JPS602622B2 - speed generator - Google Patents

speed generator

Info

Publication number
JPS602622B2
JPS602622B2 JP54079897A JP7989779A JPS602622B2 JP S602622 B2 JPS602622 B2 JP S602622B2 JP 54079897 A JP54079897 A JP 54079897A JP 7989779 A JP7989779 A JP 7989779A JP S602622 B2 JPS602622 B2 JP S602622B2
Authority
JP
Japan
Prior art keywords
output
rotor
permanent magnet
magnetic flux
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54079897A
Other languages
Japanese (ja)
Other versions
JPS564057A (en
Inventor
良平 打田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP54079897A priority Critical patent/JPS602622B2/en
Publication of JPS564057A publication Critical patent/JPS564057A/en
Publication of JPS602622B2 publication Critical patent/JPS602622B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Linear Or Angular Velocity Measurement And Their Indicating Devices (AREA)
  • Control Of Electric Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Description

【発明の詳細な説明】 本発明は速度発亀機に関する。[Detailed description of the invention] The present invention relates to a speed generator.

従釆、モータの速度を検出する手段として、モータの速
度に比例する周波数のパルスを検知する方法が一般的で
ある。
Accordingly, as a means for detecting the speed of the motor, it is common to detect pulses with a frequency proportional to the speed of the motor.

この場合モータの回転軸に速度周波数発電機を別途設け
るのが普通であった。本発明はモータの本体中に速度発
電機を組込むものであるが、速度発電機の一部分をモー
タ本体と兼用することにより、速度発電機を4・型、簡
易にすることを目的とし、ひいては速度検出手段を含む
モー夕全体の構造を簡単化しようとするものである。以
下、図面に従って本発明の一実施例を説明する。
In this case, it was common to separately provide a speed frequency generator on the rotating shaft of the motor. The present invention incorporates a speed generator into the main body of the motor, and by using a part of the speed generator as the motor main body, the purpose of the present invention is to simplify the speed generator into a 4-type model, and thereby speed detection. The purpose is to simplify the overall structure of the motor, including the means. An embodiment of the present invention will be described below with reference to the drawings.

第1図a,bは本発明の一実施例を示し、特に無整流子
モータにおける回転界磁磁石5とその保持のための軟磁
性材6、及び速度発電機の検出手段であるホール素子1
〜3の機械的配置について概略を示したものである。
Figures 1a and 1b show an embodiment of the present invention, in particular a rotating field magnet 5 in a commutatorless motor, a soft magnetic material 6 for holding it, and a Hall element 1 serving as a detection means for a speed generator.
This figure shows an outline of the mechanical arrangement of items 1 to 3.

ホール素子はステータ側に固定され、磁石5と軟磁性材
6とは回転軸7に一体結合されて成る。軟磁性材6はそ
の外周部に均等ピッチで刻まれた凹凸部を有し、前記ホ
ール素子に対して回転につれて凸部と凹部とが交互に対
向されるように配置される。今、3相モー外こおける本
速度発電機の例についてのべる。
The Hall element is fixed to the stator side, and the magnet 5 and soft magnetic material 6 are integrally connected to the rotating shaft 7. The soft magnetic material 6 has concave and convex portions carved at a uniform pitch on its outer circumference, and is arranged so that the convex portions and concave portions alternately face each other as the soft magnetic material 6 rotates with respect to the Hall element. Now, let's talk about an example of a three-phase motor external generator.

