JPS61202481A - Organic solar battery - Google Patents

Organic solar battery

Info

Publication number
JPS61202481A
JPS61202481A JP60044169A JP4416985A JPS61202481A JP S61202481 A JPS61202481 A JP S61202481A JP 60044169 A JP60044169 A JP 60044169A JP 4416985 A JP4416985 A JP 4416985A JP S61202481 A JPS61202481 A JP S61202481A
Authority
JP
Japan
Prior art keywords
layer
electrode
transport layer
carrier
generation layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60044169A
Other languages
Japanese (ja)
Other versions
JPH0543193B2 (en
Inventor
Narikazu Kusabayashi
艸林 成和
Masaaki Yokoyama
正明 横山
Yoshihisa Kishimoto
岸本 芳久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toagosei Co Ltd
Original Assignee
Toagosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co Ltd filed Critical Toagosei Co Ltd
Priority to JP60044169A priority Critical patent/JPS61202481A/en
Publication of JPS61202481A publication Critical patent/JPS61202481A/en
Publication of JPH0543193B2 publication Critical patent/JPH0543193B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/07Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the Schottky type
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/20Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising organic-organic junctions, e.g. donor-acceptor junctions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To prevent both side electrodes from shortcircuiting due to the presence of a transport layer of an insulator in a normal even if that pinholes are generated in an organic solar battery of laminating function separate type by providing a generating layer and the transport layer between opposed electrodes. CONSTITUTION:A carrier generating layer 4 having a light carrier generating capacity due to a light emission and a carrier transport layer 3 having transporting capacity with light carrier generated by the layer 4 are interposed between two opposed electrodes 2 and 5. A schottky barrier is formed on a boundary between the layer 4 and the electrode 5, and a boundary between the layer 3 and the electrode 2 contacted with the layer is ohmically contacted. Thus, holes separated by Schottky barrier bear the aluminum electrode are efficiently implanted to the transport layer to suppress the recombination of the holes and electrodes in pigment.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、二つの電極間に、光照射により光キャリヤ
を発生させる機能を有するキャリヤ発生層く以下これを
「発生層」と称する)と、この発生層で発生した光キャ
リヤを輸送する機能を有するキャリヤ輸送層(以下これ
を「輸送層」と称する)とを介在せしめた有機太陽電池
に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a carrier generation layer (hereinafter referred to as "generation layer") which has the function of generating optical carriers by light irradiation between two electrodes. This invention relates to an organic solar cell in which a carrier transport layer (hereinafter referred to as "transport layer") having a function of transporting optical carriers generated in this generation layer is interposed.

より詳しくは、キナクリドン顔料類の真空蒸着薄膜を発
生層とし、さらに電子写真有機感光体におけるキャリヤ
輸送材としてよく知られているピラゾリン誘導体、ヒド
ラゾン誘導体等の樹脂分散薄膜を輸送層とした発生層/
輸送層積層機能分離型有機太陽電池に関する。
More specifically, the generator layer is a vacuum-deposited thin film of quinacridone pigments, and the transport layer is a resin-dispersed thin film of pyrazoline derivatives, hydrazone derivatives, etc., which are well known as carrier transport materials in electrophotographic organic photoreceptors.
This article relates to a functionally separated organic solar cell with stacked transport layers.

さらに詳しくは、光照射によりアルミニウム電極と発生
層との界面で電荷の生成分離を生じ、そこで生成した正
孔を発生層から輸送層へ注入し、輸送層を通して対向電
極へ輸送し、効率良く光起電力を提供し得るサンドイン
チ型の有機太陽電池に関するものである。
More specifically, light irradiation causes generation and separation of charges at the interface between the aluminum electrode and the generation layer, and the holes generated there are injected from the generation layer to the transport layer, transported through the transport layer to the counter electrode, and are efficiently exposed to light. The present invention relates to a sandwich-type organic solar cell that can provide electromotive force.

近時、新エネルギー源の開発の一環として、太陽エネル
ギーを光電変換固体素子を用いて直接電気エネルギーに
変換する太陽電池の研究が盛んであるが、一般電力用と
して利用できるようになるには、コストダウンが必須の
条件である。
Recently, as part of the development of new energy sources, there has been active research into solar cells that directly convert solar energy into electrical energy using photoelectric conversion solid-state elements, but cost reduction is required before they can be used for general power generation. is an essential condition.

有機材料は一旦大量生産のラインに乗れば、かなり安価
に提供できることが期待でき、加工が容易で大面積化と
いうニーズにも合致し、クリーンなエネルギーとしてあ
らゆる産業分野で有用である。
Once organic materials are put on a mass production line, they can be expected to be provided at a fairly low cost, are easy to process, meet the needs for large-area production, and are useful as clean energy in all industrial fields.

〔従来の技術〕[Conventional technology]

従来から、乾式有機太陽電池としてクロロフィルの単分
子膜や、ポ・ルフィリン、メロシアニン、フタロシアニ
ン類などの天然、あるいは合成の色素、顔料等の真空蒸
着や、キャスト法により薄膜化した素子や、ポリアセチ
レン、ポリピロール、ポリパラフェニレンスルフィドな
どの導電性高分子を用いた光起電力素子が公知である。
Traditionally, dry organic solar cells have been made using monomolecular films of chlorophyll, elements made into thin films by vacuum deposition or casting methods of natural or synthetic dyes and pigments such as porphyrin, merocyanine, and phthalocyanine, polyacetylene, Photovoltaic elements using conductive polymers such as polypyrrole and polyparaphenylene sulfide are known.

