JPS6010108B2 - Method for pyrolytically depositing silicon nitride onto a substrate - Google Patents

Method for pyrolytically depositing silicon nitride onto a substrate

Info

Publication number
JPS6010108B2
JPS6010108B2 JP51139391A JP13939176A JPS6010108B2 JP S6010108 B2 JPS6010108 B2 JP S6010108B2 JP 51139391 A JP51139391 A JP 51139391A JP 13939176 A JP13939176 A JP 13939176A JP S6010108 B2 JPS6010108 B2 JP S6010108B2
Authority
JP
Japan
Prior art keywords
silicon nitride
furnace
substrate
ammonia
depositing silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51139391A
Other languages
Japanese (ja)
Other versions
JPS5265199A (en
Inventor
ジヨン・チヤールズ・ゴールドマン
ジエームズ・ブリアン・ブライス
ラリー・ドナルド・マツクミラン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Motorola Solutions Inc
Original Assignee
Motorola Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Motorola Inc filed Critical Motorola Inc
Publication of JPS5265199A publication Critical patent/JPS5265199A/en
Publication of JPS6010108B2 publication Critical patent/JPS6010108B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/345Silicon nitride

Description

【発明の詳細な説明】 本発明は加熱された基体上に窒化珪素を熱分解堆積(p
Molyticdeposition)する方法および
堆積した窒化珪素の均一フィルムを有する基体に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention involves the pyrolytic deposition (p-deposition) of silicon nitride on a heated substrate.
The present invention relates to a method for depositing silicon nitride onto a substrate having a uniform film of deposited silicon nitride.

特に、本発明はジクロルシランをアンモニアと排気シス
テム(evacuateds$tem)において反応さ
せて窒化珪素を堆積する方法に関する。窒化珪素(Si
3N4)は極めて硬く、熱伝導率が低く、かつ分子拡散
に対する抵抗性が高い繊密で化学的に不活性な誘電材料
である。これらの特性を有する窒化珪素は広範囲にわた
る用途の魅力的で、かつ価値のある材料である。かかる
材料は、例えば酸化マスク(o幻detionmark
s)、ビットストレージ(bitsのra群)用蓄電器
譲導体、マスキング層、ポリッシュレターダー(pol
ishretarde俺)等として半導体装置の製造に
用いられる。窒化珪素を堆積する種々の方法は知られて
いるが、しかし従来の方法はある用途において便利であ
るけれども、他の用途においては欠点が存在する。
In particular, the present invention relates to a method for depositing silicon nitride by reacting dichlorosilane with ammonia in an evacuated system. Silicon nitride (Si
3N4) is a dense, chemically inert dielectric material that is extremely hard, has low thermal conductivity, and is highly resistant to molecular diffusion. These properties make silicon nitride an attractive and valuable material for a wide range of applications. Such materials can be used, for example, as an oxidation mask.
s), capacitor conductor for bit storage (RA group of bits), masking layer, polished retarder (pol
It is used in the manufacture of semiconductor devices as ishretarde etc. Various methods of depositing silicon nitride are known, but while conventional methods are convenient in some applications, they have drawbacks in others.

例えば、経済的なプロセスにおいて良好な成長速度、均
一な堆積および高品位被膜を得るように窒化珪素を半導
体基体上に堆積することは極めて困難である。このため
に、通常はシランまたはジク。
For example, it is extremely difficult to deposit silicon nitride onto a semiconductor substrate in an economical process with good growth rates, uniform deposition, and high quality films. For this, usually silane or jiku.

