phosphosilicate glass can be deposited at least from the time when the temperature of the sample stage begins to rise;
The semiconductor substrate is prevented from being exposed to air only until the phosphosilicate glass begins to adhere to the semiconductor substrate and the tungsten surface is protected by the phosphosilicate glass.

ことが考えられる。しかし、前記■の手段は装置自身が
大型で高価になシ・且つ安全性の点で問題があシ、実用
性の観点から前記■の手段が有効である。以下、実施例
によシ本発明をさらに詳述する。
It is possible that However, the method (2) described above requires the device itself to be large and expensive, and has problems in terms of safety; therefore, the method (2) described above is effective from the viewpoint of practicality. Hereinafter, the present invention will be explained in more detail with reference to Examples.

〔発明の実施例〕[Embodiments of the invention]

まず従来方法の1例を第2図によシ説明する。 First, an example of a conventional method will be explained with reference to FIG.

駆動源8によって移動するベルト6に固定された試料台
5の上に載置された半導体基板1が・モノシラン(Si
H4)、ホスフィン(PHs)および酸素(02)を試
料台上に供給するガスノズル4の下を通過する時に前記
ガス間の反応によって半導体基板1上に燐硅酸ガラスが
被着形成される。
A semiconductor substrate 1 placed on a sample stage 5 fixed to a belt 6 moved by a drive source 8 is made of monosilane (Si).
When passing under the gas nozzle 4 that supplies H4), phosphine (PHs), and oxygen (02) onto the sample stage, phosphosilicate glass is deposited on the semiconductor substrate 1 due to the reaction between the gases.

この従来方法では、半導体基板1が予熱ヒータ30の上
を通過してガスノズル4の下部に到達し燐硅酸ガラスが
半導体基板1上に被着形成されるまでの間に150℃以
上の空気雰囲気にさらされるために半導体基板1上のタ
ングステン表面は酸化される。これに対し第3図に示す
本発明では、予熱ヒータ30からガスノズル4までの、
試料台表面温度が100 ’c以上になる領域の空間を
カバー7で覆い、さらにカバー7内の空間における空気
の存在を極力抑えるために、たとえば窒素(N2)など
の不活性ガスを導入するための配管9をカバー7に接続
している。この配管9はカバー7内におけるどの位置で
も窒素が上から下へ向う流れが生じ・空気が滞留するこ
とのないようにカバー7に対する配管9の接続位置が均
等な間隔を保つように配置することが必要である。第4
図および第1表は上記状態で配管9からカバー7内に供
給する窒素(N2)の流量を種々変化させた時の半導体
基板表面における酸素濃度の経時変化と各窒素流量でカ
バー7内を通過させた時のタングステン表面の酸化膜形
成状態の比較をそれぞれ示したものである。
In this conventional method, the semiconductor substrate 1 passes over the preheater 30 and reaches the lower part of the gas nozzle 4, and the air atmosphere is heated to 150° C. or higher until the phosphosilicate glass is deposited on the semiconductor substrate 1. The tungsten surface on the semiconductor substrate 1 is oxidized due to exposure to the tungsten. On the other hand, in the present invention shown in FIG. 3, from the preheater 30 to the gas nozzle 4,
In order to cover the space in the area where the sample stage surface temperature is 100'C or more with the cover 7, and to further suppress the presence of air in the space inside the cover 7 as much as possible, an inert gas such as nitrogen (N2) is introduced. A pipe 9 is connected to the cover 7. The pipes 9 should be arranged so that the connection positions of the pipes 9 to the cover 7 maintain equal intervals so that nitrogen flows from top to bottom and air does not stagnate at any position within the cover 7. is necessary. Fourth
The figure and Table 1 show the change over time in the oxygen concentration on the semiconductor substrate surface when the flow rate of nitrogen (N2) supplied from the pipe 9 into the cover 7 is varied under the above conditions, and the flow of nitrogen (N2) passing through the cover 7 at each flow rate. This figure shows a comparison of the state of oxide film formation on the tungsten surface when the tungsten surface is heated.

第4図における窒素流量は最も少ない流量を1とした時
の比流量で表わし、第1表における○。
The nitrogen flow rate in FIG. 4 is expressed as a specific flow rate when the lowest flow rate is set to 1, and is indicated by ○ in Table 1.