また、出願人は、先に電極基板上にキナクリドン顔料の
樹脂分散薄膜層を形成し、この薄膜層上にアルミニウム
半透明電極を真空蒸着したサンドイッチ型有機太陽電池
を提案した。(特願昭59−181520号) 〔発明の解決しようとする問題点〕 一般に、前記の如き有機太陽電池を構成する光起電力材
料の薄膜化の方法は、工業的には大きく分けて樹脂分散
と真空蒸着が考えられる。
The applicant has also proposed a sandwich type organic solar cell in which a resin-dispersed thin film layer of quinacridone pigment is first formed on an electrode substrate, and an aluminum translucent electrode is vacuum-deposited on this thin film layer. (Japanese Patent Application No. 59-181520) [Problems to be Solved by the Invention] In general, methods for thinning photovoltaic materials constituting organic solar cells as described above are broadly divided into resin dispersion methods. and vacuum evaporation.

前者の樹脂分散による薄膜化は、電池の大面積化、加工
の容易さ、コストの低減などの利点を有するが、エネル
ギー変換効率の面からは、後者の真空蒸着による薄膜化
に劣る。
The former method of forming a thin film using resin dispersion has advantages such as increasing the battery area, ease of processing, and reducing costs, but is inferior to the latter method of forming a thin film using vacuum evaporation in terms of energy conversion efficiency.

逆に、後者は高変換効率という利点はあるが、均一な薄
膜は得難く、そのためピンホールが出来易く、1ケ所で
もピンホールが存在するとサンドイッチ型構造の両電極
が短絡状態となって、光起電力セルは不良となり、その
ために必要以上の膜厚を有する起電力素子しか得られな
いという問題がある。
On the other hand, the latter has the advantage of high conversion efficiency, but it is difficult to obtain a uniform thin film, and therefore pinholes are likely to form.If a pinhole exists even in one place, both electrodes of the sandwich structure will become short-circuited, and light will not be transmitted. There is a problem in that the electromotive force cell becomes defective, and as a result, only an electromotive force element having a film thickness greater than necessary can be obtained.

これら有機太陽電池は、非晶質シリコンなどの無機材料
に比べ、そのエネルギー変換効率の低いことが大きな問
題点であり、さらに耐久性や強い照射光に対する不安定
性や、変換効率の劣化といった問題がある。
A major problem with these organic solar cells is that they have lower energy conversion efficiency than inorganic materials such as amorphous silicon, and they also have problems such as durability, instability against strong irradiation, and deterioration of conversion efficiency. be.

また、ショットキー障壁を利用した有機太陽電池を設計
する際、光照射によって生成するキャリヤの分離に必要
な空乏層幅を、光電変換材料の膜厚とするのが最適であ
ると考えられ、これが必要以上の膜厚を有する素子であ
る場合、太陽電池素子全体の内部抵抗の増大につながり
、逆に光電流の損失を惹起すること−なる。
In addition, when designing an organic solar cell using a Schottky barrier, it is considered optimal to set the depletion layer width necessary for separating carriers generated by light irradiation to the film thickness of the photoelectric conversion material. If the element has a film thickness that is more than necessary, the internal resistance of the entire solar cell element will increase, which will conversely cause loss of photocurrent.

しかしながら、現在の真空蒸着法あるいは樹脂分散法で
薄膜を得ようとした場合、蒸着物の不均一性によるピン
ホールの発生が最大の問題となり、この発生を防ぐには
、どうしても必要以上の膜厚を持った太陽電池素子しか
得られない。
However, when trying to obtain a thin film using the current vacuum evaporation method or resin dispersion method, the biggest problem is the occurrence of pinholes due to the non-uniformity of the deposited material, and to prevent this from occurring, it is necessary to increase the film thickness more than necessary. Only solar cell elements with this can be obtained.

さらに、このような従来の太陽電池素子を用いる場合、
ショットキー障壁を形成している金属側からの光照射に
は有効であるが、対向電極側からの光照射に対しては、
これを構成する空乏層に関与していない余分な光起電力
材料部分の吸収によるフィルター効果のため、ショット
キー障壁まで入射光が到達せず、得られる光起電力は著
しく低下するという問題がある。
Furthermore, when using such conventional solar cell elements,
Although it is effective for light irradiation from the metal side forming the Schottky barrier, it is effective for light irradiation from the counter electrode side.
Due to the filtering effect caused by the absorption of the excess photovoltaic material that is not involved in the depletion layer that makes up this barrier, there is a problem in that the incident light does not reach the Schottky barrier, and the resulting photovoltaic force is significantly reduced. .

前記の特願昭59−181520号に係わる発明も、キ
ナクリド顔料の樹脂分散膜を使用することによリ、アル
ミニウム半透明電極との界面に形成されるショットキー
障壁に起因する光起電力を利用する点では優れたもので
あるが、エネルギー変換効率の面からは今一つ改良の余
地を残しているものである。
The invention related to the above-mentioned Japanese Patent Application No. 59-181520 also utilizes the photovoltaic force caused by the Schottky barrier formed at the interface with the aluminum translucent electrode by using a resin-dispersed film of quinacrid pigment. However, there is still room for improvement in terms of energy conversion efficiency.