ルシランをアンモニアと約1気圧の圧力で反応させて窒
化珪素を堆積している。しかしながら、これらの方法は
高価な装置を必要とすること、担体ガスを用いる必要が
あり全操作に経費を必要とすること、および単位時間に
通過する物質量(throu亀−pnt)が低いこと等
のために窒化珪素を半導体基体上に堆積するためには全
く満足するものではない。更にしこれらの方法において
は個々のウヱハーにおよびゥェハー/ゥェハーに均一厚
さに堆積することが困難である。C,V.○。
Silicon nitride is deposited by reacting Lucilan with ammonia at a pressure of about 1 atmosphere. However, these methods require expensive equipment, need to use a carrier gas and require expense for the entire operation, and have a low amount of material passed through per unit time (through-pnt). This is not entirely satisfactory for depositing silicon nitride onto semiconductor substrates. Furthermore, it is difficult with these methods to deposit a uniform thickness on individual wafers and wafer-to-wafer. C.V. ○.

第4回ィンタ…ナショナル コンフェレンスSECS,
261〜273(1973)「ケミカル ベーノぐ−デ
ボシイシヨソ イン アン エバキユエイテツドシステ
ム」にはシランおよびアンモニアを排気システムにおい
て反応させて窒化珪素をシリコンウェハー上に堆積させ
ることが記載している。しかしながら〜 この方法によ
って処理されたゥヱハーはその縁のまわりに窒化珪素の
厚いリングを有すると共にシリコンまたは窒化珪素ダス
ト(dust)およびボートしみ(■atmarks)
がウエハー上に付着することを確かめた。更に「最良の
結果を得らために炉におけるウェハーの大きさおよびス
べ町シングを堆積処理において均一にする必要がある。
本発明においてはi種の反応物としてジクロルシランを
用い〜かつ処理を真空中で実施することによって窒化珪
素の堆積に驚くべき予期しない結果が得られることを確
かめた。
4th International Conference SECS,
261-273 (1973), "Chemical Vacuum Debossing in an Evacuated System," describes the reaction of silane and ammonia in an evacuation system to deposit silicon nitride on silicon wafers. However, a wafer treated by this method will have a thick ring of silicon nitride around its edges and will contain silicon or silicon nitride dust and boat stains.
was confirmed to adhere to the wafer. Furthermore, ``wafer size and surface roughness in the furnace must be uniform during the deposition process for best results.
In the present invention, it has been found that by using dichlorosilane as the i-type reactant and carrying out the process in vacuum, surprising and unexpected results are obtained in the deposition of silicon nitride.

本発明の目的は室化珪素の熱分解堆積についての改良方
法を提供することにある。
It is an object of the present invention to provide an improved method for pyrolytic deposition of silicon nitride.

本発明の他の目的は単位時間に通過する物質量の高めら
れた窒化珪素の堆積のための経済的方法を提供すること
にある。
Another object of the invention is to provide an economical method for depositing silicon nitride with an increased amount of material passing through per unit time.

また、本発明の他の目的は従来の欠点を除去した窒化珪
素の均一連続被膜を形成する方法を堤供することにある
Another object of the present invention is to provide a method for forming a uniform continuous coating of silicon nitride that eliminates the drawbacks of the prior art.

また、本発明の他の目的は窒化珪素を堆積したシリコン
ゥェハーから作った鰻れた半導体装置を提供すること
にある。
Another object of the present invention is to provide a semiconductor device made from a silicon wafer deposited with silicon nitride.

本発明の方法はハロシランおよびアンモニアの混合物を
基体と真空中において高温度で薮蝕させることによって
拳化珪素を基体上に熱分解的に堆積することを特徴とす
る。
The method of the invention is characterized in that the silicon oxide is deposited pyrolytically on a substrate by agitating the substrate with a mixture of halosilane and ammonia at high temperatures in vacuum.

次に本発明を添付図面について説明する。The invention will now be described with reference to the accompanying drawings.

図面は後述するように所望温度に調節する熱抵抗コイル
亀2により加熱する管状炉(f雌雌cetu戊)を示す
。亀4で示すガスパネルは管状炉軍鶴の入口端に蓮通さ
せる。
The drawing shows a tubular furnace heated by a heat resistance coil mechanism 2 which adjusts the temperature to a desired temperature, as will be described later. The gas panel indicated by turtle 4 is connected to the inlet end of the gunkaku tubular furnace.

