JPS6027727B2 - Control method for rolling material properties in continuous hot rolling mills - Google Patents

Control method for rolling material properties in continuous hot rolling mills

Info

Publication number
JPS6027727B2
JPS6027727B2 JP54146061A JP14606179A JPS6027727B2 JP S6027727 B2 JPS6027727 B2 JP S6027727B2 JP 54146061 A JP54146061 A JP 54146061A JP 14606179 A JP14606179 A JP 14606179A JP S6027727 B2 JPS6027727 B2 JP S6027727B2
Authority
JP
Japan
Prior art keywords
rolling
hot rolling
rolled material
conditions
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54146061A
Other languages
Japanese (ja)
Other versions
JPS5671511A (en
Inventor
浩 矢田
伸彦 松津
寛 関根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP54146061A priority Critical patent/JPS6027727B2/en
Publication of JPS5671511A publication Critical patent/JPS5671511A/en
Publication of JPS6027727B2 publication Critical patent/JPS6027727B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Control Of Metal Rolling (AREA)
  • Heat Treatment Of Steel (AREA)
  • Metal Rolling (AREA)

Description

【発明の詳細な説明】 この発明は熱間圧延過程における歪速度および温度の何
れか一方または双方を制御することにより、所要の特性
を有する鋼材を得る方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of obtaining a steel material having desired properties by controlling either or both of strain rate and temperature during a hot rolling process.

比較的高級な材質特性が要求される鋼材は、これまで熱
間圧延後実際に使用されるまでの過程において熱処理を
行なって使用されることが多かつつた。
Until now, steel materials that are required to have relatively high quality material properties have often been used after being subjected to heat treatment after hot rolling until they are actually used.

しかし省エネルギーや低コスト化等の時代の要求により
、熱間圧延ままですぐれた材質が要求されつつある。ま
た二次加工して使用される場合でも熱間圧延ですぐれた
材質をつくることにより後工程での材質形成に好結果を
得ることが多い。このような目的で熱間圧延の条件を変
化させることにより熱間圧延鋼材に望ましい材質特性を
附与させることがきわめて重要視されるようになってき
た。
However, due to the demands of the times such as energy saving and cost reduction, there is a growing demand for materials with excellent properties as hot rolled. Furthermore, even when the material is used after secondary processing, good results can often be obtained in forming the material in subsequent processes by creating an excellent material through hot rolling. For these purposes, it has become extremely important to impart desirable material properties to hot rolled steel products by changing hot rolling conditions.

高強度低温級性のすぐれた材料が要求されるラインパイ
プ用厚板に適用されている制御圧延(CR)はその代表
例である。このように熱間圧延で鋼材の材質を制御する
ためには熱間加工におけるオーステナイト(以下yと称
す)の変形および回復再結晶挙動が理解されなければな
らない。
A typical example is controlled rolling (CR), which is applied to thick plates for line pipes that require materials with high strength and excellent low-temperature properties. In order to control the material properties of steel materials through hot rolling, it is necessary to understand the deformation and recovery recrystallization behavior of austenite (hereinafter referred to as y) during hot working.

このような研究もかなり進められているが、実際の鋼材
の多パスの熱間圧延の状態を予測するのは現状ではきわ
めて困難で、とくに最近圧延の主流を占めているホット
ストリツプミルや線材ミルのような高速連続熱間圧延で
は材質を制御すべき−般的な法則は全く知られていなか
った。本発明はこのような高速連続熱間圧延において、
熱間圧延後の材質を決定するy組織の状態を、与えられ
た圧延条件から簡単に予測できる画期的な一般法則の発
見に基づいて、熱延鋼材の材質の制御方式を開発したも
のである。
Although much progress has been made in this type of research, it is currently extremely difficult to predict the conditions of actual multi-pass hot rolling of steel materials, especially in hot strip mills, which have recently become the mainstream of rolling. In high-speed continuous hot rolling such as in wire rod mills, no general rules were known for controlling material properties. In such high-speed continuous hot rolling, the present invention provides
A method for controlling the material quality of hot rolled steel was developed based on the discovery of a revolutionary general law that allows the state of the y-structure, which determines the material quality after hot rolling, to be easily predicted from given rolling conditions. be.