〔問題点を解決するための手段〕[Means for solving problems]

この発明は、畝上のごとき問題点を解消し、容易な加工
による太陽電池の大面積化を可能とし、経時劣化を小さ
くし、かつ優れたエネルギー変換効率を持った太陽電池
を得んとするもので、二つの相対する電極間に、光照射
による光キャリヤ発生能を有するキャリヤ発生層(発生
FW)と、該キャリヤ発生層(発生層)で発生した光キ
ャリヤの輸送能を有するキャリヤ輸送層(輸送層)とを
介在させ、前記キャリヤ発生層(発生層)とこれに接触
する電極との界面でショットキー障壁を形成し、かつキ
ャリヤ輸送層(輸送層)とこれに接触する電極との界面
をオーミック接触となるよう構成したことを特徴とする
有機太陽電池を特定発明とするものである。
This invention aims to solve problems such as ridges, make it possible to increase the area of solar cells through easy processing, reduce deterioration over time, and obtain solar cells with excellent energy conversion efficiency. A carrier generation layer (generation FW) having the ability to generate optical carriers by light irradiation and a carrier transport layer having the ability to transport optical carriers generated in the carrier generation layer (generation layer) are placed between two opposing electrodes. (transport layer), a Schottky barrier is formed at the interface between the carrier generation layer (generation layer) and the electrode in contact with it, and the carrier transport layer (transport layer) and the electrode in contact with it form a Schottky barrier. A specific invention is an organic solar cell characterized in that the interface is configured to form ohmic contact.

この発明の有機太陽電池は、前記のとおり、相対する電
極の間に発生層と輸送層の二層を設けた積層機能分離型
の有機太陽電池であり、その構造の一例は概略第1図に
示すとおりである。
As mentioned above, the organic solar cell of the present invention is a laminated functionally separated organic solar cell in which two layers, a generation layer and a transport layer, are provided between opposing electrodes, and an example of its structure is schematically shown in FIG. It is shown.

すなわち、第1図において、1は電極基板、2は輸送層
側電極を構成する金属層、3は輸送層、4は発生層、5
は発生層側電極である。
That is, in FIG. 1, 1 is an electrode substrate, 2 is a metal layer constituting the transport layer side electrode, 3 is a transport layer, 4 is a generation layer, and 5 is a metal layer constituting the transport layer side electrode.
is the generation layer side electrode.

電極基板1は、例えばガラス、プラスチック等の材質か
らなる透明性の電極基板であって、この電極基板1の上
面に酸化インジウム(IntOi) 、金。
The electrode substrate 1 is a transparent electrode substrate made of a material such as glass or plastic, and the upper surface of the electrode substrate 1 is coated with indium oxide (IntOi) and gold.

銀、白金などの仕事函数の大きい金属の層2を真空蒸着
などの方法で形成し、輸送層側電極としている。
A layer 2 of a metal having a large work function, such as silver or platinum, is formed by a method such as vacuum evaporation, and serves as an electrode on the transport layer side.

これらの電極基板1および電極金属の材料は、透明性を
有し、輸送層3とオーミック接触となる材料であれば特
に制限はなく、たとえば弾力性ある基板であっても差支
えない。
The materials of the electrode substrate 1 and the electrode metal are not particularly limited as long as they are transparent and come into ohmic contact with the transport layer 3; for example, they may be elastic substrates.

この電極基板1上に正孔輸送能を有する化合物と、樹脂
との溶解液を塗布することによって輸送層3が得られる
A transport layer 3 is obtained by applying a solution of a compound having a hole transport ability and a resin onto the electrode substrate 1.

前記輸送層3を構成する正孔輸送材料としては、望まし
くは電子写真有機感光体において知られている正孔輸送
層材料のうち、発生層材料であるキナクリドン顔料より
小さなイオン化電位を有する化合物を必要に応じて選定
すればよく、たとえば次に示す化合物を有効なものとし
て挙げることができる。
The hole transport material constituting the transport layer 3 is preferably a compound having a smaller ionization potential than the quinacridone pigment, which is the generation layer material, among the hole transport layer materials known for electrophotographic organic photoreceptors. The compound may be selected depending on the situation, and for example, the following compounds can be cited as effective.

化合物(I) 化合物(II) 〔以下余白〕 化合物(II[) C,Hs 化合物(IV) 化合物(V) これらのキャリヤ輸送材料をポリエステル、ポリカーボ
ネート、ポリスチレン、ポリメチルメタ解させ、スピン
ナーを用いたキャスト法など適当な方法で製膜すること
によって輸送層3を得ることができる。この膜厚は特に
限定されるものではないが、通常好ましくは0.05〜
2μ羨、特に好ましくは0.1〜0.5μmの範囲であ
る。
Compound (I) Compound (II) [Margin below] Compound (II [) C, Hs Compound (IV) Compound (V) These carrier transport materials are dissolved in polyester, polycarbonate, polystyrene, or polymethylmethane, and cast using a spinner. The transport layer 3 can be obtained by forming a film by an appropriate method such as the following. This film thickness is not particularly limited, but is usually preferably 0.05~
2μm, particularly preferably in the range of 0.1 to 0.5μm.

一方、発生層4は一般に真空蒸着法によって得られる。On the other hand, the generation layer 4 is generally obtained by vacuum deposition.

