JPS6028278A - Photoelectric conversion element - Google Patents

Photoelectric conversion element

Info

Publication number
JPS6028278A
JPS6028278A JP58138224A JP13822483A JPS6028278A JP S6028278 A JPS6028278 A JP S6028278A JP 58138224 A JP58138224 A JP 58138224A JP 13822483 A JP13822483 A JP 13822483A JP S6028278 A JPS6028278 A JP S6028278A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
conductive material
layer
conversion element
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58138224A
Other languages
Japanese (ja)
Inventor
Makoto Tsunoda
誠 角田
Yuji Hizuka
裕至 肥塚
Shohei Eto
江藤 昌平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP58138224A priority Critical patent/JPS6028278A/en
Publication of JPS6028278A publication Critical patent/JPS6028278A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/20Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising organic-organic junctions, e.g. donor-acceptor junctions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Abstract

PURPOSE:To enable to obtain a low-priced and long-lived photoelectric conversion element, which is higher in photoelectric conversion efficiency, by a method wherein a pi-conjugate system-macromolecular layer and an organic coloring matter layer, which has been made to interpose between the macromolecular layer and a light-transmitting conductive material, are provided between two conductive material, between which the material on one side is at least the light-transmitting conductive material. CONSTITUTION:A pi-conjugated macromolecular layer 10 is provided on a conductive material 9 and an organic coloring matter layer 11 is provided thereon, and furthermore, a conductive material 12 is coated on the coloring matter layer 11. Lead wires 14 and 16 are bound to the material 12 and 9 for making into such a way as to be able to take out electric power. In this case, the conductive material 12 on the light irradiating side shall be at least a light-transmitting conductive material, while as the pi- conjugated macromolecule are used molucular compounds having a conjugated double bond to the skeleton of a chemical constitution, such as polyethylene, polypyrrole, polythienylene, polyaniline, etc., for example, By this method, the response wavelength range is expanded, thereby enabling to obtain a low-priced and long-lived photoelectric conversion element, which is higher in photoelectric conversion efficiency.

Description

【発明の詳細な説明】 この発明は新規な光電変換素子に関する。[Detailed description of the invention] The present invention relates to a novel photoelectric conversion element.

従来、光電変換素子としては、主としてシリコン半導体
の表面近くにP−n接合をつくることによシ得られるい
わゆる太陽電池が考案され実用化されている。しかし、
これとは別にもつと安価な有機材料、たとえばポリアセ
チレンなどの導電性高分子材料を半導体として利用した
ものや、たとえばフタロシアニンなどの有機色素の光増
感能を利用したものなどの検討も行われている。
Conventionally, as photoelectric conversion elements, so-called solar cells obtained mainly by forming a P-n junction near the surface of a silicon semiconductor have been devised and put into practical use. but,
Apart from this, studies are also being carried out on cheaper organic materials, such as those that use conductive polymer materials such as polyacetylene as semiconductors, and those that utilize the photosensitizing ability of organic dyes such as phthalocyanine. There is.

これら有機材料を用いたサンドイッチタイプの光電変換
素子は主としてオ1図に示したような構造のものである
Sandwich type photoelectric conversion elements using these organic materials mainly have a structure as shown in Fig. 1.

この動作原理は、透明または半透明電極(1)を通過し
た光(8)が、有機化合物層(2)に入射すると。
The principle of operation is that light (8) that has passed through a transparent or translucent electrode (1) is incident on an organic compound layer (2).

透明または半透明電極Il+と有機化合物層(2)の界
面に電位差が生じ、リード線(5)および(7)の間に
光誘起電力が発生するというものである。この場合、透
明または半透明電極+11と有機化合物層(2)との間
には異方接合(例えばP−n接合)やショットキー接合
などができていることが必要で、さらに有機化合物層と
電極(3)は等方接合、例えばオーミック接触になって
いることが必要である。さらに詳しく言うと、光照射下
でのそれ自身の仕事関数(フェミル準位)の値が透明ま
たは半透明電極〉有機化合物層上電極、または透明また
は半透明電極く何機化合物層2電極となっていることが
必要で、リード線(6)%(7)間の電力は、通常前者
の場合には(5)が正極、後者の場合には(7)が正極
となる。有機光電変換素子とは、このような動作原理全
応用しようとするものである。
A potential difference is generated at the interface between the transparent or semi-transparent electrode Il+ and the organic compound layer (2), and photo-induced power is generated between the lead wires (5) and (7). In this case, it is necessary that an anisotropic junction (for example, a P-n junction) or a Schottky junction be formed between the transparent or semi-transparent electrode +11 and the organic compound layer (2), and it is also necessary that the organic compound layer It is necessary that the electrode (3) is an isotropic junction, for example an ohmic contact. To be more specific, the value of its own work function (femyl level) under light irradiation is as follows The power between the lead wires (6) and (7) is normally such that (5) is the positive electrode in the former case, and (7) is the positive electrode in the latter case. Organic photoelectric conversion elements are intended to apply all of these operating principles.

しかしながらこのような有機材料を用いた光電変換素子
は、いずれも光電変換効率が低く、得られる光起電力が
不安定で、寿命が短いというような欠点があシ、実用化
のためには解決すべき問題点が多数残されている。
However, all photoelectric conversion elements using such organic materials have drawbacks such as low photoelectric conversion efficiency, unstable photovoltaic force, and short lifespan, which need to be resolved for practical use. Many issues remain to be addressed.

この発明は上記従来のものの欠点を除去するためになさ
れたもので、少なくとも一方が透光性であるオニ1第2
4醒材料並びにこのオl。
This invention was made in order to eliminate the drawbacks of the above-mentioned conventional products.
4. Materials and this oil.

第24電材料の間に介在されたπ−共役系高分子層及び
有機色素層を備えることによシ、応答波長域が拡大し、
光電変換効率が高く、安価で、長寿命の光電変換素子を
提供することを目的とする。
By providing the π-conjugated polymer layer and the organic dye layer interposed between the 24th electrical materials, the response wavelength range is expanded,
The purpose of the present invention is to provide a photoelectric conversion element with high photoelectric conversion efficiency, low cost, and long life.