本発明者等は基礎的な各種熱間加工実験および実際の線
材等の連続ミルでの現場実験を重ねた結果、特別な合金
元素を多量に含まない一般的鋼材において、く大体の基
準はNiミ。
As a result of various basic hot working experiments and on-site experiments using continuous mills for actual wire rods, the inventors have found that the general standard for general steel materials that do not contain large amounts of special alloying elements is Ni. Mi.

o2%、M。十墓W<0.3%、その他の合金元素合計
で10%以下)、多数回の圧延を行なったとき次のよう
な圧延、熱履歴条件に適合する場合、即ち■ 合計圧下
率 60%以上■ 鋼材の任意の個所で第1回の圧延か
み込みから最終回の圧下終了までの時間が1の抄以下■
圧延後0.2秒以上の時間800qo以上にあったと
き、以下のようなきわめて簡単でしかも一般的な法則が
成立っことを発見した。
o2%, M. 10% or less in total of other alloying elements), if the following rolling and heat history conditions are met when rolling is performed multiple times, i.e. ■ Total rolling reduction 60% or more ■ The time from the first rolling bite to the end of the final rolling at any part of the steel material is 1 mm or less ■
It was discovered that the following very simple and general law holds true when the rolling temperature is 800 qo or more for 0.2 seconds or more after rolling.

すなわち圧延後とくに加熱を行なわずに放冷または強制
冷却されたときの変態前のy組織は、必ず実質的に再結
晶しており、第1図に示すようにその結晶粒径Nyは鋼
種・圧下率によらず最終パスのみの歪速度および温度だ
けによってきまる。
In other words, when the y structure before transformation is allowed to cool or forcedly cooled without any particular heating after rolling, it is always substantially recrystallized, and as shown in Fig. 1, the grain size Ny varies depending on the steel type and the type of steel. It is determined only by the strain rate and temperature of the final pass, regardless of the reduction rate.

この実験式は大略Ny=1・8(log言十13900
/T)−15・6 (1,で表わされる。
This experimental formula is approximately Ny = 1.8 (log word 13900
/T)-15・6 (Represented by 1.

ここでぅは試料採取直前のパスの歪速度(sec‐1)
で、Tはその圧延直後の試料の平均温度(K)である。
なお、上式のきは鋼板圧延では下式{2}で計算された
ものを用いる。
Here, is the strain rate (sec-1) of the pass immediately before sample collection.
Here, T is the average temperature (K) of the sample immediately after rolling.
In addition, when the above formula is used, the one calculated by the following formula {2} is used in steel plate rolling.

言;鉛.N.糖.方.仇(ご;)‘2) ここで、Roはロール径(豚)、日はそのパス前の鋼材
厚み(側)、N‘まロール回転数、yは減面率である。
Word; lead. N. sugar. direction. (Go;)'2) Here, Ro is the roll diameter (pig), day is the steel thickness (side) before the pass, N' is the roll rotation speed, and y is the area reduction rate.

また、孔型圧延の場合は、近似的に上式の日を、日=ノ
s(肋)として求める。ただし、Sはそのパス前の断面
積である。
In addition, in the case of groove rolling, the day of the above formula is approximately determined as day=nos (rib). However, S is the cross-sectional area before the pass.

本発明は上記の画期的な発見にもとづき、圧延過程で材
質を制御する方法を見出したもので、多数回の圧延を行
なうとき最終パスの圧延条件を知るだけで圧延後の熱間
加工組織を予知することができ、また逆に最終パスの圧
延条件を制御することによって圧延材の材質を制御する
工業的手法を提供するものであり、その利益ははなはだ
大きなものである。
Based on the above-mentioned groundbreaking discovery, the present invention has discovered a method to control material properties during the rolling process. When rolling is performed multiple times, the hot-worked structure after rolling can be improved by simply knowing the rolling conditions of the final pass. The present invention provides an industrial method for controlling the material quality of rolled material by controlling the rolling conditions of the final pass, and the benefits are extremely large.