まずホール素子1〜3は機械角で120o間隔で配置す
る。軟磁性材6の凹凸は一周で今208、つまり24函
である。第2図にホール素子1〜3の電気的結線を示し
、第3図にその動作を説明するための状態図を示す。ホ
ール素子1〜3は3本の各入力電流素子が直列接続され
るものとする。これらに今、ほゞ一定の電流を流すもの
とすると、ホール素子1には第3図aに示すごとき電圧
が。ータの回転に従ってあらわれる。つまりホール素子
1が第1図aの位置にあって、ロータが矢印100の方
向へ回転するとき、回転角8の変化につれてIA端子に
VIAなる電圧が現われる。つまり第1図bにおいて、
本来回転トルクを出すべく主界滋生成用に設けた磁石5
の側面付近からの磁束は、図中の点線に示す如き経路に
よりホール素子1を貫通して欧磁性材6へ入りこむ。こ
の磁束量はロータの回転に従って、界磁磁石の極中心付
近では大きく、極間境界付近では小さくなる。同時に欧
磁性材の端部の凹凸のためにその磁束は疎密の変調をう
け、その結果、ホール素子1のIA端子出力VIAは第
3図aの如くになる。このときIB端子出力は、素子1
の入力両端電位層のはゞ中間値&の一定値にあるのが普
通である。ロータが回転をつづけ、ホール素子1を通過
する磁束の極性が反転すればIB端子側に出力が現れ、
IA端子側は変化のない一定電圧となる。かくして磁石
の犠牲の切換わる毎に、IA、IB端子には交互に出力
が現れ、それらの出力を合成するとその結果は第3図a
の様な波形で得られる。同様にホール素子2,3につい
ても各出力端に交互に出力が得られ、第3図b、cの様
になる。さて第2図において抵抗器11〜16によって
VIへVIB、V泌・・・V窓の電圧を全て合成、っま
.り加算すると第3図dに示すごとき電圧出力が得られ
る。ホ−ル素子1〜4の各出力の一端では、磁石の界磁
磁極に対応する正弦波状の半波出力が基本波としてまず
存在し、それが鰍磁性材6の端部の凹凸により変調され
た結果が出力である。これら各出力を加算すると前記基
本波分が加算されると共に、凹凸による変調波分も加算
される。このとき、ホール素子を3個用いて加算するの
で前記基本波分は3相全波整流をさせたと同様になって
脈動分は4・さくなる。後者の凹凸の加算については、
一つのホール素子が鰍磁性材6の凸部と対向するときに
は、他の端子も同じく凸部と対向する様にさせたとき、
加算の結果、軟磁性材により得られた凹凸信号はそのま
ま残すことができる。つまり加算する結果、基本波分を
軽減しつつ、凹凸信号は減少させずに残しうる。界磁磁
極の中心付近にホール素子があるときには起磁力が大枚
に凹凸の変調信号も大きいが、極の境界付近に来るとそ
の変調信号が小さくなる。しかし3個の素子が所定の位
相差(今の場合2竹/3)をもってその出力を加算され
る結果、凹凸信号は回転角8の変化によってもその振中
はあまり変化せず概ね一定の出力が縛られる。前記基本
波分を除去し、また外来ノイズを除去して安定な信号を
取出すにはハィパスフイルタ8の様な帯城通過回路を通
して信号を処理すれば良い。そうすると薮磁性材6の外
周の凹凸がロータの回転に伴って変化する信号「つまり
回転数に比例する周波数を持った交流信号がより安定に
得られる。所でホール素子各々が軟磁性材の凹凸に対し
ていずれも同相で対向するためには、凹凸の極数をKと
し、磁石の極対数をP「ホール素子の個数を◇とすると
き、K=NPJ(Nは任意の正整数)なる関係を満たし
ておれば良い。P=4極対、0=3ならばK=12×N
であり、第1図はN=2の場合にあたる。ただしこの関
係はホール素子が円周360oの中で均等ピッチでおか
れた場合にのみ必要な条件であって、ホ−ル素子の円周
方向360o中での割振りを不均一にする場合には前記
条件を満たさなくとも良い。ところで、1つのホール素
子の出力端子間電圧の犠牲をみることによってロータの
位鷹を検出することが出来る。
First, Hall elements 1 to 3 are arranged at intervals of 120 degrees in mechanical angle. The number of unevenness of the soft magnetic material 6 is 208 in one circumference, that is, 24 boxes. FIG. 2 shows the electrical connections of the Hall elements 1 to 3, and FIG. 3 shows a state diagram for explaining their operation. Hall elements 1 to 3 are assumed to have three input current elements connected in series. Assuming that a substantially constant current is now applied to these elements, a voltage as shown in FIG. 3a will appear in the Hall element 1. Appears as the data rotates. That is, when the Hall element 1 is in the position shown in FIG. 1a and the rotor rotates in the direction of the arrow 100, a voltage VIA appears at the IA terminal as the rotation angle 8 changes. In other words, in Figure 1b,
Magnet 5 originally provided for generating main field energy to generate rotational torque
The magnetic flux from near the side surface penetrates the Hall element 1 and enters the European magnetic material 6 along a path as shown by the dotted line in the figure. As the rotor rotates, the amount of magnetic flux increases near the pole center of the field magnet and decreases near the boundary between the poles. At the same time, the magnetic flux is modulated by density due to the unevenness of the end of the magnetic material, and as a result, the IA terminal output VIA of the Hall element 1 becomes as shown in FIG. 3a. At this time, the IB terminal output is
Normally, the potential layer at both input terminals is at a constant value between the intermediate value &. If the rotor continues to rotate and the polarity of the magnetic flux passing through the Hall element 1 is reversed, an output will appear on the IB terminal side.