このガスパネルはジクロルシラン供給源包飯窒素供給源
亀鰭およびアンモニア供給源28を有し「 これらの供
給源からジクロルシラン、窒素およびアンモニアを開閉
弁22,24,28および281とより管状炉に導入す
る。ガスの流れは流量計の弁30, 92および34で
制御する。端カップ36を管状炉百81こ掛合させて炉
内を真空シールし「圧力を真空ゲージ38‘こよって読
み取る。排気48‘ま副生物および未反応出発材料を炉
から排出する役目をする。図に示すように管状炉鷲Qを
こは多数のシリコン ゥヱハー亀年を配置した石英ボー
ド42を導入する。シリコンゥヱハ−4恥ま第2図に示
すように石英ボート4乳こ垂直状態に配置し、シリコン
ゥェハーの広い表面を管状炉亀0の円筒軸に対して垂
直に位置する(石英ボード‘まウェハーホルダーと称す
ることができる)。ボート鰭2は第2図に示すようにウ
ヱノも−を保持するスロットを設けた三本の水平な石英
ロッドから構成されている。ゥェハm表面相互間の間隔
は5〜500ミルにするのが好ましくも1回の処理で多
量のゥヱバーを処理できるように調整することができる
。図面に示すゥェハーの配置状態は炉に対して最も有効
的であるけれども〜 これとは別の種々の配置状態を考
慮することができる。更に〜処理は異なるタイプの真空
装置で行うことがきる。本発明の方法を実施する場合に
は「先ず管状炉を特定のハロシランに対して適当な温度
に加熱しもかつ窒素で洗浄にする。
This gas panel has a dichlorosilane source, a nitrogen source, a tortoise fin source, and an ammonia source 28. From these sources, dichlorosilane, nitrogen, and ammonia are introduced into the tube furnace through on-off valves 22, 24, 28, and 281. The gas flow is controlled by flow meter valves 30, 92 and 34.The end cup 36 is engaged with the tube furnace to seal the furnace under vacuum and the pressure is read by the vacuum gauge 38'. It serves to discharge by-products and unreacted starting materials from the furnace.As shown in the figure, in the tube furnace, a quartz board 42 on which a number of silicon wafers are arranged is introduced. As shown in Figure 2, the quartz boat 4 is placed in a vertical position, and the wide surface of the silicon wafer is positioned perpendicular to the cylindrical axis of the tubular furnace (the quartz boat 4 can also be referred to as a wafer holder). The boat fin 2 consists of three horizontal quartz rods with slots that hold the fins as shown in Figure 2.The spacing between the wafer surfaces should be between 5 and 500 mils. Preferably, it can be adjusted so that a large amount of wafer can be processed in one process.Although the arrangement of the wafers shown in the drawing is the most effective for the furnace, there are various other arrangement states. In addition, the treatment can be carried out in different types of vacuum equipment.When carrying out the method of the invention, the tube furnace is first heated to a temperature appropriate for the particular halosilane. And clean with nitrogen.

次いでLシリコンゥヱルーを鯨遣したボートを炉内に導
入する。選択温度はシリコンを生成するジクロルシラン
の競争熱分解(competitjvethemald
ecomposjtion)を最少にしながら許容され
うる生長速度を与えるのに十分に高くする必要がある。
一般に、約650〜800ooの範囲の温度を用いる。
本発明の他の要旨は温度勾配を管状炉内に達成できるこ
とにある。
Next, a boat loaded with L silicone is introduced into the furnace. The selected temperature is determined by the competitive pyrolysis of dichlorosilane to produce silicon.
The growth rate must be high enough to give an acceptable growth rate while minimizing ecocomposition.
Generally, temperatures in the range of about 650 to 800 degrees are used.
Another aspect of the invention is that temperature gradients can be achieved within the tube furnace.