本発明は2つの段階に分れる。The invention is divided into two stages.

第1の段階は上述の関係式によりy粒径を希望の数値内
に制御するものである。具体的には第1図に示すいくつ
かの方式が考えられる。通常は圧延時にあらかじめ設定
するパススケジュール(ロール回転数、減面率等)から
2式により最終圧延パスの歪速度は決定されるので、望
ましいy粒径の範囲を与えると、前認1}式によって望
ましい仕上温度範囲が決定される。従って第1図aに示
すようにある圧延条件で圧延を行なったとき、仕上圧延
出口で渡り脇を行なって、その実測温度が上記の望まし
い温度範囲内にあるかどうかを知り「その範囲から外れ
る場合は加熱温度もしくは仕上圧延までの間でのロール
注水等の冷却条件を変えることによりッ粒座を望ましい
範囲内に調整することができる。
The first step is to control the y particle size within a desired numerical value using the above-mentioned relational expression. Specifically, several methods shown in FIG. 1 can be considered. Normally, the strain rate of the final rolling pass is determined by equation 2 from the pass schedule (roll rotation speed, area reduction rate, etc.) set in advance during rolling, so if the desired y grain size range is given, then equation 1 The desired finishing temperature range is determined by: Therefore, when rolling is carried out under certain rolling conditions as shown in Figure 1a, it is necessary to check whether the actual measured temperature is within the above-mentioned desired temperature range by performing rolling at the finish rolling exit. In this case, the grain position can be adjusted within a desired range by changing the heating temperature or cooling conditions such as roll water injection up to finish rolling.

また他の方法として逆に加熱・冷却条件が一定な場合は
圧延条件を操作することにより仕上温度が決るので、第
1図bに示すようにパススケジュール、圧延速度を変え
ることにより仕上温度・歪速度の両者を制御することが
できる。
Alternatively, when the heating and cooling conditions are constant, the finishing temperature can be determined by manipulating the rolling conditions.As shown in Figure 1b, the finishing temperature and strain Both speeds can be controlled.

この場合第1図Cに示すように同一ミルにおいては一般
に圧延仕上温度は圧延条件から計算によって求めること
が可能であるので、仕上温度の実測を行わず算により所
要のy粒径を与える適切な圧延条件を求め、これに適合
した操業条件を設定してy粒径を制御することが可能で
ある。
In this case, as shown in Figure 1C, in the same mill, the finishing temperature of rolling can generally be calculated from the rolling conditions, so it is possible to calculate the appropriate finishing temperature to give the required y grain size without actually measuring the finishing temperature. It is possible to control the y grain size by determining the rolling conditions and setting operating conditions that are compatible with the rolling conditions.

このような計算に基づく制御は、さらに加熱冷却条件を
も含めて綜合的に実施することが可能である。本発明の
第2の段階は圧延条件を最適に設定することにより直接
所要の圧延製品の材質を制御する方式である。圧延鋼材
の材質は一般的に圧延直後のy粒度の他に、圧延後の冷
却条件および供謎鋼材の化学成分により定まるその鋼の
変態特性により、その鋼の変態組織と材質との相関を通
じて決定されるが、後に実施例に示すように対象とする
鋼種によっては、これらの相関関係を定量的に定式化す
ることが可能である。従って圧延条件によるy粒度の制
御と冷却条件の制御による変態製織の制御を併せて綜合
的材質制御が可能になる。
Control based on such calculations can be performed comprehensively including heating and cooling conditions. The second step of the present invention is a method of directly controlling the required material quality of the rolled product by optimally setting the rolling conditions. The material quality of rolled steel is generally determined by the transformation characteristics of the steel determined by the grain size immediately after rolling, the cooling conditions after rolling, and the chemical composition of the unidentified steel, and through the correlation between the transformation structure of the steel and the material quality. However, as shown in Examples later, it is possible to quantitatively formulate these correlations depending on the steel type of interest. Therefore, it is possible to comprehensively control the material quality by controlling the grain size by controlling the rolling conditions and controlling the transformation weaving by controlling the cooling conditions.