×は燐硅酸ガラス被着後の製造工程において燐硅酸ガラ
スが剥離する場合を〉くで示し、剥離しない場合を○で
示している。すなわち、○の場合は燐硅酸ガラス被着時
にタングステン表面が酸化されていないか、酸化されて
いてもその後の製造工程に悪影響を与えないことを示し
ており、Xの場合はタングステン表面にタングステンの
酸化膜が形成されており、その後の製造工程に明らかに
悪影響を及ぼすことを示している。第4図および第1表
から明らかなようにタングステン表面に燐硅酸ガラスを
被着する工程において、タングステン表面の酸化を抑制
するためにはタングステン表面に燐硅酸ガラスが被着さ
れる前の予熱過程においてタングステンがさらされる雰
囲気中の酸素濃度を20 ppm以下に抑える必要があ
シ、第3図に示す如き試料台にカバーを備えた装置を用
いることにより上記酸素濃度の抑制を実現することがで
きる。
× indicates a case where the phosphosilicate glass peels off in the manufacturing process after adhering to the phosphosilicate glass, and a circle indicates a case where the phosphosilicate glass does not peel off. In other words, in the case of ○, the tungsten surface is not oxidized during the deposition of phosphosilicate glass, or even if it is oxidized, it does not have an adverse effect on the subsequent manufacturing process, and in the case of X, the tungsten surface is not oxidized. This shows that an oxide film was formed, which clearly had a negative effect on the subsequent manufacturing process. As is clear from Figure 4 and Table 1, in the process of depositing phosphosilicate glass on the tungsten surface, in order to suppress oxidation of the tungsten surface, it is necessary to It is necessary to suppress the oxygen concentration in the atmosphere to which tungsten is exposed during the preheating process to 20 ppm or less, and this can be achieved by using a device with a cover on the sample stage as shown in Figure 3. I can do it.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、タングステン表面に燐硅酸ガラスを形
成する工程において、タングステン表面に燐硅酸ガラス
が被着される前の予熱過程における雰囲気中の酸素濃度
を20 ppm以下に抑えることができるので燐硅酸ガ
ラス被着後の製造工程においてタングステンの加工性を
著しく低下させる原因となるタングステンの酸化物の形
成を抑制できる効果がある。なお対象となる材料はタン
グステンに限らずモリブデンでも同様の効果が得られる
。また、保護膜の材料についても燐硅酸ガラスに限らず
、450 ’c以下の比較的低温で形成する保@膜につ
いても同様の効果が得られる。
According to the present invention, in the step of forming phosphosilicate glass on the tungsten surface, the oxygen concentration in the atmosphere during the preheating process before the phosphosilicate glass is deposited on the tungsten surface can be suppressed to 20 ppm or less. Therefore, it has the effect of suppressing the formation of tungsten oxide, which causes a significant decrease in the workability of tungsten in the manufacturing process after the phosphosilicate glass is deposited. Note that the target material is not limited to tungsten; similar effects can be obtained with molybdenum. Further, the material of the protective film is not limited to phosphosilicate glass, and similar effects can be obtained with a protective film formed at a relatively low temperature of 450'c or less.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は従来方法による保護膜形成装置の
概略断面図、第3図は本発明による保護膜形成装置の断
面図、第4図は本発明による保護膜形成装置における窒
素の流量と酸素濃度の減少との関連を示す図、第1表は
窒素流量とタングステン表面の酸化の度合の比較を示す
表である。 1・・・半導体基板、2・・・試料台、3・・・ヒータ
、4・・・ガスノズル、5・・・試料台、6・・・ベル
ト、7・・・カバー、8・・・駆動源、9・・・配管、
1o・・・ペルジャー、11・・・反応室、30・・・
予熱ヒータ、31および32°°°′仰′す° 高橋明
夫 代理人 弁理士 吟母荊幸
1 and 2 are schematic cross-sectional views of a protective film forming apparatus according to the conventional method, FIG. 3 is a cross-sectional view of a protective film forming apparatus according to the present invention, and FIG. 4 is a flow rate of nitrogen in the protective film forming apparatus according to the present invention. Table 1 is a table showing a comparison between the nitrogen flow rate and the degree of oxidation of the tungsten surface. DESCRIPTION OF SYMBOLS 1... Semiconductor substrate, 2... Sample stand, 3... Heater, 4... Gas nozzle, 5... Sample stand, 6... Belt, 7... Cover, 8... Drive source, 9... piping,
1o...Pelger, 11...Reaction chamber, 30...
Preheating heater, 31 and 32°°°' up Akio Takahashi Patent attorney Ginbo Keiyuki