The IA terminal side has a constant voltage that does not change. In this way, each time the magnet sacrifice is switched, outputs appear alternately at the IA and IB terminals, and when these outputs are combined, the result is shown in Figure 3a.
It can be obtained with a waveform like . Similarly, outputs are obtained alternately at each output terminal of the Hall elements 2 and 3, as shown in FIGS. 3b and 3c. Now, in Fig. 2, all the voltages in the V window are synthesized by resistors 11 to 16 to VI, VIB, V output, etc. By adding them together, a voltage output as shown in FIG. 3d is obtained. At one end of each output of the Hall elements 1 to 4, a sinusoidal half-wave output corresponding to the field magnetic pole of the magnet exists as a fundamental wave, which is modulated by the unevenness of the end of the magnetic material 6. The result is the output. When these respective outputs are added, the fundamental wave component is added, and the modulated wave component due to the unevenness is also added. At this time, since three Hall elements are used for addition, the fundamental wave component becomes the same as three-phase full-wave rectification, and the pulsation component becomes 4. Regarding the latter addition of unevenness,
When one Hall element faces the convex part of the magnetic material 6, the other terminals are also made to face the convex part,
As a result of the addition, the unevenness signal obtained by the soft magnetic material can be left as is. In other words, as a result of the addition, the uneven signal can be left without being reduced while the fundamental wave component is reduced. When the Hall element is located near the center of the field magnetic pole, the magnetomotive force is large and the modulation signal of the unevenness is also large, but when it comes near the boundary of the pole, the modulation signal becomes small. However, as the outputs of the three elements are added together with a predetermined phase difference (2/3 in this case), the unevenness signal does not change much in its oscillation even when the rotation angle 8 changes, and the output remains approximately constant. is tied up. In order to remove the fundamental wave component and external noise and extract a stable signal, the signal may be processed through a band passing circuit such as a high-pass filter 8. In this way, the irregularities on the outer periphery of the soft magnetic material 6 will provide a more stable signal that changes with the rotation of the rotor, that is, an AC signal with a frequency proportional to the number of rotations. In order for both to face each other in the same phase, the number of poles of the unevenness is K, the number of pole pairs of the magnet is P, and the number of Hall elements is ◇, then K = NPJ (N is any positive integer). It is sufficient if the relationship is satisfied. If P = 4 pole pairs, 0 = 3, then K = 12 × N
, and FIG. 1 corresponds to the case where N=2. However, this relationship is a necessary condition only when the Hall elements are arranged at a uniform pitch within the circumference 360o, and when the Hall elements are distributed unevenly within the circumferential direction 360o. It is not necessary to satisfy the above conditions. By the way, the rotor position can be detected by looking at the sacrifice of the voltage between the output terminals of one Hall element.