こ\で用いられる発生層構成材料としてはキナクリドン
顔料を使用することが望ましく、具体的には、キナクリ
ドン、2.9−ジメチルキナクリドン、3.10−ジメ
チルオキシキナクリドン、4.11−ジメチルキナクリ
ドン、2.9−ジメチルオキシキナクリドン、4.11
−ジメチルオキシキナクリドン、3.10−ジクロルキ
ナクリドン、2,4.9.11−テトラメチルキナクリ
ドン、3.4,10.11−テトラメチルキナクリドン
等を挙げることができ、これらから選ばれた1種もしく
は2種以上が好適に使用される。
It is desirable to use quinacridone pigments as the generation layer constituent material used here, and specifically, quinacridone, 2.9-dimethylquinacridone, 3.10-dimethyloxyquinacridone, 4.11-dimethylquinacridone, 2. .9-dimethyloxyquinacridone, 4.11
-Dimethyloxyquinacridone, 3.10-dichloroquinacridone, 2,4.9.11-tetramethylquinacridone, 3.4,10.11-tetramethylquinacridone, etc., and one type selected from these. Alternatively, two or more types are preferably used.

この場合の発生層の膜厚は通常ショットキー障壁の空乏
層幅から1000人以内が望ましい。
In this case, the thickness of the generation layer is usually desirably within 1000 nm from the depletion layer width of the Schottky barrier.

発生層側電極5はアルミニウムを真空蒸着することによ
って得られ、これは太陽電池素子として発生層側から光
照射する際は半透明電極とすればよく、また輸送層側か
らのみ光照射する場合には充分な膜厚を有する不透明電
極として使用することが望ましい。
The generation layer side electrode 5 is obtained by vacuum evaporating aluminum, and it may be a semitransparent electrode when light is irradiated from the generation layer side as a solar cell element, or it may be a semitransparent electrode when light is irradiated only from the transport layer side. is preferably used as an opaque electrode with sufficient film thickness.

〔作 用〕[For production]

この発明は、赤色顔料としてフタロシアニン級の堅牢性
を有すると共に優れた化学安定性、耐候性を有し、かつ
可視先頭域において大きな吸光係数を持った化合物、例
えば前記のキナクリドン顔料の真空蒸着膜を発生層とし
、かつ輸送層として例えば前記のピラゾリン誘導体ある
いはヒドラゾン誘導体の樹脂分散膜を使用した積層機能
分離型有機太陽電池を提供するもので、この発明におけ
る輸送層を新たに設けることによって発生層の膜厚をシ
ョットキー障壁の空乏層幅に近い膜厚に設定した場合、
たとえピンホールが生じても通常の状態では絶縁体であ
る前記輸送層の存在で両側電極の短絡を起こらないよう
にしたものである。
This invention uses a vacuum-deposited film of a red pigment that has phthalocyanine-class fastness, excellent chemical stability and weather resistance, and has a large extinction coefficient in the visible front region, such as the above-mentioned quinacridone pigment. This invention provides a laminated functionally separated organic solar cell using a resin-dispersed film of the above-mentioned pyrazoline derivative or hydrazone derivative as a generation layer and a transport layer.By newly providing the transport layer in this invention, the generation layer can be improved. When the film thickness is set close to the depletion layer width of the Schottky barrier,
Even if a pinhole occurs, the presence of the transport layer, which is an insulator under normal conditions, prevents a short circuit between the electrodes on both sides.

したがって、従来のセル作成技術に比較して加工がきわ
めて容易となり、しかも蒸着顔料を最小限の量で済ませ
ることが可能である。
Therefore, processing is much easier than with conventional cell manufacturing techniques, and moreover, it is possible to use a minimum amount of vapor-deposited pigment.

゛また、その結果、発生層側のみならず輸送層自身の光
吸収がなければ輸送層側からの光照射によっても入射光
が空乏層まで到達し、充分な光起電力が得られることに
なる。
゛As a result, if there is no light absorption not only on the generation layer side but also on the transport layer itself, the incident light will reach the depletion layer even by light irradiation from the transport layer side, and sufficient photovoltaic force will be obtained. .

とくに、この発明のように輸送層側電極に透明性電極を
用いた場合、輸送層側からの照射光の殆んどが光キャリ
ヤ生成および分離に有効であると同時に、対向アルミニ
ウム電極を不透明とすればこのアルミニウム電極による
入射光の反射光をも光キャリヤ生成、分離に関与させる
ことができ、太陽電池素子全体としてより大きな変換効
率を得ることができる。
In particular, when a transparent electrode is used as the transport layer side electrode as in the present invention, most of the light irradiated from the transport layer side is effective for generating and separating optical carriers, and at the same time, the opposing aluminum electrode is made opaque. Then, the reflected light of the incident light by this aluminum electrode can also be involved in the generation and separation of optical carriers, and a higher conversion efficiency can be obtained as a whole of the solar cell element.

また、この発明における発生層/輸送層積層機能分離型
有機太陽電池は、キナクリドン顔料を用いた前記特願昭
59−181520号の発明に係わる樹脂分散型有機太
陽電池に比べて大きなエネルギー変換効率が得られ、太
陽電池素子として評価した場合、輸送層側からの光照射
において、照射光に対するエネルギー効率約o、iχ(
照射光強度1 、5mW/ cal 。
Furthermore, the generation layer/transport layer laminated function-separated organic solar cell according to the present invention has a higher energy conversion efficiency than the resin-dispersed organic solar cell according to the invention of Japanese Patent Application No. 59-181520, which uses a quinacridone pigment. When obtained and evaluated as a solar cell element, the energy efficiency for the irradiated light is approximately o, iχ(
Irradiation light intensity: 1, 5 mW/cal.