このため〜炉のガス入口端近〈における最低温度から炉
の反対端近くにおける最高温度にわたり〜 10000
まで〜好ましくは10〜5000の範囲で炉内にわたっ
て温度変化を与えることができる。本発明においては温
度勾配を利用することによってボートの均一降下および
堆積速度を最適に達成できることを確かめた。温度を高
くするのにつれて堆積速度および供給ガス消費を増加す
る。供給ガス消費はボート降下におけるウェバ一の均一
性を低下させる。高い堆積速度は生産性を増大させるた
めに望ましいから、この事が高温度において生ずる温度
勾配による供給ガス消費に対する補償とする。ボートを
炉内に導入し、かつ所望温度に達した後、50ミクロン
日夕、(0.050トル(または6.斑a))以下の真
空を達成する。
Therefore, from the lowest temperature near the gas inlet end of the furnace to the highest temperature near the opposite end of the furnace ~ 10,000
Temperature changes can be applied throughout the furnace in the range up to 10 to 5,000 °C. In the present invention, it has been determined that uniform lowering of the boat and deposition rate can be optimally achieved by utilizing a temperature gradient. Increasing the temperature increases the deposition rate and feed gas consumption. Supply gas consumption reduces web uniformity in boat lowering. Since high deposition rates are desirable to increase productivity, this compensates for feed gas consumption due to temperature gradients that occur at high temperatures. After the boat is introduced into the furnace and the desired temperature is reached, a vacuum of less than 50 microns (0.050 Torr (or 6.0 mm)) is achieved.

しかる後、アンモニアおよびジクロルシランを約300
ミリトルから約10トの範囲の圧力で炉内に供給する。
供給量を調節してアンモニア対ジクロルシランのモル比
を約1〜500:1にする。更に、またアンモニアは約
0.01〜10ccノsecの範囲の速度に調整して炉
内に供給し、またジクロルシランは約0.01〜約0.
5cc/secの範囲の速度に調整して炉内に供給され
る。これらの条件下における窒化珪素の生長は約5〜1
00A/分であることを確かめた。この処理は所望の厚
さがゥェハー上に堆積するまで継続させる。大部分半導
体に適用する場合には、200〜2000△の厚さの層
が必要とされるが、しかしこの本発明の方法は任意の厚
さの層を堆積することができる。本発明により形成され
た窒化珪素層は従来法により形成される層より優れてい
ることを確かめた。
After that, ammonia and dichlorosilane were added to about 300 ml of
It is fed into the furnace at a pressure ranging from millitorr to about 10 tons.
The feed rate is adjusted to give a molar ratio of ammonia to dichlorosilane of about 1 to 500:1. Furthermore, ammonia is fed into the furnace at a rate adjusted in the range of about 0.01 to 10 cc no.
It is supplied into the furnace at a speed adjusted in the range of 5 cc/sec. The growth of silicon nitride under these conditions is approximately 5-1
It was confirmed that the current was 00A/min. This process continues until the desired thickness is deposited on the wafer. For most semiconductor applications, a layer thickness of 200 to 2000 Δ is required, but the method of the invention is capable of depositing layers of any thickness. It has been found that silicon nitride layers formed according to the present invention are superior to layers formed by conventional methods.

すなわち、従来法において真空下においてシランおよび
アンモニアで処理されたウェハ−に形成される厚い窒化
物の周囲リングが、本発明においては形成されることが
なく、更に従来法において生ずるシリコンまたは窒化珪
素ダストおよびボートしみが、本発明においては著しく
減少しうろことを確かめた。更に、また本発明の方法に
より形成された窒化珪素層は均一であるから、本発明の
方法により処理された半導体ウェハーから多くの装置を
形成することができる。次に、本発明を実施例について
説明する。
That is, the thick peripheral ring of nitride that forms on wafers treated with silane and ammonia under vacuum in the conventional method is not formed in the present invention, and the silicon or silicon nitride dust produced in the conventional method is not formed in the present invention. It was confirmed that boat stains and boat stains were significantly reduced in the present invention. Furthermore, and because the silicon nitride layer formed by the method of the present invention is uniform, many devices can be formed from semiconductor wafers processed by the method of the present invention. Next, the present invention will be described with reference to examples.