この検出出力によって図示しないトランジスタの開閉を
行って図示しない電機子巻線に流れる電流の極性を切換
え、モータを所定方向に回転させることが出来る。この
技術は公知であって、説明は省略するが、第1図に示す
ホール素子は速度検知の外にロータの位鷹検出にも用い
ることが出来る。第4図はホール素子2個で速度検出を
行うこの発明の他の実施例を示し、第5図はその説明図
である。
This detection output opens and closes a transistor (not shown) to switch the polarity of a current flowing through an armature winding (not shown), thereby making it possible to rotate the motor in a predetermined direction. Although this technique is well known and will not be described further, the Hall element shown in FIG. 1 can be used not only for speed detection but also for rotor position detection. FIG. 4 shows another embodiment of the present invention in which speed is detected using two Hall elements, and FIG. 5 is an explanatory diagram thereof.

第1図に於けるホール素子1と4とを、第亀図の様に結
線する。ホール素子1と4とは回転i軸中心より見て2
2.50隔つて配置される。ローターの回転に伴う軟磁
性材端部の凹凸の歯の位相は素子1と4とでは丁度逆位
相の関係にある。従って第4図における素子1のIA、
IB出力端の電圧の和は第5図aに示す如くなり、同様
に素子2の出力電圧の和は同図bの様に示される。フィ
ル夕8の入力イ,口には逆相関係の入力がそれぞれ接続
されるものであるが、第4図の様に結線する結果、フィ
ル夕8の出力VAは第5図dに示す如き電圧が得られ、
この周波数はローターの回転数に比例する。なおフィル
夕8において、これを単に…篭勤増中器としたときの出
力は第5図cの如く得られるものであり、これをフィル
夕8に通す様に−しても良いことはいうまでもない。ホ
ール素子2個で速度を検出する場合、軟磁性材の外周の
凹凸の歯数Kは「 2個のホール素子の間の間隔を電気
角で◇(rad)としたとき、K=2汀N/ぐで表わさ
れる。
Hall elements 1 and 4 in Fig. 1 are connected as shown in Fig. 1. Hall elements 1 and 4 are 2 when viewed from the center of rotation i-axis.
2.50 apart. The phases of the concave and convex teeth on the end of the soft magnetic material as the rotor rotates are exactly opposite in phase between elements 1 and 4. Therefore, IA of element 1 in FIG.
The sum of the voltages at the IB output ends is as shown in FIG. 5a, and similarly the sum of the output voltages of the element 2 is shown as in FIG. Inputs with opposite phases are connected to the inputs A and 8 of the filter 8, respectively.As a result of connecting the wires as shown in Fig. 4, the output VA of the filter 8 has a voltage as shown in Fig. 5d. is obtained,
This frequency is proportional to the rotation speed of the rotor. Furthermore, in filter 8, when this is simply used as an intensifier, the output is obtained as shown in Figure 5c, and it is also possible to pass this through filter 8. Not even. When detecting speed with two Hall elements, the number of teeth K of the irregularities on the outer periphery of the soft magnetic material is ``When the distance between two Hall elements is ◇ (rad) in electrical angle, K = 2 N Represented by /gu.

ただしN、K共に正整数となる条件を満すことが必要で
ある。第4図の例はここです=m/2(つまり一極対間
が900=2竹である為)、N=6としてK=24とな
った場合にあたる。Jを同一としN=8とした場合の実
施例が第6図である。このとき、ホール素子1,4は軟
磁性材6の外周の凹凸の歯に対して相互に同相の関係を
もって対向するため、素子1,4の出力すべてを加算し
てフィル夕8の一方様に入力すると所望の速度信号VA
が出力に得られる。第7図aはホール素子1の出力の和
〜同図bは素子2の和を表わし、これらを加算したもの
が同図cである。出力VAは同図dの様に得られる。な
おホール素子の差動出力電圧の極性を検知することによ
ってローターの位置検出に供しうろことはホール素子を
3個用いる場合と同様である。以上の説明においては、
速度検出信号を作るために、ホール素子を通る疎密を生
成するにあたり、界磁磁石を保持する軟磁性材の円板6
の外周に凹凸を刻むこととしている。
However, it is necessary to satisfy the condition that both N and K are positive integers. The example in Figure 4 is here = m/2 (that is, since the distance between one pole pair is 900 = 2 bamboos), N = 6, and K = 24. FIG. 6 shows an example in which J is the same and N=8. At this time, since the Hall elements 1 and 4 face the irregular teeth on the outer periphery of the soft magnetic material 6 in a mutually in-phase relationship, all the outputs of the elements 1 and 4 are added together to form one side of the filter 8. When input, the desired speed signal VA
is obtained in the output. FIG. 7a shows the sum of the outputs of Hall element 1, and FIG. 7b shows the sum of the outputs of element 2, and the sum of these outputs is shown in FIG. 7c. The output VA is obtained as shown in Fig. d. Note that the scale used to detect the position of the rotor by detecting the polarity of the differential output voltage of the Hall elements is the same as in the case of using three Hall elements. In the above explanation,
In order to generate a speed detection signal, a disc 6 of soft magnetic material that holds a field magnet is used to generate the density passing through the Hall element.
The outer periphery is carved with unevenness.