550nm)が得うレタ。550 nm) is obtained.

また、この発明の如く、発生層から輸送層への正孔注入
の良好な系を選択すれば、必要最小限の蒸着顔料で済み
、輸送層ば本来絶縁層であるため、蒸着膜におけるピン
ホール等の発生は問題にならず、きわめて容易にしかも
安定したセルの作製が可能である 〔実 施 例〕 以下、実施例を掲げてこの発明をより具体的に説明する
Furthermore, if a system with good hole injection from the generation layer to the transport layer is selected as in this invention, the minimum amount of vapor-deposited pigment is required, and since the transport layer is originally an insulating layer, pinholes in the vapor-deposited film can be removed. The occurrence of such problems does not pose a problem, and it is possible to produce a cell extremely easily and stably. [Example] The present invention will be explained in more detail below with reference to Examples.

なお、これらにおいて1部」とあるのは「重量部」であ
る。
In addition, in these, "1 part" means "part by weight."

ス1ピ」F 前記のキャリヤ輸送能を有する化合物(I)の1.2部
と、ポリエステル樹脂Vylon 200(東洋紡績(
株)商品名)0.8部を、テトラヒドロフラン100部
に均一に溶解させた溶液を、酸化インジウム(InzO
:+)からなる透明導電ガラス基板上に滴下し、スピン
ナーを用いてキャスト製膜し、輸送層とした。輸送層の
膜厚は約0.2μmであった。
1.2 parts of the compound (I) having carrier transport ability and polyester resin Vylon 200 (Toyobo Co., Ltd.)
Indium oxide (InzO
:+) was dropped onto a transparent conductive glass substrate, and a film was cast using a spinner to form a transport layer. The thickness of the transport layer was approximately 0.2 μm.

さらに、その上に2.9−ジメチルキナクリドン顔料(
Hostaperm Pink E、Hoechst社
製)を真空蒸着法により製膜し、約1500人の発生層
を得た。
Furthermore, 2,9-dimethylquinacridone pigment (
Hostaperm Pink E (manufactured by Hoechst) was formed into a film by a vacuum evaporation method to obtain a generation layer of about 1500 people.

ついで、これにアルミニウムを真空蒸着し半透明電極と
した。(照射光に対する透過率Tat”9゜3χ) この太陽電池セルを微小電流計(タケダ理研TR851
)に接続し、キセノンランプからの単色光(0,2mW
/ cflりを酸化インジウム電極側から、あるいはア
ルミニウム半透明電極側から照射したところ、第2図に
示されるごとくアルミニウム半透明電極側から照射した
場合、観測される短絡充電流密度Jscの作用スペクト
ル曲線Aは、約580nmの単色光に対し、最大の値と
なり、発生層自身の吸収スペクトル(曲線C)とほぼ一
致した。
Next, aluminum was vacuum-deposited on this to form a semi-transparent electrode. (Transmittance to irradiation light Tat"9°3χ) This solar cell was measured using a microcurrent meter (Takeda Riken TR851).
) and monochromatic light from a xenon lamp (0.2mW
/cfl was irradiated from the indium oxide electrode side or from the aluminum translucent electrode side, and as shown in Figure 2, the action spectrum curve of the short-circuit charge current density Jsc observed when irradiated from the aluminum semitransparent electrode side. A had a maximum value for monochromatic light of about 580 nm, and almost matched the absorption spectrum of the generation layer itself (curve C).

一方、酸化インジウム電極側からの光照射の場合のJs
cの吸収スペクトル曲線Bは、発生層のフィルター効果
のため、発生層の吸収スペクトル曲線Cとは対応しない
On the other hand, Js in the case of light irradiation from the indium oxide electrode side
The absorption spectrum curve B of c does not correspond to the absorption spectrum curve C of the generation layer due to the filter effect of the generation layer.

また、輸送層の吸収スペクトル(曲線D)より、この測
定波長の範囲では光吸収は殆んどないことがわかる。
Further, from the absorption spectrum (curve D) of the transport layer, it can be seen that there is almost no light absorption in this measurement wavelength range.

これらの事実は、キナクリドン顔料を使用した樹脂分散
膜の発明である特願昭59−181520号の記載と同
様に、アルミニウム電極との界面におけるショットキー
障壁の存在を示すものである。
These facts indicate the existence of a Schottky barrier at the interface with the aluminum electrode, as described in Japanese Patent Application No. 59-181520, which is an invention of a resin-dispersed film using a quinacridone pigment.

こ\で用いたセルにファンクションジェネレーター(北
斗電工社製HB−104)からの三角波(0,025H
z)を用いて印加電圧■に対する容量Cの変化を求め、
Mott−5chottkyプロツトの結果から、拡散
電位Vb=0.79V 、空乏層幅W(V =O) =
350人が得られた。
A triangular wave (0,025H) from a function generator (HB-104 manufactured by Hokuto Denko Co., Ltd.) was applied to the cell used here.
z) to find the change in capacitance C with respect to the applied voltage ■,
From the results of the Mott-5 Chottky plot, the diffusion potential Vb = 0.79V, the depletion layer width W (V = O) =
350 people were obtained.