第2図は、この発明の一実施例の光電変換素子の断面図
である。即ち、(9)およびHは導電材料で、基板上に
専心材料層を設けることによっても得られるが図は簡単
のため4慰材料単独で用いた場合を示す。又、少なくと
も光照射側の尋電材料國は透光性である。導電材料(9
)上にπ−共役系高分子層(10)を設け、その上に有
機色素層(1りを設け、さらに導電材料Hを被着してな
るものであシ、導電材料(9)および(Iりにリード線
α荀およびHを結着し、電力を取り出せるようにしたも
のである。なお晴、州はリード接続端である。
FIG. 2 is a sectional view of a photoelectric conversion element according to an embodiment of the present invention. That is, (9) and H are electrically conductive materials, which can also be obtained by providing a dedicated material layer on the substrate, but for the sake of simplicity, the figure shows the case where the material is used alone. Furthermore, at least the material on the light irradiation side is translucent. Conductive material (9
), a π-conjugated polymer layer (10) is provided on top of the organic dye layer (10), and a conductive material H is further deposited on the conductive material (9) and ( The lead wires α and H are connected to the I side so that electric power can be extracted.The end is the lead connection end.

この発明の一実施例の光電変換素子は上記のように構成
されておシ、この光電変換素子の動作原理の詳#1は現
時点では不明であるが、この発明者等は以下に述べるよ
うな光電変換機構のいずれか、又は二つ以上の混り合っ
た機構を考えている。即ち、 (I) Z−共役系高分子がP型の材料であシ、有機色
素がngである場合ではπ−共役系高分子と有機色素と
の間でP−n型のへテロ接合が形成され、光照射下では
接合領域で発生したキャリアー(′−子および正孔]が
接8頭域内での電界によって電荷分離を起こし外部に起
電力(または電流)を誘起させる機、構が考えられる。
The photoelectric conversion element of one embodiment of the present invention is constructed as described above, and although the details #1 of the operating principle of this photoelectric conversion element are currently unknown, the inventors have proposed the following. We are considering either one of the photoelectric conversion mechanisms or a combination of two or more mechanisms. That is, (I) When the Z-conjugated polymer is a P-type material and the organic dye is ng, a P-n type heterojunction is formed between the π-conjugated polymer and the organic dye. The mechanism is thought to be that under light irradiation, the carriers ('-sons and holes) generated in the junction region undergo charge separation due to the electric field within the contact region and induce an electromotive force (or current) outside. It will be done.

ここでπ−共役系高分子がnaL有機色素がP型である
場合でも同様の結果が得られるものと考えられる。
Here, it is thought that similar results can be obtained even when the π-conjugated polymer is a P-type organic dye.

(■)2−共役系高分子がP型またはn型の物質であれ
ば、P型の五−共役系高分子と仕事関数の小さい金属と
の間でショットキー型の接合が形成できると思われる。
(■) If the 2-conjugated polymer is a P-type or n-type material, it is thought that a Schottky-type junction can be formed between the P-type 5-conjugated polymer and a metal with a small work function. It will be done.

n型のπ−共役系高分子であれは仕事関数の大きい金属
との間でショットキー型の接合が形戎できると期待され
る。
It is expected that an n-type π-conjugated polymer can form a Schottky type junction with a metal having a large work function.

ショットキー型の接合素子はそれ自身で光電変換素子と
して利用できるが光電変換能を高めるためにMIS型素
子(M:金属、ニー誘電体。
The Schottky type junction element itself can be used as a photoelectric conversion element, but to increase the photoelectric conversion ability, an MIS type element (M: metal, knee dielectric) is used.

S:半導体)が考えられておシ、この素子では単なるシ
ョットキー型の素子に比べ開放端電圧が上昇することが
知られている。
S: Semiconductor) has been considered, and it is known that the open circuit voltage of this element is higher than that of a simple Schottky type element.

このMIS型素子における誘電体として有機色素を用い
るという考え方である。
The idea is to use an organic dye as the dielectric material in this MIS type element.

こ0で有機色素は単なる誘電体ではなく生得体部で利用
できない波長の光を吸収してキャリアーを発生させ、そ
のキャリアーを半導体および金属に電荷を注入し変換効
率を高めようとする考え方である。この場合、誘電体と
して用いる何機色素の厚膜(層膜〕はトンネル機構で電
流が流れる程度に薄くなければならない。
The idea here is that organic dyes are not just dielectrics; they absorb light at wavelengths that cannot be used in the natural body, generate carriers, and use these carriers to inject charges into semiconductors and metals to increase conversion efficiency. . In this case, the thick film (layer film) of the dye used as the dielectric must be thin enough to allow current to flow through a tunnel mechanism.

@I) (II)の考え方と良く似ているが、有機色素
が誘電体でありかつ(II)の場合程薄膜でない場合が
ある。この場合、導電材料(9)の仕事関数と辱′眠材
料04の仕事関数が異なる時雨4亀材料の仕事関数差に
基づき素子内部に′電位勾配が生じ有機色素層およびπ
−共役系高分子層中で光照射によって発生した電子−正
孔対を効率よく分離することによって外部に起電力(ま
たは電流〕を取シ出す機構でおる。この時両導電材料間
の仕事関数差が大きい程変換効率は大きくなると考えら
れる。この時、π−共役系高分子層がドーピング処理等
の方法でその抵抗が有機色素層のそれに比べて著しく低
ければ、両4亀材料の仕事関数差により発生する電位差
は有機色素層に殆んど印加され、有機色素層内で発生す
る光による電子−正孔対全より効率よく分離することが
できると考えられる。
@I) This is very similar to the idea in (II), but the organic dye is a dielectric and may not be as thin a film as in (II). In this case, a potential gradient is generated inside the device based on the difference in the work functions of the four materials, in which the work function of the conductive material (9) and the work function of the material 04 are different.
- It is a mechanism that extracts electromotive force (or current) to the outside by efficiently separating electron-hole pairs generated by light irradiation in the conjugated polymer layer.At this time, the work function between both conductive materials It is thought that the larger the difference, the higher the conversion efficiency.At this time, if the resistance of the π-conjugated polymer layer is significantly lower than that of the organic dye layer due to a method such as doping, then the work function of both materials will increase. Most of the potential difference generated by the difference is applied to the organic dye layer, and it is considered that it can be separated more efficiently than all electron-hole pairs due to light generated within the organic dye layer.

以上のように光′電変換機構としては種々考えられるが
、いずれの場合も有機色画とπ−共役系高分子を組み合
わせて用いることによって利用可能な光の波長頭載を広
げ光電変換効率を著しく上げようとするものである。
As mentioned above, various photoelectric conversion mechanisms can be considered, but in all cases, by using a combination of an organic colorant and a π-conjugated polymer, the wavelength header of usable light can be expanded and the photoelectric conversion efficiency can be increased. It is intended to raise the level significantly.