凹凸を刻む軟磁性材は磁石を保持する円板に限られない
。これとは別のりング状の円板の内周に凹凸を刻み、こ
れを界磁磁石と共に回転させても良い。その一例を第8
図に示す。本図はその断面図を示し、例えばホール素子
1は静止し、内周に凹凸を刻まれた円板6′が、磁石5
を保持する敏磁性円板6に一体装着される。ホール素子
1を通る滋略は図中点線の様に形成されるが、本経路を
通る磁束は円板6′内周の凹凸によって振中変調をうけ
、ホール素子1の出力電圧は前記第3,5,7図に示し
た如く得られる。つまり第8図構成は第1図構成の速度
検出器と同じ機能を有する。磁束の疎密を形成する方法
は軟磁性材の凹凸によるものに限られず、予め界磁磁石
の一部分に速度発電機用の磁束の疎密部分を着磁してお
いても良い。
The soft magnetic material that carves irregularities is not limited to the disc that holds the magnet. In addition to this, it is also possible to carve irregularities on the inner periphery of a ring-shaped disc and rotate this together with the field magnet. An example of this is shown in section 8.
As shown in the figure. This figure shows a cross-sectional view of the same. For example, the Hall element 1 is stationary, and a disk 6' with an uneven inner circumference is placed on the magnet 5.
It is integrally attached to the magnetically sensitive disk 6 that holds the. The magnetic flux passing through the Hall element 1 is formed as shown by the dotted line in the figure, but the magnetic flux passing through this path is modulated in oscillation by the unevenness of the inner circumference of the disk 6', and the output voltage of the Hall element 1 is , 5 and 7 are obtained. In other words, the configuration of FIG. 8 has the same function as the speed detector of the configuration of FIG. 1. The method of forming the magnetic flux density is not limited to the method using the unevenness of the soft magnetic material, and a portion of the field magnet may be magnetized in advance to form the magnetic flux density portion for the speed generator.

即ちたとえば、第9図aにおいて磁石5を着磁するにあ
たり、斜線部分には着磁用ヨークを対向させずに所定の
主界磁々東用のN、SS極着滋を行う。00の原点より
角度8を図の方向に移動して磁束密度を見ると第9図b
の様になる。
That is, for example, when magnetizing the magnet 5 in FIG. 9a, the N and SS poles for the east of the main field are attached without facing the magnetizing yoke in the shaded area. If you move the angle 8 from the origin of 00 in the direction shown in the figure and look at the magnetic flux density, you will see Figure 9b.
It will look like this.

つまり第1図の実施例などで得られたと同じ磁束の疎密
を作りえたことにある。ホール素子はこの磁束を検知す
る位置におくと、磁束の疎密でローターの回転速度を検
知出来る外、出力の差動信号極性を見てロータ−の位置
を検知することができる。以上の説明から明らかな様に
、本発明によればモーターの駆動トルク発生用の磁石界
磁の一部分を用いて速度を検出することが出釆るので別
途速度発電機用の磁石等を用いる必要がなく、速度検出
機構を含むモータのサイズを小型化することが出来る。
さらにまた速度検出用ホール素子をもってローターの位
置をも検出しうるので無整流子モー外こ用いるとき、位
置検出器を別に設ける必要がなくさらにモータの全体系
を小型化しうるものである。
In other words, the same density of magnetic flux as obtained in the embodiment shown in FIG. 1 can be created. When the Hall element is placed in a position to detect this magnetic flux, it is possible to detect the rotational speed of the rotor based on the density of the magnetic flux, as well as the position of the rotor based on the polarity of the output differential signal. As is clear from the above explanation, according to the present invention, the speed can be detected using a part of the magnet field for generating drive torque of the motor, so it is necessary to use a separate magnet for the speed generator. Therefore, the size of the motor including the speed detection mechanism can be reduced.
Furthermore, since the position of the rotor can also be detected using the Hall element for speed detection, there is no need to provide a separate position detector when using a non-commutator motor, and the overall motor system can be further downsized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例による速度発電機の主要構成
を示す構成図、第2はその信号処理回路を示す回路図、
第3図は第2図に示す回路の動作を説明するための波形
図、第4図は本発明の他の実施例を示す構成図、第5図
は第4図の説明図、第6図は本発明の他の実施例を示す
構成図、第7図は第6図の説明図、第8図及び第9図は
この発明の他の実施例を示す構成図である。 図中、1〜4はホール素子、5は永久磁石、6,6′は
軟磁性円板、7は回転軸、8はフィル夕、9〜18は抵
抗器、19は電波である。 図中、同一符号は同一又相当部分を示す。第1図 第2図 第3図 第4図 第6図 第!5図 第7図 第8図 第9図
FIG. 1 is a block diagram showing the main structure of a speed generator according to an embodiment of the present invention, and FIG. 2 is a circuit diagram showing its signal processing circuit.
3 is a waveform diagram for explaining the operation of the circuit shown in FIG. 2, FIG. 4 is a configuration diagram showing another embodiment of the present invention, FIG. 5 is an explanatory diagram of FIG. 4, and FIG. 7 is an explanatory diagram of FIG. 6, and FIGS. 8 and 9 are configuration diagrams showing other embodiments of the present invention. In the figure, 1 to 4 are Hall elements, 5 is a permanent magnet, 6 and 6' are soft magnetic discs, 7 is a rotating shaft, 8 is a filter, 9 to 18 are resistors, and 19 is a radio wave. In the figures, the same reference numerals indicate the same or corresponding parts. Figure 1 Figure 2 Figure 3 Figure 4 Figure 6! Figure 5 Figure 7 Figure 8 Figure 9