また、こ−で用いたセルにアルミニウム半透明電極側か
らメタルハライドランプ(250W)からの白色光を干
渉フィルターにより単色光(550ns、1.5■W/
cd)として照射した場合と、暗時の場合について、電
流−電圧特性を測定した。これを第3図に示す。
In addition, white light from a metal halide lamp (250W) was applied to the cell used in this experiment from the aluminum translucent electrode side through an interference filter to produce monochromatic light (550ns, 1.5■W/
The current-voltage characteristics were measured in the case of irradiation as cd) and in the dark. This is shown in FIG.

この第3図で判るように、暗時における整流特性は良好
であり、光照射時には短絡充電流密度Jsc =2.8
8μA/cd、開放端電圧Voc −1,18V 、フ
ィルファクターff=0.24が得られ、アルミニウム
半透明電極透過光に対するエネルギー変換効率η。
As can be seen in Fig. 3, the rectification characteristics in the dark are good, and the short-circuit charging current density Jsc = 2.8 in the light irradiation.
8 μA/cd, open circuit voltage Voc −1.18 V, fill factor ff=0.24, and energy conversion efficiency η for light transmitted through the aluminum translucent electrode.

=0.56(χ)が得られた。=0.56(χ) was obtained.

この値は特願昭59−181520号で得られた2、9
−ジメチルキナクリドン顔料の樹脂分散膜系の場合のη
”−0,34(χ)に比べてかなりの改良がなされてい
るものである。
This value is 2,9 obtained in Japanese Patent Application No. 59-181520.
−η in case of resin dispersion film system of dimethylquinacridone pigment
”-0.34(χ), which is a considerable improvement.

ス1」しし1土 実施例1と同様の方法で、2.9−ジメチルキナクリド
ンに代えてキナクリドン、3.10−ジメチルキナクリ
ドン、2.9−ジメチルオキシキナクリドンを用いてセ
ルを作製し、実施例1と同様にして測定した結果を前記
実施例1の測定結果と共に第1表に示す。 なお、発生
層膜厚は約1500人、輸送層膜厚は約2000人であ
り、照射光は、同様に550ruw 。
A cell was prepared in the same manner as in Example 1, using quinacridone, 3.10-dimethylquinacridone, and 2.9-dimethyloxyquinacridone in place of 2.9-dimethylquinacridone. The results of measurements made in the same manner as in Example 1 are shown in Table 1 together with the measurement results of Example 1. The thickness of the generation layer was approximately 1500 mm, the thickness of the transport layer was approximately 2000 mm, and the irradiation light was 550 RUW.

1.5n+W/cjとして照射したものであり、エネル
ギー変換効率は次の計算によったものである。この計算
における各記号は、つぎの意味を表す。
It was irradiated at 1.5n+W/cj, and the energy conversion efficiency was calculated as follows. Each symbol in this calculation represents the following meaning.

η1(χ)  =  ((Jsc xVoc  xff
)  /(Io  X’Tat))X100 Jsc ;  短絡充電流密度、Voc :  開放端
電圧、ff  ;  フィルファクター、 TAt α);アルミニウム電極透過率■o;  照射
光エネルギー 〔以下余白〕 第  1   表 去1」ルユl 実施例1で作製したセルと同様の方法で2.9−ジメチ
ルキナクリドンを用いて発生層膜厚が約200人、約5
00人、約700人、約1200人であるセルを作製し
、実施例1と同じ条件で測定した結果を第2表に示す。
η1(χ) = ((Jsc xVoc xff
) /(Io X'Tat)) 1" 2.9-dimethylquinacridone was used in the same manner as the cell prepared in Example 1, and the thickness of the generation layer was approximately 200 mm, approximately 5.
Table 2 shows the results of measurements made under the same conditions as in Example 1 using cells containing 00 people, about 700 people, and about 1200 people.

第  2   表 実施例1と同様の方法で、発生層膜厚約300人のセル
を作製し、酸化インジウム透明電極側から550ns 
、 1.5a+W/aJの単色光を照射した結果、Js
c=6.67#A/cd、 Voc =1.QV、 f
f−0,22が得られ、照射光に対するデバイス変換効
率η−0,1χという大きなものであった。
Table 2 A cell with a generation layer thickness of approximately 300 was prepared in the same manner as in Example 1, and the thickness was 550 ns from the indium oxide transparent electrode side.
, As a result of irradiating monochromatic light of 1.5a+W/aJ, Js
c=6.67#A/cd, Voc=1. QV, f
f-0.22 was obtained, and the device conversion efficiency for the irradiated light was as large as η-0.1χ.

〔発明の効果〕〔Effect of the invention〕

この発明の発生層/輸送層積層機能分離型有機太陽電池
は、発生層である顔料蒸着薄膜のピンホールによるセル
の短絡を輸送層という絶縁層の挿入によって防止するよ
うにしたもので、これによりアルミニウム電極近傍のシ
ョットキー障壁で分離した正孔を効率よく輸送層に注入
し、顔料内部での正孔・電子の再結合を抑えることがで
きる新しい太陽電池素子の組み入れを可能ならしめたも
のである。
The generation layer/transport layer laminated functionally separated organic solar cell of the present invention is designed to prevent cell short circuits due to pinholes in the pigment-deposited thin film that is the generation layer by inserting an insulating layer called the transport layer. This makes it possible to incorporate new solar cell elements that can efficiently inject holes separated by the Schottky barrier near the aluminum electrode into the transport layer and suppress recombination of holes and electrons inside the pigment. be.