この発明の一英A例に用いるJJ!亀材料としては、金
臼企、クロムおよびパラジウムなどの仕事関数の大きい
金属、インジウム、アルミニツム、ガリクムおよびイン
ジウムとガリクムの合金などの仕事関数の小さい金属、
錫酸化物、殴化イ/ジクム、およびインジウム・錫酸化
物(工To)などの金属酸化物、並びにカーボンなどが
あげられる。
JJ! used in the Ichieki A example of this invention! Examples of materials include metals with a high work function such as chromium and palladium, metals with a low work function such as indium, aluminum, gallium, and alloys of indium and gallium.
Examples include metal oxides such as tin oxide, tin oxide/dicum, and indium/tin oxide (TO), and carbon.

又、オl導電材料がπ−共役系高分子層f!c電界重合
により直接合成・被着させる場合には、導電材料として
は、上記仕事関数の大きい金属、上記金属酸化物および
カーホ゛ンなどが好んで用いられる。
Moreover, the conductive material is a π-conjugated polymer layer f! (c) When directly synthesized and deposited by electric field polymerization, the above-mentioned metals with a large work function, the above-mentioned metal oxides, carbon, etc. are preferably used as the conductive material.

さらに有機色素層と接する第2導電材料としては、前記
光電変換機構(1)のP−n型のへテロ接合が形成され
る場合は有機色素層とオーミック接触をとり得る導電材
料が選ばれ、有機色素層がn型の時には上記仕事関数の
小さい金属が用いられ、有機色素層がP型の時には上記
仕事関数の大きい金属が用いられる。光電変換機溝(n
) 、 (III)のMlS型の素子構造を利用した光
電変換素子ではπ−共役系高分子とショットキー型接合
を形成すると期待される金属、すなわち、L−共役系高
分子がP型である場合には上記仕事関数の小さい金属が
、n型のπ−共役系高分子を用いる時には上記仕事関数
の大きい金属〃5用いられる。勿論、各場合において、
上記導電材料を2つ以上重ねて用いても良い。
Further, as the second conductive material in contact with the organic dye layer, when a P-n type heterojunction of the photoelectric conversion mechanism (1) is formed, a conductive material that can make ohmic contact with the organic dye layer is selected; When the organic dye layer is of n-type, a metal with a small work function is used, and when the organic dye layer is of p-type, a metal with a large work function is used. Photoelectric converter groove (n
), (III) In the photoelectric conversion device using the MlS type device structure, the metal expected to form a Schottky type junction with the π-conjugated polymer, that is, the L-conjugated polymer is P-type. In this case, the above-mentioned metal with a small work function is used, and when an n-type π-conjugated polymer is used, the above-mentioned metal with a large work function is used. Of course, in each case,
Two or more of the above conductive materials may be stacked and used.

この発明の一実施例に用いる透光性の等型材料で形成さ
れる電極構造としては透明電極を用いる時は特に問題は
ないが、通常、半透明になるように金属を有機色素層ま
たはπ−P、役系高分子上に真空蒸着、スパッタリング
、CVD(ケミカル・ベーパ・デボジショノ)およびメ
ッキ等の方法によって被着させる〇 この時の導電材料の光透先手としては導電材料と有機色
素層またはπ−共役系高分子層との接触抵抗や導電材料
自身の抵抗を考慮して決められ通常5から90%の間に
制御される。−万、p−n型の光電変換素子においては
光照射側のII電極構造しては入射光を有効にとり入れ
るべく、くシ型の電極構造が好んで用いられる。
There is no particular problem when using a transparent electrode as the electrode structure formed of a translucent isomorphic material used in one embodiment of the present invention, but usually the metal is coated with an organic dye layer or a π -P is deposited on the active polymer by methods such as vacuum evaporation, sputtering, CVD (chemical vapor deposition), and plating. At this time, the conductive material and the organic dye layer or It is determined in consideration of the contact resistance with the π-conjugated polymer layer and the resistance of the conductive material itself, and is usually controlled between 5 and 90%. In a p-n type photoelectric conversion element, a comb-shaped electrode structure is preferably used as the II electrode structure on the light irradiation side in order to effectively take in incident light.

なお、この発明の一実施例の光電変換素子において導電
材料が基板上に設けられている場合、基板としては、ガ
ラス、セラミック、およびグラスチックなどがあげられ
る0 この発明の一実施例に用いるπ−共役系高分子としては
、例えはポリアセチレン、ポリピロール、ポリチェニレ
/、ポリアニリン、ポリフェニレン類、ポリフェニレン
スルフィド、ポリフェニレンオキシドなど化学構造の骨
格に共役二重結合を有するものが用いられる。
In the photoelectric conversion element according to an embodiment of the present invention, when a conductive material is provided on a substrate, examples of the substrate include glass, ceramic, and glasstic. - As the conjugated polymer, those having a conjugated double bond in the chemical structure skeleton, such as polyacetylene, polypyrrole, polychenylene, polyaniline, polyphenylenes, polyphenylene sulfide, and polyphenylene oxide, are used.

又、π−共役系高分子の内部抵抗を下げる目的でドーピ
ング処理を行なうことが好ましい。通常、π−共役系高
分子はそれ自身では絶縁体であるが電子受容体(例えば
臭素、ヨウ素、ヨク化臭素、五フッ化ヒ累、および過塩
素酸素等]および電子供与体(例えばNa@ K I 
r、i lおよびアミン等)をドーピングすることによ
って、それぞれP型およびn型の材料にすることができ
、その電専度も半欅体頭域から金属H域まで幅広く制御
万能である。
Further, it is preferable to perform doping treatment for the purpose of lowering the internal resistance of the π-conjugated polymer. Normally, π-conjugated polymers are insulators by themselves, but they also act as electron acceptors (e.g., bromine, iodine, bromine iodine, arsenic pentafluoride, and perchloric oxygen, etc.) and electron donors (e.g., Na@ K I
By doping with (r, i, l, amine, etc.), they can be made into P-type and n-type materials, respectively, and their electric power can be controlled over a wide range from the semi-crystalline head region to the metallic H region.