この段階は第1図a〜cでは点線で示した部分が附加さ
れたことになる。以下実施例を示す。実施例 1 第1表に示す各種線材では熱処理条件の研究により同表
中に示すようなy粒度をとることが望ましいことがわか
った。
At this stage, the portions indicated by dotted lines in FIGS. 1a to 1c are added. Examples are shown below. Example 1 For the various wire rods shown in Table 1, a study of heat treatment conditions revealed that it is desirable to have a grain size of y as shown in the table.

これを第2表に示す諸元の線材ミルで実現するために、
tl)式の相関関係から第3表のような圧延条件を設定
して、5.5側0の線材圧延に実施したところ、同表中
に示すようにきわめて満足すべき結果を得た。このなか
には第1図に示した種々の方法による制御が含まれてい
る。
In order to achieve this with a wire mill with the specifications shown in Table 2,
When the rolling conditions as shown in Table 3 were set based on the correlation of the formula (tl) and rolling of a 5.5 side 0 wire rod was carried out, extremely satisfactory results were obtained as shown in the table. This includes control using the various methods shown in FIG.

予想と実際の一致を第2図に示すが、いずれもきわめて
良好な一致を示している。第2図ま横軸‘ま1。
Figure 2 shows the predicted and actual agreement, and both show very good agreement. Figure 2 horizontal axis 'ma1.

多{Z=卓球p(T帯篭)}とし、縦軸はy粒度を表わ
している。@は従来の条件、■はm式の相関を示し、■
,■,■及び■は第3表制御方法の番号を示す。第1表
供試材の化学成分組成(重量略)望ましいッ粒度 A 4〜7 B 9〜11 C〃 第2表、使用した線村ミル諸元 ビレット加熱温度:1000〜120000スタンド数
:25最終段はブロックミル係a18」25) 最大圧延速度 :70m/S(仕上出口)ブロックミル
内全:80〜90% 圧下率 No.18〜25圧延時間:0.2〜1.$圧延後の冷
却装置:チェーンコンベア上でルーズコイル状で強制冷
却実施例 2 硬鋼線材の冷間仲線前に必要なLP(鉛パテンティング
)処理を省略する目的でLP材と同等の材質を熱間圧延
材に与えるために本発明の適用を行なつた。
The vertical axis represents the y particle size. @ indicates the conventional condition, ■ indicates the m-type correlation, and ■
, ■, ■ and ■ indicate the numbers of the control methods in Table 3. Table 1 Chemical composition of sample material (weight omitted) Desired particle size A 4-7 B 9-11 C Table 2 Specifications of the Shinmura mill used Billet heating temperature: 1000-120000 Number of stands: 25 Final Stage is block mill section A18''25) Maximum rolling speed: 70m/S (finishing outlet) Total inside block mill: 80-90% Rolling reduction No. 18-25 rolling time: 0.2-1. Cooling device after rolling: Example of forced cooling in a loose coil on a chain conveyor 2 Material equivalent to LP material for the purpose of omitting the LP (lead patenting) treatment required before cold rolling of hard steel wire The present invention was applied to provide hot rolled materials with the following properties.

LP材と同等の材質を得るためには、別途研究により、
■ パーライト変態を平均600oo以下で起させるこ
と■ ベイナント変態はできるだけ少なく、マルテンサ
ィト変態を起させないこと以上のような変態組織を得る
ための5.5側ぐの線村の圧延後の冷却条件を検討した
結果、■ ソ粒度>7またはく4・・・適切な条件なし
、■ y粒度4〜7・・・第3図に示す冷却範囲が適当
であることが分った。
In order to obtain a material equivalent to LP material, separate research is required.
■ To cause pearlite transformation to occur at an average of 600 oo or less ■ To minimize beynant transformation and not to cause martensitic transformation To obtain the above-mentioned transformed structure, the cooling conditions after rolling of the 5.5-side line village should be As a result of the study, it was found that (1) Particle size>7 or 4...No suitable conditions were found; (2) Particle size 4-7...The cooling range shown in FIG. 3 was appropriate.