Claims (1)

【特許請求の範囲】 1、加熱された基板上に化学気相成長法によって薄膜を
形成する装置において、薄膜が形成される該基板が少な
くとも薄膜形成可能な温度まで加熱され始めてから、薄
膜形成可能な温度に達した後肢基板上に薄膜が形成され
始めるまでの工程で該基板表面上の雰囲気中における酸
素濃度が20 pI)m を超えないように制御する手
段を有することを特徴とする保護膜形成装置。 2 酸素濃度がz o ppmを超えないように制御す
る手段として窒素・アルゴン・ヘリウムなどの不活性ガ
スを供給する手段を設けたことを特徴とする特許請求の
範囲第1項記載の保護膜形成装置。
[Claims] 1. In an apparatus for forming a thin film on a heated substrate by chemical vapor deposition, the thin film can be formed after the substrate on which the thin film is formed starts to be heated to at least a temperature at which thin film formation is possible. A protective film characterized by having a means for controlling the oxygen concentration in the atmosphere on the surface of the substrate so that it does not exceed 20 pI)m in the process until a thin film starts to be formed on the hindlimb substrate that has reached a certain temperature. Forming device. 2. Protective film formation according to claim 1, characterized in that means for supplying an inert gas such as nitrogen, argon, helium, etc. is provided as a means for controlling the oxygen concentration so as not to exceed z o ppm. Device.
JP58142551A 1983-08-05 1983-08-05 Protective film forming apparatus Pending JPS6034021A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58142551A JPS6034021A (en) 1983-08-05 1983-08-05 Protective film forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58142551A JPS6034021A (en) 1983-08-05 1983-08-05 Protective film forming apparatus

Publications (1)

Publication Number Publication Date
JPS6034021A true JPS6034021A (en) 1985-02-21

Family

ID=15317973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58142551A Pending JPS6034021A (en) 1983-08-05 1983-08-05 Protective film forming apparatus

Country Status (1)

Country Link
JP (1) JPS6034021A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS635570A (en) * 1986-06-25 1988-01-11 Seiko Instr & Electronics Ltd Semiconductor non-volatile memory

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS635570A (en) * 1986-06-25 1988-01-11 Seiko Instr & Electronics Ltd Semiconductor non-volatile memory

Similar Documents

Publication Publication Date Title
JPS59179775A (en) Method and device for depositting tungsten silicide
US6117772A (en) Method and apparatus for blanket aluminum CVD on spherical integrated circuits
EP0164928A2 (en) Vertical hot wall CVD reactor
JPH04210476A (en) Formation of silicon carbide film
US6328804B1 (en) Chemical vapor deposition of metals on a spherical shaped semiconductor substrate
US5409540A (en) Chemical vapor phase growth method and chemical vapor phase growth apparatus
JPS6034021A (en) Protective film forming apparatus
JPH03183778A (en) Method and device for forming deposited film
JPS62263629A (en) Vapor growth device
JPH10177961A (en) Vapor growth device and method
JPS6010108B2 (en) Method for pyrolytically depositing silicon nitride onto a substrate
JPH0383894A (en) Gaseous phase growth device
JPH0585890A (en) Apparatus for forming thin film
US4486465A (en) Method for deposition on a semiconductor wafer
JPS6010621A (en) Depressurized epitaxial growing equipment
JP2511845B2 (en) Processing equipment for vapor phase growth
TWI840780B (en) Process for producing semiconductor wafers with epitaxial layer deposited from the gas phase in a deposition chamber
JP7315148B2 (en) CERAMICS, CERAMIC COATING METHOD, AND CERAMIC COATING APPARATUS
JPH0888187A (en) Equipment and method for vapor growth of semiconductor
JPH08274033A (en) Vapor growth method and device
WO2001033616A1 (en) Method and apparatus for thin film deposition
JPS61198628A (en) Selective growth method for tungsten film
JPH05144736A (en) Reduced-pressure vapor phase growth apparatus
JPS6372111A (en) Method for controlling temperature of semiconductor substrate
JPS62230981A (en) Formation of thin film