π−共役系高分子の中でも電解重合によって合成可能な
ものは合成時にドーピング処理が同時に行なわれること
、生じた高分子膜の厚みを通電電荷量によって制御でき
る等の利点を有していることから好んで用いられる。こ
のような電解重合法で合成できるπ−共役系高分子とし
てはビロールのホモポリマー、N−m換ピロールのホモ
ポリマー、ピロールトN−1fi換ピロールの共重合体
、ポリチェニレン(ポリチオフェン)會ポリアニリン、
ポリフランおよびポリアズレン等があげられ、いずれも
電解重合によって容易に合成できる。これらπ−共役系
高分子をこの発明の一実施例の光tL質質素素子用いる
場合は単独もしくは上記高分子材料を材料の光吸収特性
VC応じて二種以上重ねて用いても艮へこの発明の一実
施例に用いる有機色素としては、特定の波長の光を吸収
する能力を有するものであれば使用可能であるが、光電
変換効率を考慮すると、色素内でのホールの再結合を抑
えて、π−共役系高分子側に能率良く移動させることに
より、π−共役系高分子層を増感する能力を有するもの
が好ましく、Cのような色素化合物としては、たとえば
ローダミンBなどのキサンチン系、サフラニンTなどの
7エナジン系、チオニン、メチレンブルーなどのフェノ
チアジン系およびメロシアニン、フタロシアニンなどの
シアニン系のものなどがあげられる。これらは第2図に
示したようにπ−共役系高分子層上に層状に形成される
。この形成方法は通常の溶謀キャスト法(スピナーコー
ト、スズノーコート法なども含む)や蒸着法などでもよ
いが、ピンホールレスであることや色素の内部インピー
ダンスが犬きくな)すぎないことを考1ばすると厚膜2
00久〜1μmの範囲内とするのが好ましい。2oal
以下ではピーンホールが生じやすくなり、111m以上
では色素の内部インピーダンスが犬きくなシすぎる。
Among π-conjugated polymers, those that can be synthesized by electrolytic polymerization have the advantage that doping treatment is performed at the same time during synthesis, and the thickness of the resulting polymer film can be controlled by the amount of electrical charge applied. Preferred used. Examples of π-conjugated polymers that can be synthesized by such an electrolytic polymerization method include pyrrole homopolymers, N-m-converted pyrrole homopolymers, pyrrole-N-1fi-converted pyrrole copolymers, polythenylene (polythiophene)-polyaniline,
Examples include polyfuran and polyazulene, both of which can be easily synthesized by electrolytic polymerization. When these π-conjugated polymers are used in the optical tL quality element according to one embodiment of the present invention, the above polymer materials may be used alone or in combination of two or more types depending on the light absorption property VC of the material. As the organic dye used in one example, it can be used as long as it has the ability to absorb light of a specific wavelength, but in consideration of photoelectric conversion efficiency, it is necessary to suppress the recombination of holes within the dye. A dye compound such as C is preferably one having the ability to sensitize a π-conjugated polymer layer by efficiently transferring it to the π-conjugated polymer side. , 7enazine types such as Safranin T, phenothiazine types such as thionine and methylene blue, and cyanine types such as merocyanine and phthalocyanine. These are formed in a layered manner on the π-conjugated polymer layer as shown in FIG. This formation method may be the usual melt casting method (including spinner coat, tin no coat method, etc.) or vapor deposition method, but please take into consideration that it is pinhole-less and that the internal impedance of the dye is not too high. Thick film 2
It is preferable that the thickness is within the range of 0.00 to 1 μm. 2oal
If it is less than 111 m, peen holes are likely to occur, and if it is more than 111 m, the internal impedance of the dye becomes too strong.

この場合においても再愼色素の光吸収特性に形じて二種
以上を嵐ねて用いてもよい。また、ドーピング処理され
たπ−共役系高分子層上に有機色素を被着させることは
π−共役系高分子層の保護膜とも成シ助作安定性を一段
と増す結果につながっている。
In this case as well, two or more types may be used in combination depending on the light absorption characteristics of the recontaining dye. Furthermore, depositing an organic dye on the doped π-conjugated polymer layer further increases the stability of the formation of the protective film for the π-conjugated polymer layer.

なお、前記第2図では、上方から照射を行なっているか
、辱電材料(9)を透光性とすれば下方から光照射を行
なっても差しつかえない。また、この発明の一英地例の
光電変換素子の片面あるいは全面金光透光性を損わない
材料もしくは例えば紫外線のみ遮断する材料など、例え
ばシリコン便力凱 エポキシ樹脂などで封止してもよい
Note that in FIG. 2, the light is irradiated from above, or if the electrical material (9) is made translucent, it may be irradiated from below. In addition, one side or the entire surface of the photoelectric conversion element of the present invention may be sealed with a material that does not impair the optical transparency, or a material that blocks only ultraviolet rays, such as silicone epoxy resin. .

以下実施例によりこの発明の詳細な説明するが、これに
よりこの発明を限定しない。
The present invention will be described in detail below with reference to Examples, but the present invention is not limited thereby.

χ元側1゜ 3.5 am X 7 cInのガラス基板上に真空蒸
着法によって厚さ1ooolのクロム(Cr)+−を設
け、更にこの上に金(Au )層をgooofの厚さに
真空蒸着法によって設けたものを作用電極(イ)とし足
(何効作用成極囲槓は2aルX 8.5 cm )、1
00m1のアセトニトリルにビロール(o、o7P)、
N−メチルビロール(0,85P)およびテトラエチル
アンモニクムパークロレー) (0,7y )e[解さ
せた液を反応溶液(イ)とした。対極として白金(pt
 )電極を、参照電極としてBOB(飽和カロメル電極
)を使用し、反応接液(イ)中に、作用電極(イ)と共
に浸し、窒素ガス雰囲気下で、作用′i!極を陽極とし
て対極との間に一定電流(0,15mA Jを90分間
流し、作用電極(イ)上にπ−共役系高分子層を約40
0θXの厚さに形成し、アセトニトリルで洗浄後真空乾
燥を行い、π−共役系高分子試料(イ)を得た。次にπ
−共役系高分子層試料(イ)上にさらに真空蒸着法でメ
ロシアニン色素(日本感光色素社製:NK−2045)
を800xの厚さで設け、さらにその上にアルミニクム
(A、/)層を真空蒸着した。このときのAJ層単独の
光透過率は500Mの単色光に対して10%であった。
A chromium (Cr) layer with a thickness of 100 mm is deposited on a glass substrate of 1°3.5 am x 7 cIn by vacuum evaporation method on the χ element side, and a gold (Au) layer is further deposited on this layer in vacuum to a thickness of 1 mm. The working electrode (A) was prepared by vapor deposition.
Virol (o, o7P) in 00ml of acetonitrile,
N-Methylvirol (0,85P) and tetraethylammonicum perchloride) (0,7y)e [The dissolved solution was used as the reaction solution (a). As a counter electrode, platinum (pt
) electrode, using BOB (saturated calomel electrode) as a reference electrode, is immersed together with the working electrode (a) in the reaction liquid (a), and under a nitrogen gas atmosphere, the working electrode 'i! A constant current (0.15 mA J) was passed between the electrode as an anode and the counter electrode for 90 minutes, and a π-conjugated polymer layer was applied on the working electrode (A) for about 40 minutes.
It was formed to a thickness of 0θX, washed with acetonitrile, and then vacuum dried to obtain a π-conjugated polymer sample (a). Then π
- Merocyanine dye (manufactured by Nippon Kanko Shokuryo Co., Ltd.: NK-2045) was further applied by vacuum evaporation method on the conjugated polymer layer sample (a).
was provided with a thickness of 800x, and an aluminum (A,/) layer was further vacuum deposited thereon. At this time, the light transmittance of the AJ layer alone was 10% for 500M monochromatic light.