Claims (1)

【特許請求の範囲】[Claims] 1 ロータに一体固定化されると共に複数極に着磁され
た永久磁石、前記ロータ上にあって前記永久磁石の極ピ
ツチよりも短い均等ピツチで、前記永久磁石の作る磁束
の一部分を円周方向に疎密に変化させる変化手段、この
変化手段に対向する位置の静止体上にあって、前記変化
手段によって疎密に変化する前記永久磁石の磁束の量を
検出する複数個の磁気感応素子、これらの磁気感応素子
の各々の差動出力端子間を接続する複数の抵抗器、これ
らの抵抗器の接続点各々を共通接続して入力信号端子と
するか、または前記抵抗器の各々の接点間の差信号を入
力とする様に接続され、前記ロータの回転速度信号を出
力とする帯域通過回路よりなる速度発電機。
1. A permanent magnet that is integrally fixed to the rotor and magnetized into multiple poles, which is located on the rotor and has a uniform pitch that is shorter than the pole pitch of the permanent magnet, directs a part of the magnetic flux generated by the permanent magnet in the circumferential direction. a plurality of magnetic sensing elements disposed on a stationary body at a position opposite to the changing means and detecting the amount of magnetic flux of the permanent magnet that changes in density and density by the changing means; A plurality of resistors are connected between the differential output terminals of each of the magnetically sensitive elements, and each of the connection points of these resistors is commonly connected to serve as an input signal terminal, or the difference between the contacts of each of the resistors is A speed generator comprising a bandpass circuit connected to receive a signal as an input and output as an output the rotational speed signal of the rotor.
JP54079897A 1979-06-22 1979-06-22 speed generator Expired JPS602622B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54079897A JPS602622B2 (en) 1979-06-22 1979-06-22 speed generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54079897A JPS602622B2 (en) 1979-06-22 1979-06-22 speed generator

Publications (2)

Publication Number Publication Date
JPS564057A JPS564057A (en) 1981-01-16
JPS602622B2 true JPS602622B2 (en) 1985-01-23

Family

ID=13703059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54079897A Expired JPS602622B2 (en) 1979-06-22 1979-06-22 speed generator

Country Status (1)

Country Link
JP (1) JPS602622B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58118055A (en) * 1981-12-30 1983-07-13 Sony Corp Rotary driver
JPS58175459U (en) * 1982-05-19 1983-11-24 パイオニア株式会社 Rotation speed detection device for DC brushless motor

Also Published As

Publication number Publication date
JPS564057A (en) 1981-01-16

Similar Documents

Publication Publication Date Title
JPS5953503B2 (en) rotation detection device
US4495464A (en) Non-contacting, speed-detecting device of a direct-current generator type
US3809936A (en) Brushless generator
US4659953A (en) Magnetic structure for synchro and tachometer
JPS6157859A (en) Magnetic structure of synchro and tachometer
JPS602622B2 (en) speed generator
WO1989010653A1 (en) Synchronous motor
JPH0667164B2 (en) Rotational speed position signal generator
JPH0648275B2 (en) Rotation direction detector
USRE32857E (en) Brushless tachometer/synchro
US6225775B1 (en) Synchronous electric motor
US3281682A (en) Hall effect tachometer using an eddycurrent rotor and flux focusing elements
JPS6021347B2 (en) Motor position and speed detection device
JPH0799919B2 (en) Rotor shaft runout eccentricity detection device for induction motor
USH939H (en) Commutator pulse tachometer
JPS59113568A (en) Rotation driving motor of recording disc
JPS6070956A (en) Disk-shaped brushless motor
JPH03135353A (en) 3-phase semiconductor motor
JPH0226459B2 (en)
JP3022610B2 (en) Rotary magnetic damper device
JPH04197071A (en) Dc brushless motor
JPS5844375Y2 (en) Motor rotation speed detection device
JPS6349477B2 (en)
JPS59194692A (en) Driving method of dc brushless motor
JPH08126382A (en) Apparatus for obtaining three-phase position detection signal through single coil