実施例 11針固の予じめ洗浄された直径7.32伽のシリコン
ゥェハーを第2図に示すように石英ボード(長さ40〜
64弧)を構成する水平石英ロッド上に0.238狐の
間隔で垂直状態に配置した。
Example 11 A pre-cleaned silicon wafer with a diameter of 7.32 mm was placed on a quartz board (length 40~
They were placed vertically at intervals of 0.238 mm on horizontal quartz rods constituting 64 arcs.

標準拡散技術により5個のダミーウェハー(dmmmy
棚fers)をボートの各端部に配置した。次いでLボ
ートを加熱炉内の外径101側の石英管内に導入した。
次いで、炉に温度勾配を与え、炉の中心20インチにわ
たる3個の等距離点における熱電対測定はガス入口に近
い点における最低温度と共に73000,750『Cお
よび7700○のそれぞれの温度を読み取った。炉は5
0ミクロン日夕(0.050トル(または約6.餌a)
)以下に排気し、窒素により2トルの圧力で10分間に
わたり清浄にした。次いで、窒素を除去し、システムを
50ミクロンH#(0.050トル(または約6.班a
))以下の圧力に下げた。アンモニアを0.24cc/
secの流速で1分間噴射し、次いでジクロルシランを
0.02cc/secの流速でアンモニアの噴射を継続
しながら導入した。60分後ジクロルシランの流れを止
め、これより1分後にアンモニアの流れを止めた。
Five dummy wafers (dmmmy
Shelves (fers) were placed at each end of the boat. Next, the L boat was introduced into the quartz tube on the outer diameter 101 side of the heating furnace.
A temperature gradient was then applied to the furnace and thermocouple measurements at three equidistant points across the center 20 inches of the furnace read respective temperatures of 73,000, 750'C and 7700'C, with the lowest temperature at the point near the gas inlet. . The furnace is 5
0 micron sun (0.050 Torr (or about 6. Bait a)
) was evacuated and flushed with nitrogen at 2 torr pressure for 10 minutes. The nitrogen is then removed and the system is heated to 50 micron H# (0.050 torr (or approximately 6.
)) The pressure was lowered to below. Ammonia 0.24cc/
The mixture was injected for 1 minute at a flow rate of 0.02 cc/sec, and then dichlorosilane was introduced at a flow rate of 0.02 cc/sec while continuing to inject ammonia. After 60 minutes, the flow of dichlorosilane was stopped, and after 1 minute, the flow of ammonia was stopped.