このようにして得た光電変。The photoelectric transformer obtained in this way.

換素子試料を試P+(イ)とする。The conversion element sample is designated as sample P+ (a).

実施例2゜ 実施例1で得たπ−共役系高分子層試料(イ)を用いて
、この上に実施例1と同様に、有機色素の′−ローダミ
ンBftloooiLの厚さに真空蒸着し、さらにその
上に実施例1と同様の条件でAI!層を真空蒸着した。
Example 2゜Using the π-conjugated polymer layer sample (A) obtained in Example 1, the organic dye '-rhodamine BftlooooiL was vacuum-deposited on top of it in the same manner as in Example 1. Furthermore, under the same conditions as in Example 1, AI! The layers were vacuum deposited.

このようにして得た光電変換素子試P+を試料(ロ)と
する@ 実施例8.。
The thus obtained photoelectric conversion element sample P+ is used as a sample (b) @ Example 8. .

実施例1で得た作用電極(イ)、および実施例1で用い
た対極および参M電極を用い、金庫らの方法C出版物 
J、o、B、0h611. Oommun 、JP、8
82,1988年に従って約1 pm厚のポリチオフェ
ン膜を合成し、π−共役系高分子層試P+を口)を得た
0次にπ−共役系高分子層試料(ロ)上に、実施例1と
同様にメロシアニン色素およびAI!層を真空蒸着し、
光電変換素子試料を得た。
Using the working electrode (A) obtained in Example 1, and the counter electrode and reference M electrode used in Example 1, method C publication of Kinko et al.
J, o, B, 0h611. Oommun, JP, 8
82, 1988, a polythiophene film with a thickness of about 1 pm was synthesized, and a π-conjugated polymer layer sample (P+) was obtained. Similar to 1, merocyanine dye and AI! vacuum depositing a layer;
A photoelectric conversion element sample was obtained.

これを試料(ハ)とする。This is designated as sample (c).

比較例1゜ 実施例1で得たπ−共役系高分子層試料(イj上に実施
例1と同様にkl)鹸を真空蒸着した。これを比較試料
(イ)とする。
Comparative Example 1゜The π-conjugated polymer layer sample obtained in Example 1 (kl on Ij in the same manner as in Example 1) was vacuum deposited. This will be used as a comparison sample (a).

比較例2゜ 実施例1で得た作用電極(イ)上に、実施例1と同様に
メロシアニン色素およびAJ層を真空蒸着した。これを
比較試料(ロ)とする。
Comparative Example 2 On the working electrode (A) obtained in Example 1, a merocyanine dye and an AJ layer were vacuum deposited in the same manner as in Example 1. This will be used as a comparison sample (b).

比較例8 実施例1で得た作用電極(イ)上に、実施例2と同様に
ローダミンBおよびAJ層を真を蒸着した。これを比較
試料(ハ)とする。
Comparative Example 8 On the working electrode (A) obtained in Example 1, rhodamine B and AJ layers were deposited in the same manner as in Example 2. This is used as a comparison sample (c).

上記実施例111〜(3)および比較例111〜+31
でNた試料(イ)〜(ハ)および比較試料(イ)〜(ハ
)について光電変換特性を、各試料のAu側と正、Al
側を負として以下に示す各試験によシ行なった。
The above Examples 111 to (3) and Comparative Examples 111 to +31
The photoelectric conversion characteristics of the samples (a) to (c) and comparative samples (a) to (c), which were
The following tests were conducted with the side as negative.

光起電力試験 gsowのクセノンランプおよび紫外線カツトフィルタ
ー(東芝製UV−88)、熱線カットフィルター(保谷
ガラス製HA−80)を用いて受光面で10mW/7の
光を各試料のAA’電極側から照射した。光照射開#1
3分後に各試料が発生した開放端電圧Voc(mV)お
よび短絡電流工sc(μA/cd)を表1にまとめて示
す。
Photovoltaic power test Using a gsow xenon lamp, ultraviolet cut filter (Toshiba UV-88), and heat ray cut filter (Hoya Glass HA-80), 10 mW/7 light was applied to the AA' electrode side of each sample on the light receiving surface. It was irradiated from Light irradiation open #1
Table 1 summarizes the open circuit voltage Voc (mV) and short circuit current sc (μA/cd) generated by each sample after 3 minutes.

表1. 各試料のVocおよび工8Q (−:観測されなかった] 上表から、この発明の光電変換素子は優れた光起電力を
示し、特に大きな厄流密度の鍔られるのが特徴であると
いえる。
Table 1. Voc and Q8Q of each sample (-: not observed) From the above table, it can be said that the photoelectric conversion element of the present invention exhibits excellent photovoltaic force, and is characterized by a particularly large turbulence density.

波長依存性試験 250Wのクセノンランプおよびバンドパスフィルター
東芝干渉フィルター:KL−4fli〜KL65)i用
いて、受光面で1mW!の光を試料(イ)および比較試
料(ロ)のAI!成極側から照射し、Voc (mv 
)光波長(mm依存性を測定した。
Wavelength dependence test Using a 250W xenon lamp and bandpass filter Toshiba interference filter: KL-4fli to KL65)i, 1mW at the light receiving surface! AI of the sample (a) and comparative sample (b)! Irradiate from the polarization side and Voc (mv
) Light wavelength (mm dependence was measured).

測定結果を第8図に示す。The measurement results are shown in FIG.

図中囚は試料(イl、tBlは比較試料(ロ)の特性で
ある。
In the figure, tBl is the characteristic of the sample (I), and tBl is the characteristic of the comparative sample (B).

第8図から、本発明の光電変換素子は特徴的に長波長側
の光に対しても応答することがわかる。
From FIG. 8, it can be seen that the photoelectric conversion element of the present invention characteristically responds to light on the long wavelength side as well.