これを満足させるために実施例1と同じ線材ミルにおい
て圧延後のコンペアラィン上にスプレィ冷却ノズル列を
設置し、第3表の3と同一の圧延条件で、第3図中に示
す冷却条件を設定し操業を0行なった結果、第4表に示
す組織と材質の線材が得られた。
In order to satisfy this, a spray cooling nozzle row was installed on the compare line after rolling in the same wire mill as in Example 1, and the cooling conditions shown in Fig. 3 were applied under the same rolling conditions as 3 in Table 3. As a result of the settings and 0 operations, a wire rod having the structure and material shown in Table 4 was obtained.

比較材と比べて分るようにLP材と全く同等の材質が得
られている。第3図は横藤にノC%× {1十4.1M
n(%)}、縦軸に750→650ooの冷却速度(0
0/S)をとる。
As can be seen from the comparison with the comparative material, the material has exactly the same quality as the LP material. Figure 3 shows Yokofuji's C%× {14.1M
n (%)}, the vertical axis shows the cooling rate from 750 to 650oo (0
0/S).

夕 @はッ粒度4〜7のとき最適冷却範囲、■は実施例
の範囲をを示している。第3表 圧延条件制御の内容
と結果 第4表 材質制御材の箱風織と材質試験結果(鋼A、5
.5物の)
@ indicates the optimum cooling range when the particle size is 4 to 7, and ▪ indicates the range of the example. Table 3 Contents and results of rolling condition control Table 4 Box style weave of material control material and material test results (Steel A, 5
.. 5 items)

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の具体的方式例のフロー、第2図はy粒
度と実験式との関係図、第3図は化学成タ分と最適冷却
範囲の関係図をそれぞれ示す。 第1図‐a第1図‐b 第1図‐c 第2図 第3図
FIG. 1 shows a flow of a specific system example of the present invention, FIG. 2 shows a relationship diagram between y particle size and an experimental formula, and FIG. 3 shows a relationship diagram between chemical components and optimum cooling range. Figure 1-a Figure 1-b Figure 1-c Figure 2 Figure 3

Claims (1)

【特許請求の範囲】 1 熱間圧延完了直後において実質的にオーステナイト
状態であるような鋼に、合計60%以上の圧下率となる
1回以上の熱間圧延を10秒間以内の時間で行なうとと
もに、該熱間圧延後、0.2秒以上、800℃以上にあ
る状態での前記熱間圧延における最終段の圧延の歪速度
ε〔sec^−^1〕および該最終段の圧延直後の圧延
材の平均温度T〔°K〕を、圧延材の加熱温度、圧下ス
ケジユール、圧延機運転条件から計算により或いは実測
により求め、該歪速度ε〔sec^−^1〕および圧延
材平均温度T〔°K〕から熱間圧延後の再結晶オーステ
ナイト粒度番号Nγを、式 Nγ=1.8(logε+
13900/T)−15.6(±0.7)によつて予測
し、この予測結果に基づいて、最終的に得ようとする材
質特性に必要なオーステナイト粒度とすべく最終段圧延
での歪速度および圧延材平均温度の何れか一方または双
方を制御することを特徴とする熱間連続圧延機における
圧延材の材質制御法。
[Scope of Claims] 1. A steel that is substantially in an austenitic state immediately after completion of hot rolling is subjected to hot rolling one or more times at a total reduction rate of 60% or more for a time of 10 seconds or less, and , the strain rate ε [sec^-^1] of the final stage rolling in the hot rolling at 800°C or higher for 0.2 seconds or more after the hot rolling, and the rolling immediately after the final stage rolling. The average temperature T [°K] of the rolled material is calculated or measured from the heating temperature of the rolled material, rolling schedule, and rolling mill operating conditions, and the strain rate ε [sec^-^1] and the average temperature T [°K] of the rolled material are determined. The recrystallized austenite grain size number Nγ after hot rolling is calculated from the formula Nγ=1.8(logε+
13900/T)-15.6 (±0.7), and based on this prediction result, the strain in the final stage rolling is adjusted to obtain the austenite grain size necessary for the material properties that are ultimately desired. A method for controlling the material quality of a rolled material in a continuous hot rolling mill, characterized by controlling either or both of the speed and the average temperature of the rolled material.
JP54146061A 1979-11-13 1979-11-13 Control method for rolling material properties in continuous hot rolling mills Expired JPS6027727B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54146061A JPS6027727B2 (en) 1979-11-13 1979-11-13 Control method for rolling material properties in continuous hot rolling mills