また、同時にこの発明で用いられる蒸着顔料の量は、必
要最小限とすることがで9き、その結果、発生層側から
の光照射のみならず、輸送層側からの光照射に対しても
充分な光起電力が得られ、これによりデバイスとしての
照射光エネルギーに対する変換効率も大きな値が得られ
る。
At the same time, the amount of vapor-deposited pigment used in this invention can be kept to the minimum necessary9, and as a result, it is possible to resist not only light irradiation from the generation layer side but also light irradiation from the transport layer side. Sufficient photovoltaic force can be obtained, and as a result, a large value can be obtained for the conversion efficiency of the irradiated light energy as a device.

このように、太陽電池素子の成型加工をきわめて容易に
し、なおかつ、大きな変換効率が得られることは、将来
の太陽電池の大面積化、低コストの面から工業的にも有
利なものであり、その利用価値はきわめて大きなものが
ある。
In this way, making the molding process of solar cell elements extremely easy and achieving high conversion efficiency is industrially advantageous in terms of larger area and lower cost of solar cells in the future. Its utility value is extremely great.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明による有機太陽電池の一例を示す縦断
面図、第2図は実施例1における2、9−ジメチルキナ
クリドン蒸着膜、輸送層の吸収スペクトルおよびアルミ
ニウム電極側照射、酸化インジウム電極側照射の場合の
Jscの作用スペクトルを示すグラフであり、図中、曲
vAAはアルミニウム半透明電極側照射の場合のJsc
の作用スペクトルを、曲iBは酸化インジウム電極側照
射の場合のJscの作用スペクトルを、また、曲線Cは
2.9−ジメチルキナクリドン顔料蒸着膜自身の吸収ス
ペクトルを、さらに曲線りは輸送層自身の吸収スペクト
ルを示す。 第3図は実施例1における太陽電池素子の暗時、および
アルミニウム半透明電極側からの光照射時の電流−電圧
特性を示すグラフである。 1・・・電極基板 2・・・輸送層側電極構成金属層 3・・・輸送層、 4・・・発生層 5・・・発生層側電極 特許出願人   東亜合成化学工業 株式会社■ 第2図 戸討迫−L  /nm
FIG. 1 is a vertical cross-sectional view showing an example of an organic solar cell according to the present invention, and FIG. 2 is a 2,9-dimethylquinacridone vapor-deposited film in Example 1, absorption spectra of the transport layer, irradiation on the aluminum electrode side, and indium oxide electrode side. It is a graph showing the action spectrum of Jsc in the case of irradiation, and in the figure, the curve vAA is the Jsc in the case of irradiation on the aluminum translucent electrode side.
Curve iB shows the action spectrum of Jsc in the case of irradiation on the indium oxide electrode side, curve C shows the absorption spectrum of the 2,9-dimethylquinacridone pigment deposited film itself, and the curve shows the absorption spectrum of the transport layer itself. The absorption spectrum is shown. FIG. 3 is a graph showing the current-voltage characteristics of the solar cell element in Example 1 when it is dark and when it is irradiated with light from the aluminum translucent electrode side. 1... Electrode substrate 2... Transport layer side electrode constituent metal layer 3... Transport layer, 4... Generation layer 5... Generation layer side electrode Patent applicant Toagosei Kagaku Kogyo Co., Ltd.■ 2nd Zudo Assault-L/nm

Claims (2)