また、光起電力試験および波長依存性試験の結果から、
この発明の光電変換素子は可視光に対して優れた変換効
率を示すものであることがわかる。
In addition, from the results of the photovoltaic force test and wavelength dependence test,
It can be seen that the photoelectric conversion element of the present invention exhibits excellent conversion efficiency for visible light.

安定・応答性試験 光起電力試験の光照射下で、試料(イl[ついて1周期
1分の割合で光照射の0N10 F Fの繰シ返しによ
るToe(mv)の愛他を測定した。測定結果のレコー
ダー・トレースを第4図に示す。
Stability/responsiveness test Under light irradiation in a photovoltaic force test, the Toe (mv) value was measured by repeating light irradiation at a rate of 0N10FF at a rate of 1 minute per cycle. Figure 4 shows the recorder trace of the measurement results.

図中+C1tDl tBl (Flはそれぞれ1回目、
2回目、200回目、201回目のVoc(mv)の値
を示す。
+C1tDl tBl (Fl is the first time,
The values of Voc (mv) at the 2nd, 200th, and 201st times are shown.

第4図から、この発明の光電変換素子は、優れた安定性
および優れた応答性を示すことがわかる。
From FIG. 4, it can be seen that the photoelectric conversion element of the present invention exhibits excellent stability and excellent responsiveness.

寿命試験 試料(イ)をシリコーン樹脂(信越シリコン社製:KF
j−1063で封止し、光起電力試験の光照射条件下で
連続800時間光照射を行い、VocおよびよりQの経
時変化を測定した。その結果、Vocおよびlec共初
期の90%以上の保持率部を示した。
The life test sample (a) was made of silicone resin (manufactured by Shin-Etsu Silicon Co., Ltd.: KF
The sample was sealed with J-1063 and continuously irradiated with light for 800 hours under the light irradiation conditions of the photovoltaic force test, and changes over time in Voc and Q were measured. As a result, both Voc and lec exhibited an initial retention rate of 90% or more.

このことから、この発明の光電変換素子は有機系素子と
しては長寿命のものであるといえる。
From this, it can be said that the photoelectric conversion element of the present invention has a long life as an organic element.

以上説明したとうり、この発明は、夕なくとも一方が透
光性であるオl、第2尋電材料並びにこの第11第2導
電材料の間に介在されたπ−共役系高分子層及び有機色
素層を備えることによシ、応答波長域が拡大し、光電変
換効率が高く、安価で、長寿命の光′vIL変換素子を
得ることができ、例えば太陽電池、カラーセンサー、お
よび色彩認識センサーなどに広く適用・できる。
As explained above, the present invention provides a first conductive material at least one of which is translucent, a π-conjugated polymer layer interposed between the eleventh second conductive material, and a By providing an organic dye layer, it is possible to obtain a light VIL conversion element with an expanded response wavelength range, high photoelectric conversion efficiency, low cost, and long life, which is useful for example in solar cells, color sensors, and color recognition. Can be widely applied to sensors, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1凶は従来の光電変換素子の断面図、第2凶はこの発
明の一実施例の光電変換素子の断面図、第8凶はこの発
明の一実施例の光電変換素子との比較例のそれの照射光
波長(mm)による開放端電圧Toe (mv )友化
を示す特性図、第4図はこの発明の一実施例の光電変換
素子の、光照射の0N10FF繰返し回数による開放端
電圧Voc(mv)f化を示す特性図である。 図において%+11は透明または半透明電極、+21は
何機化合物層、ta+は′a極、(4)、(6)はリー
ド接続端、(5)、(7)はリード線、(8)は照射光
、(9)、02は導電性材料、(lO)はπ−共役系高
分子層、(11)//′i有機色素層、σ私(Iりはリ
ード接続端、0蜀、9句はリード線、IAJは試料(イ
)の光電特性、(B)は比較試料(ロ)の光電特性、+
C1ρl (El iFlは各々光照射のON/6Il
?繰返し回数1回目、2回目、200回目、2(111
回目光電特性を示す。 なお図中同一符号は同−又は泪当部分を示す。 代理人 大台 増雄 11酌旧びシト1月−し目表出 特許庁長官殿 1、事件の表示 特”■召58−188224号2゛9
”1(7) @ 4?p光、変換素子3、補正をする者 氷衣[有] ’!81mBaGO−28278(8)5、補正の対象 6、 補正の内容 (1)明細書の特許請求の範囲を別紙のとおり訂正する
。 (2)同第7頁第20行の「金白金」を「金、白金」に
訂正する。 (3)同第10頁第20行の「制御万能」を「制御可能
」に訂正する。 (4)同第14頁第4行の「反応接液」を「反応溶液」
に訂正する。 (5)同第14頁第15行のl’−500mmJを「5
00 nm Jに訂正する。 (6)同第17頁下から第8行の「フィルター東芝干渉
フィルター」を「フ・イルター(東芝干渉フィルター)
」に訂正する。 (7)同第17頁下から5行の「光波長(mm Jを[
光波長(nm)Jに訂正する。 J(8)同第19頁第18行の「(mm)Jをr(nm
)Jに訂正する。 7、 添付書類の目録 補正後の特許請求の範囲を記載した書面1通 以上 特許請求の範囲 (1)少なくとも一方が透光性である第1、第2等電材
料、並び屯ここの第11第2導電材料の間に介在された
π−共役系高分子層及び有機色素ノーを備えた光電変換
素子。 (2)π−共役系高分子層が、ポリアセチレン、ポリフ
ェニレン類、ポリフェニレンスルフィド、ポリフェニレ
ンオキシド、ピロールとN−置換ピa−ルの共重合体、
ピロールのホモポリン−1N−置換ピロールのホモポリ
ン−、ポリチェニレン、ポリアニリン、ポリフランおよ
びポリアズレンの円の少なくともmmで形成される特許
請求の範囲第1項記載の光電変換素子。 (3)有機色素層がπ−共役系高分子ノーを増感する゛
 能力を有する化合物で形成されている特許請求の範囲
第1項または第2項記載の光電変換素子。
The first row is a cross-sectional view of a conventional photoelectric conversion element, the second row is a cross-sectional view of a photoelectric conversion device according to an embodiment of the present invention, and the eighth row is a cross-sectional diagram of a photoelectric conversion device according to an embodiment of the present invention. FIG. 4 is a characteristic diagram showing the change in open end voltage Toe (mv) depending on the irradiation light wavelength (mm), and FIG. (mv) It is a characteristic diagram showing f conversion. In the figure, %+11 is a transparent or semi-transparent electrode, +21 is a chemical compound layer, ta+ is an 'a pole, (4), (6) are lead connection ends, (5), (7) are lead wires, (8) is the irradiation light, (9), 02 is the conductive material, (lO) is the π-conjugated polymer layer, (11)//'i is the organic dye layer, σI (I is the lead connection end, 0Shu, Clause 9 is the lead wire, IAJ is the photoelectric characteristic of the sample (a), (B) is the photoelectric characteristic of the comparison sample (b), +
C1ρl (El iFl is ON/6Il of light irradiation, respectively)
? Number of repetitions 1st, 2nd, 200th, 2 (111
It shows photoelectric properties. Note that the same reference numerals in the figures indicate the same or similar parts. Agent Masuo Odai, 11th year of the year, Mr. Commissioner of the Japan Patent Office, 1, Indication of the case: Special “■Sho 58-188224 No. 2゛9
``1 (7) @ 4?p light, conversion element 3, person making the correction Hie [available] '!81mBaGO-28278 (8) 5, subject of amendment 6, content of amendment (1) Patent claims in the specification (2) Correct "gold and platinum" on page 7, line 20 of the same to "gold, platinum." (3) On page 10, line 20, "controllable universal" is corrected to "controllable." (4) "Reaction wetted liquid" on page 14, line 4 of the same page is replaced with "reaction solution."
Correct. (5) l'-500mmJ on page 14, line 15 of the same page is "5"
Correct to 00 nm J. (6) Change "Filter Toshiba Interference Filter" in the 8th line from the bottom of page 17 to "Filter (Toshiba Interference Filter)".
” is corrected. (7) In the 5th line from the bottom of page 17, “Light wavelength (mm J [
Correct to optical wavelength (nm) J. J(8) ``(mm)J to r(nm)'' on page 19, line 18.
) Correct to J. 7. One or more documents stating the scope of claims after the amendment to the list of attached documents Claims (1) First and second isoelectric materials, at least one of which is translucent; A photoelectric conversion element comprising a π-conjugated polymer layer and an organic dye interposed between a second conductive material. (2) the π-conjugated polymer layer is a copolymer of polyacetylene, polyphenylenes, polyphenylene sulfide, polyphenylene oxide, pyrrole and N-substituted pyrrole,
2. The photoelectric conversion element according to claim 1, which is formed of a circle of at least mm of homoporin of pyrrole, homoporin of 1N-substituted pyrrole, polythienylene, polyaniline, polyfuran, and polyazulene. (3) The photoelectric conversion element according to claim 1 or 2, wherein the organic dye layer is formed of a compound having the ability to sensitize π-conjugated polymers.