これらの流速は約12:1アンモニア対ジクロルシラン
のモル比に相当する。次いで、炉を50ミクロン日夕(
0.050トル(または約6.解a))以下に加圧し、
窒素により2トル圧力で5分間にわたり清浄にした。真
空弁を閉じ、システムに窒素を逆充填した。ウェハーを
ボートから取去り、ウェハーを評価した。これらのウェ
ハーには窒化珪素の1000△厚さの層が均一に堆積し
た。この場合、厚さ‘ま各ウェハー上の数個所で測定し
た。ウェハーにおける測定値を比値し、任意のゥェハー
についての厚さの均一性は土1%であり、113固すべ
てのウェハーにおける厚さの均一性は士10%であった
。また、ウェハーには汚れ(haziness)がなく
、しかもボートしみの生じないことを確かめた。
These flow rates correspond to an approximately 12:1 ammonia to dichlorosilane molar ratio. Next, the furnace was heated to 50 microns (
Pressurize to 0.050 torr (or about 6. solution a) or less,
Purged with nitrogen at 2 Torr pressure for 5 minutes. The vacuum valve was closed and the system backfilled with nitrogen. The wafers were removed from the boat and evaluated. A 1000Δ thick layer of silicon nitride was uniformly deposited on these wafers. In this case, the thickness was measured at several locations on each wafer. The thickness uniformity for any wafer was 1%, and the thickness uniformity for all 113 wafers was 10%. The wafers were also found to be free of haziness and free from boat stains.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法を実施するのに用いる装置の説明
用線図および第2図に本発明の方法の実施に適当なウェ
ハーを装填した管状炉の1部を功欠にした管状炉の1部
の斜視図である。 10・…・・管状炉、12…・・・熱低抗コイル、14
・・・・・・ガスパネル、16……ハロシラン供給源「
竃8・・・・・・窒素供給源、20・…川アンモニア
供給源、22,24,26,28……開閉弁、30,3
2;3奪…・・・流量計の弁、36・・…・端カップ、
38・・・…真空ゲージ、40……排気、42……石英
ボード、44……シリコンウエハ−。 FIG.l FIG.2
FIG. 1 is an explanatory diagram of the apparatus used to carry out the method of the present invention, and FIG. 2 shows a tube furnace with a portion of the tube furnace loaded with wafers suitable for carrying out the method of the present invention. FIG. 10...Tubular furnace, 12...Low resistance coil, 14
...Gas panel, 16... Halosilane supply source "
Stove 8... Nitrogen supply source, 20... River ammonia supply source, 22, 24, 26, 28... Open/close valve, 30, 3
2; 3 take away...Flowmeter valve, 36...End cup,
38... Vacuum gauge, 40... Exhaust, 42... Quartz board, 44... Silicon wafer. FIG. l FIG. 2

Claims (1)

【特許請求の範囲】 1 複数の基体を管状反応器に配置し、基体にジクロル
シランおよびアンモニアの混合物の流れを約300ミリ
トル〜約10トルの真空中約650〜約800℃の温度
で、該温度に流れの方向に沿って約100℃までの勾配
を与えて作用させることを特徴とする窒化珪素を複数の
基体上に熱分解堆積する方法。 2 温度に流れの方向に沿って10〜50℃範囲の勾配
を与える特許請求の範囲第1項記載の窒化珪素を複数の
基体上に熱分解堆積する方法。
Claims: 1. A plurality of substrates are placed in a tubular reactor, and the substrates are subjected to a flow of a mixture of dichlorosilane and ammonia at a temperature of from about 650 to about 800° C. in a vacuum of from about 300 mTorr to about 10 Torr. A method for pyrolytically depositing silicon nitride on a plurality of substrates, the method comprising applying a gradient of up to about 100° C. along the direction of flow to the substrate. 2. A method for pyrolytically depositing silicon nitride on a plurality of substrates according to claim 1, wherein the temperature is given a gradient in the range of 10 to 50° C. along the flow direction.
JP51139391A 1975-11-25 1976-11-19 Method for pyrolytically depositing silicon nitride onto a substrate Expired JPS6010108B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US63501275A 1975-11-25 1975-11-25
US635012 1975-11-25

Publications (2)

Publication Number Publication Date
JPS5265199A JPS5265199A (en) 1977-05-30
JPS6010108B2 true JPS6010108B2 (en) 1985-03-15

Family

ID=24546063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51139391A Expired JPS6010108B2 (en) 1975-11-25 1976-11-19 Method for pyrolytically depositing silicon nitride onto a substrate

Country Status (5)