【特許請求の範囲】[Claims] (1)二つの相対する電極間に、光照射による光キャリ
ヤ発生能を有するキャリヤ発生層と、該キャリヤ発生層
で発生した光キャリヤの輸送能を有するキャリヤ輸送層
とを介在させ、前記キャリヤ発生層とこれに接触する電
極との界面でショットキー障壁を形成し、かつキャリヤ
輸送層とこれに接触する電極との界面をオーミック接触
となるよう構成したことを特徴とする有機太陽電池。
(1) A carrier generation layer having the ability to generate optical carriers by light irradiation and a carrier transporting layer having the ability to transport optical carriers generated in the carrier generation layer are interposed between two opposing electrodes, and the carrier generation layer is interposed between two opposing electrodes. An organic solar cell characterized in that a Schottky barrier is formed at an interface between a layer and an electrode in contact with the layer, and an ohmic contact is formed at an interface between a carrier transport layer and an electrode in contact with the carrier transport layer.
(2)二つの相対する電極間に、光照射による光キャリ
ヤ発生能を有するキャリヤ発生層と、該キャリヤ発生層
で発生した光キャリヤの輸送能を有するキャリヤ輸送層
とを介在させ、前記キャリヤ発生層は、キナクリドン、
2、9−ジメチルキナクリドン、3、10−ジメチルオ
キシキナクリドン、4、11−ジメチルキナクリドン、
2、9−ジメチルオキシキナクリドン、4、11−ジメ
チルオキシキナクリドン、3、10−ジクロルキナクリ
ドン、2、4、9、11−テトラメチルキナクリドン、
3、4、10、11−テトラメチルキナクリドンから選
ばれた1種もしくは2種以上のキナクリドン顔料の真空
蒸着によりキャリヤ輸送層に対する薄膜として形成され
、前記キャリヤ輸送層は前記キャリヤ発生層の構成材料
よりも、イオン化電位が小さい正孔輸送能を有する化合
物の1種もしくは2種以上の樹脂分散薄膜で形成され、
前記キャリヤ発生層と接触する電極がその接触界面でシ
ョットキー障壁を形成しうる金属の真空蒸着による半透
明、もしくは不透明電極であり、かつ前記キャリヤ輸送
層と接触する電極がその接触界面でオーミック接触とな
りうる金属からなる透明電極であることを特徴とする有
機太陽電池。
(2) A carrier generation layer having the ability to generate optical carriers by light irradiation and a carrier transport layer having the ability to transport optical carriers generated in the carrier generation layer are interposed between two opposing electrodes, and the carrier generation layer is interposed between two opposing electrodes. The layer is quinacridone,
2,9-dimethylquinacridone, 3,10-dimethyloxyquinacridone, 4,11-dimethylquinacridone,
2,9-dimethyloxyquinacridone, 4,11-dimethyloxyquinacridone, 3,10-dichloroquinacridone, 2,4,9,11-tetramethylquinacridone,
The carrier transport layer is formed as a thin film on the carrier transport layer by vacuum deposition of one or more quinacridone pigments selected from 3, 4, 10, 11-tetramethylquinacridone, and the carrier transport layer is made of a material comprising the carrier generation layer. It is also formed of a resin-dispersed thin film of one or more compounds having a hole transport ability with a low ionization potential,
The electrode in contact with the carrier generation layer is a translucent or opaque electrode formed by vacuum deposition of a metal capable of forming a Schottky barrier at the contact interface, and the electrode in contact with the carrier transport layer is in ohmic contact at the contact interface. An organic solar cell characterized by a transparent electrode made of a metal that can be used as a metal.
JP60044169A 1985-03-06 1985-03-06 Organic solar battery Granted JPS61202481A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60044169A JPS61202481A (en) 1985-03-06 1985-03-06 Organic solar battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60044169A JPS61202481A (en) 1985-03-06 1985-03-06 Organic solar battery

Publications (2)

Publication Number Publication Date
JPS61202481A true JPS61202481A (en) 1986-09-08
JPH0543193B2 JPH0543193B2 (en) 1993-06-30

Family

ID=12684085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60044169A Granted JPS61202481A (en) 1985-03-06 1985-03-06 Organic solar battery

Country Status (1)

Country Link
JP (1) JPS61202481A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5264048A (en) * 1991-02-04 1993-11-23 Ricoh Company, Ltd. Photoelectric conversion device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5896780A (en) * 1981-12-04 1983-06-08 Matsushita Electric Ind Co Ltd Photoelectric conversion element
JPS6028278A (en) * 1983-07-26 1985-02-13 Mitsubishi Electric Corp Photoelectric conversion element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5896780A (en) * 1981-12-04 1983-06-08 Matsushita Electric Ind Co Ltd Photoelectric conversion element
JPS6028278A (en) * 1983-07-26 1985-02-13 Mitsubishi Electric Corp Photoelectric conversion element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5264048A (en) * 1991-02-04 1993-11-23 Ricoh Company, Ltd. Photoelectric conversion device

Also Published As

Publication number Publication date
JPH0543193B2 (en) 1993-06-30

Similar Documents

Publication Publication Date Title
Peumans et al. Small molecular weight organic thin-film photodetectors and solar cells
Hagen et al. Novel hybrid solar cells consisting of inorganic nanoparticles and an organic hole transport material
Yakimov et al. High photovoltage multiple-heterojunction organic solar cells incorporating interfacial metallic nanoclusters
US7087834B2 (en) Apparatus and method for photovoltaic energy production based on internal charge emission in a solid-state heterostructure
US7601910B2 (en) Organic photovoltaic devices
US6861722B2 (en) Solid state heterojunction and solid state sensitized photovoltaic cell
US6580027B2 (en) Solar cells using fullerenes
US4164431A (en) Multilayer organic photovoltaic elements
Gregg Bilayer molecular solar cells on spin-coated TiO2 substrates
TWI518056B (en) Organic photosensitive devices comprising a squaraine containing organoheterojunction and methods of making the same
Song et al. Enhancement of photovoltaic characteristics using a PEDOT interlayer in TiO2/MEHPPV heterojunction devices
EP3118907A1 (en) Organic photovoltaic devices
JPS6243553B2 (en)
JP2002076391A (en) Organic semiconductor thin film solar cell
US8110740B2 (en) Photoelectrode substrate of dye sensitizing solar cell, and method for producing same
Takahashi et al. Sensitization effect by porphyrin in polythiophene/perylene dye two-layer solar cells
Shichiri et al. Three-Layer Organic Solar Cell.
Kaneko et al. Fast response of organic photodetectors utilizing multilayered metal-phthalocyanine thin films
Takahashi et al. Enhanced quantum yield in porphyrin/electron-donor double-layer solar cells
Chamberlain Organic PN junction solar cells
WO1999063599A1 (en) Dye sensitized nano-structured photo-voltaic tandem cell
Antohe Electrical and photoelectrical properties of the single-, and multilayer organic photovoltaic cells
JPS61202481A (en) Organic solar battery
JP2004349657A (en) Organic solar cell
Loutfy et al. Conductor-insulator-semiconductor organic solar cells