Claims (1)

【特許請求の範囲】 [11少なくとも一方が透光性である第11第2導電材
料、並びにこの第11第2導電材料の間に介在されたπ
−共役系高分子層及び有機色素層を備えた光電変換素子
0 (2) π−共役系高分子層が、ポリアセチレン、ポリ
フェニレン類、ポリフェニレンスルフィド、ポリフェニ
レンオキシドピロールとN−置換ピロールの共重合体、
ピロールのホモポリマー、N−置換ピロールのホモポリ
マー、ポリチェニレン、ポリアニリン、ポリフランおよ
びポリアズレンの内の少くとも一種で形成される特許請
求の範囲オ1項記載の光電変換素子。 (3) 有機色素層がπ−共役系高分子層を増感する能
力を有する化合物で形成されている特許請求の範囲オ1
項または牙2項記載の光電変換素子。
[Claims] [11] A second conductive material, at least one of which is translucent, and π interposed between the eleventh and second conductive materials.
- Photoelectric conversion element 0 comprising a conjugated polymer layer and an organic dye layer (2) The π-conjugated polymer layer is a copolymer of polyacetylene, polyphenylenes, polyphenylene sulfide, polyphenylene oxide pyrrole and N-substituted pyrrole,
The photoelectric conversion element according to claim 1, which is formed of at least one of a homopolymer of pyrrole, a homopolymer of N-substituted pyrrole, polythienylene, polyaniline, polyfuran, and polyazulene. (3) Claim O1 in which the organic dye layer is formed of a compound having the ability to sensitize the π-conjugated polymer layer.
The photoelectric conversion element according to item 2 or item 2.
JP58138224A 1983-07-26 1983-07-26 Photoelectric conversion element Pending JPS6028278A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58138224A JPS6028278A (en) 1983-07-26 1983-07-26 Photoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58138224A JPS6028278A (en) 1983-07-26 1983-07-26 Photoelectric conversion element

Publications (1)

Publication Number Publication Date
JPS6028278A true JPS6028278A (en) 1985-02-13

Family

ID=15216986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58138224A Pending JPS6028278A (en) 1983-07-26 1983-07-26 Photoelectric conversion element

Country Status (1)

Country Link
JP (1) JPS6028278A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61202481A (en) * 1985-03-06 1986-09-08 Toagosei Chem Ind Co Ltd Organic solar battery
JPS61256764A (en) * 1985-05-10 1986-11-14 Nitto Electric Ind Co Ltd Schottky bonding element
JPS61256765A (en) * 1985-05-10 1986-11-14 Nitto Electric Ind Co Ltd Heterojunction element
JPS6345869A (en) * 1986-08-13 1988-02-26 Nok Corp Organic photoelectric transducer
EP0755575A1 (en) * 1994-04-15 1997-01-29 Uniax Corporation Polymer grid triodes
US6509581B1 (en) * 2000-03-29 2003-01-21 Delta Optoelectronics, Inc. Structure and fabrication process for an improved polymer light emitting diode
JP2004319705A (en) * 2003-04-15 2004-11-11 Univ Kanazawa Organic solar cell
US7057209B2 (en) 2001-12-28 2006-06-06 Semiconductor Energy Laboratory Co., Ltd. Light emitting device, method of manufacturing the same and manufacturing apparatus therefor
US7199521B2 (en) 2003-01-29 2007-04-03 Semiconductor Energy Laboratory Co., Ltd. Electroluminescence device
US7239081B2 (en) 2002-08-09 2007-07-03 Semiconductor Energy Laboratory Co., Ltd. Organic electroluminescent device
US7420203B2 (en) 2001-12-05 2008-09-02 Semiconductor Energy Laboratory Co., Ltd. Organic semiconductor element
US8154193B2 (en) 2002-08-09 2012-04-10 Semiconductor Energy Laboratory Co., Ltd. Organic electroluminescent device
US8183559B2 (en) 2002-05-21 2012-05-22 Semiconductor Energy Laboratory Co., Ltd. Organic field effect transistor