Country Link
JP (1) JPS6010108B2 (en)
DE (1) DE2652449C2 (en)
FR (1) FR2332802A1 (en)
GB (1) GB1518564A (en)
HK (1) HK881A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0248706U (en) * 1988-09-27 1990-04-04
JPH10309777A (en) * 1997-02-10 1998-11-24 Saint Gobain Vitrage Transparent base material provided with at least one thin layer, and producing method of the same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3118848C2 (en) * 1980-05-12 1983-05-19 Mitsubishi Denki K.K., Tokyo Low pressure coating device
GB2213836B (en) * 1987-12-18 1992-08-26 Gen Electric Co Plc Vacuum deposition process
JP2004071970A (en) * 2002-08-08 2004-03-04 Shin Etsu Chem Co Ltd Manufacturing method and manufacturing system of silicon substrate for solar cell
CN115142048B (en) * 2022-06-30 2023-07-07 北海惠科半导体科技有限公司 Wafer carrier and preparation method of silicon nitride dielectric film

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1251287C2 (en) * 1962-09-10 1975-10-09 United Aircraft Corporation, East Hartford, Conn. (V.St.A.) PROCESS FOR THE PRODUCTION OF NON-POROUS SILICON NITRIDE
FR1521174A (en) * 1966-05-02 1968-04-12 Siemens Ag Process for producing a protective layer, in particular on the surface of a semiconductor crystal
US3549411A (en) * 1967-06-27 1970-12-22 Texas Instruments Inc Method of preparing silicon nitride films
US3652324A (en) * 1968-08-15 1972-03-28 Westinghouse Electric Corp A METHOD OF VAPOR DEPOSITING A LAYER OF Si{11 N{11 {0 ON A SILICON BASE
US3856587A (en) * 1971-03-26 1974-12-24 Co Yamazaki Kogyo Kk Method of fabricating semiconductor memory device gate
US3900597A (en) * 1973-12-19 1975-08-19 Motorola Inc System and process for deposition of polycrystalline silicon with silane in vacuum

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0248706U (en) * 1988-09-27 1990-04-04
JPH10309777A (en) * 1997-02-10 1998-11-24 Saint Gobain Vitrage Transparent base material provided with at least one thin layer, and producing method of the same

Also Published As

Publication number Publication date
GB1518564A (en) 1978-07-19
FR2332802A1 (en) 1977-06-24
DE2652449C2 (en) 1982-06-09
HK881A (en) 1981-01-23
DE2652449A1 (en) 1977-05-26
FR2332802B1 (en) 1981-12-24
JPS5265199A (en) 1977-05-30

Similar Documents

Publication Publication Date Title
US4279947A (en) Deposition of silicon nitride
JP3067940B2 (en) Silicon nitride thin film deposition
JP3581388B2 (en) Deposited polysilicon film with improved uniformity and apparatus therefor
JP3265042B2 (en) Film formation method
US4504521A (en) LPCVD Deposition of tantalum silicide
JPS60200966A (en) Composite coating
JPS6042823A (en) Method for forming thin film
JPS58130517A (en) Manufacture of single crystal thin film
JP2556621B2 (en) Method for forming silicon carbide film
JPH03146672A (en) Susceptor for cvd
JPS6010108B2 (en) Method for pyrolytically depositing silicon nitride onto a substrate
JPH0127568B2 (en)
JPH0377655B2 (en)
JP3788836B2 (en) Vapor growth susceptor and manufacturing method thereof
JPS621565B2 (en)
US6537924B2 (en) Method of chemically growing a thin film in a gas phase on a silicon semiconductor substrate
US4250148A (en) Apparatus and method for producing polycrystalline ribbon
US6531415B1 (en) Silicon nitride furnace tube low temperature cycle purge for attenuated particle formation
JPH01253229A (en) Vapor growth device
JPS6316617A (en) Vapor growth equipment
JP2762576B2 (en) Vapor phase growth equipment
JPH0582450A (en) Vapor phase reaction equipment for manufacturing semiconductor device
JP3057716B2 (en) Thin film formation method
JPS61251119A (en) Chemical vapor deposition method
JPS63300512A (en) Chemical vapor deposition apparatus