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54146061A JPS6027727B2 (en) 1979-11-13 1979-11-13 Control method for rolling material properties in continuous hot rolling mills

Publications (2)

Publication Number Publication Date
JPS5671511A JPS5671511A (en) 1981-06-15
JPS6027727B2 true JPS6027727B2 (en) 1985-07-01

Family

ID=15399189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54146061A Expired JPS6027727B2 (en) 1979-11-13 1979-11-13 Control method for rolling material properties in continuous hot rolling mills

Country Status (1)

Country Link
JP (1) JPS6027727B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1780703A (en) * 2003-03-28 2006-05-31 达塔钢铁有限公司 A system and method for on-line property prediction for hot rolled coil in a hot strip mill
EP2872207B1 (en) 2012-07-11 2019-09-11 Koninklijke Philips N.V. Patient interface
JP6435234B2 (en) * 2015-05-20 2018-12-05 株式会社日立製作所 Hot roll finishing mill outlet temperature control device and control method thereof

Also Published As

Publication number Publication date
JPS5671511A (en) 1981-06-15

Similar Documents

Publication Publication Date Title
Anelli Application of mathematical modelling to hot rolling and controlled cooling of wire rods and bars
CN101181718B (en) Method for producing wide strip steel by bar strip continuous casting and rolling as well as system therefor
RU2505363C1 (en) Hot rolling mill and hot rolling treatment method of metal strip or metal sheet
CN104942019B (en) A kind of cold rolling of strip steel process Automatic control method of width
CN105177423B (en) A kind of big wall thickness X65M Pipeline Steel Plates and its manufacture method
JP6432614B2 (en) Cold rolling method and manufacturing method of metal tube
US5958158A (en) Method of manufacturing hot-worked elongated products, in particular bar or pipe, from high alloy or hypereutectoidal steel
US5186769A (en) Seamless steel tube manufacture
JPS6027727B2 (en) Control method for rolling material properties in continuous hot rolling mills
JP5119574B2 (en) Heat treatment method for seamless steel pipe made of Ti-added low carbon steel
JP3081729B2 (en) Temperature control method in thermomechanical treatment of seamless steel pipe
US5226978A (en) Steel tube alloy
CN110565021A (en) optimization method of hot-rolled ribbed steel bar production process
RU2563911C2 (en) Production of coiled stock at continuous wide-strip mill
JPH01143704A (en) Controlled rolling method for bar steel
JP4964061B2 (en) Control method for steel wire rod cooling
Bobkov et al. A research of a cooling temperature mode of Hot Strips from low-alloyed steels
RU2340684C2 (en) Method for rolled stock thermomechanical treatment
CA1340418C (en) Method for manufacturing seamless tubulars using t-v-n microalloyed steels
JP3730762B2 (en) Ferritic stainless steel wire manufacturing method
RU2288281C1 (en) Method of production of low-carbon sheet steel
JP2001059137A (en) High carbon slab for seamless steel pipe and its production
JPS636284B2 (en)
Kurpe et al. Investigation of the hot rolling process at the steckel mill by means of modeling by the finite-element method
RU2356657C2 (en) Manufacturing method of broad hot-rolled strips