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61202481A (en) * 1985-03-06 1986-09-08 Toagosei Chem Ind Co Ltd Organic solar battery
JPH0543193B2 (en) * 1985-03-06 1993-06-30 Toa Gosei Chem Ind
JPS61256764A (en) * 1985-05-10 1986-11-14 Nitto Electric Ind Co Ltd Schottky bonding element
JPS61256765A (en) * 1985-05-10 1986-11-14 Nitto Electric Ind Co Ltd Heterojunction element
JPS6345869A (en) * 1986-08-13 1988-02-26 Nok Corp Organic photoelectric transducer
EP0755575A1 (en) * 1994-04-15 1997-01-29 Uniax Corporation Polymer grid triodes
EP0755575A4 (en) * 1994-04-15 1997-07-30 Uniax Corp Polymer grid triodes
US6509581B1 (en) * 2000-03-29 2003-01-21 Delta Optoelectronics, Inc. Structure and fabrication process for an improved polymer light emitting diode
US7473923B2 (en) 2001-12-05 2009-01-06 Semiconductor Energy Laboratory Co., Ltd. Organic semiconductor element
US11217764B2 (en) 2001-12-05 2022-01-04 Semiconductor Energy Laboratory Co., Ltd. Organic semiconductor element
US7420203B2 (en) 2001-12-05 2008-09-02 Semiconductor Energy Laboratory Co., Ltd. Organic semiconductor element
US10497755B2 (en) 2001-12-28 2019-12-03 Semiconductor Energy Laboratory Co., Ltd. Light emitting device, method of manufacturing the same, and manufacturing apparatus therefor
US7420210B2 (en) 2001-12-28 2008-09-02 Semiconductor Energy Laboratory Co., Ltd. Light emitting device, method of manufacturing the same, and manufacturing apparatus therefor
US9450030B2 (en) 2001-12-28 2016-09-20 Semiconductor Energy Laboratory Co., Ltd. Active matrix light-emitting device with overlapping electroluminescent layers
US7057209B2 (en) 2001-12-28 2006-06-06 Semiconductor Energy Laboratory Co., Ltd. Light emitting device, method of manufacturing the same and manufacturing apparatus therefor
US7719014B2 (en) 2001-12-28 2010-05-18 Semiconductor Energy Laboratory Co., Ltd. Light emitting device, method of manufacturing the same, and manufacturing apparatus therefor
US7982206B2 (en) 2001-12-28 2011-07-19 Semiconductor Energy Laboratory Co., Ltd. Light emitting device, method of manufacturing the same, and manufacturing apparatus therefor
US9048203B2 (en) 2001-12-28 2015-06-02 Semiconductor Energy Laboratory Co., Ltd. Light emitting device, method of manufacturing the same, and manufacturing apparatus therefor
US8183559B2 (en) 2002-05-21 2012-05-22 Semiconductor Energy Laboratory Co., Ltd. Organic field effect transistor
US9209419B2 (en) 2002-08-09 2015-12-08 Semiconductor Energy Laboratory Co., Ltd. Organic electroluminescent device
US8339036B2 (en) 2002-08-09 2012-12-25 Semiconductor Energy Laboratory Co., Ltd. Organic electroluminescent device
US8890404B2 (en) 2002-08-09 2014-11-18 Semiconductor Energy Laboratory Co., Ltd. Organic electroluminescent device
US8154193B2 (en) 2002-08-09 2012-04-10 Semiconductor Energy Laboratory Co., Ltd. Organic electroluminescent device
US9650245B2 (en) 2002-08-09 2017-05-16 Semiconductor Energy Laboratory Co., Ltd. Organic electroluminescent device
US7239081B2 (en) 2002-08-09 2007-07-03 Semiconductor Energy Laboratory Co., Ltd. Organic electroluminescent device
US8207665B2 (en) 2003-01-29 2012-06-26 Semiconductor Energy Laboratory Co., Ltd. Electroluminescence device
US7548022B2 (en) 2003-01-29 2009-06-16 Semiconductor Energy Laboratory Co., Ltd. Electroluminescence device
US7199521B2 (en) 2003-01-29 2007-04-03 Semiconductor Energy Laboratory Co., Ltd. Electroluminescence device
JP2004319705A (en) * 2003-04-15 2004-11-11 Univ Kanazawa Organic solar cell

Similar Documents

Publication Publication Date Title
CA1096022A (en) Photovoltaic cell
Zhu et al. Impact of high charge-collection efficiencies and dark energy-loss processes on transport, recombination, and photovoltaic properties of dye-sensitized solar cells
US4127738A (en) Photovoltaic device containing an organic layer
EP0000829B1 (en) Photovoltaic elements
US4175982A (en) Photovoltaic cell
JPS6028278A (en) Photoelectric conversion element
Hara et al. Highly efficient photon-to-electron conversion of mercurochrome-sensitized nanoporous ZnO solar cells
JP5836375B2 (en) Dye-sensitized solar cell with improved stability
US20060084257A1 (en) Dye sensitization photoelectric converter and process for fabricating the same
US5126802A (en) Electric device
JP4563697B2 (en) Dye-sensitized solar cell and method for producing the same
Sil et al. Enhancement in the solar efficiency of a dye-sensitized solar cell by molecular engineering of an organic dye incorporating N-alkyl-attached 1, 8-naphthalamide derivative
AU2003252477B2 (en) Solar cell
Andrade et al. Influence of Sodium Cations of N3 Dye on the Photovoltaic Performance and Stability of Dye‐Sensitized Solar Cells
Dodelet et al. PHOTOVOLTATC EFFICIENCIES OF MICROCRYSTALLINE AND ANHYDROUS CHLOROPHYLL a
US8668846B2 (en) Photoelectric conversion element and solar cell
JPH0434833B2 (en)
US20100300515A1 (en) Metal oxide electrode for dye-sensitized solar cell, dye-sensitized solar cell, and manufacturing method of metal oxide electrode
JPS6120372A (en) Photoelectric conversion element
US20120266959A1 (en) Semiconductor electrode for dye-sensitized solar cell, method of manufacturing the same, and dye-sensitized solar cell having the same
Bartelt et al. Influence of TiO2/perylene interface modifications on electron injection and recombination dynamics
Liu et al. Probing the influence of lithium cation as electrolyte additive for the improved performance of p-type aqueous dye sensitized solar cells
JP4092908B2 (en) Photoelectric conversion element and manufacturing method thereof
Meyer Solid state nanocrystalline titanium oxide photovoltaic cells
JPS60165768A (en) Photoelectric converter