JPS60258468A - Thin film forming apparatus - Google Patents

Thin film forming apparatus

Info

Publication number
JPS60258468A
JPS60258468A JP11350984A JP11350984A JPS60258468A JP S60258468 A JPS60258468 A JP S60258468A JP 11350984 A JP11350984 A JP 11350984A JP 11350984 A JP11350984 A JP 11350984A JP S60258468 A JPS60258468 A JP S60258468A
Authority
JP
Japan
Prior art keywords
ions
ion
base material
thin film
irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11350984A
Other languages
Japanese (ja)
Inventor
Yasunori Ando
靖典 安東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP11350984A priority Critical patent/JPS60258468A/en
Publication of JPS60258468A publication Critical patent/JPS60258468A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/221Ion beam deposition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating

Abstract

PURPOSE:To obtain a composite film of ternary system or over in the titled apparatus wherein an ion irradiation is combined with vacuum evaporation by extracting automatically prescribed ions among plural kinds of ions simultaneously generated by means of the changeover of magnetic field strength of a mass spectrometric means. CONSTITUTION:Plural kinds of ion source substances can be simultaneously introduced into an ion source 1 and thereby the plural kinds of ions used for irradiation can be simultaneously generated. The plural kinds of ions, for example, ion beams B1-B3 mutually different in quantity are taken out with an accelerating-decelerating electrode 2 and the beam B1 of prescribed quantity is extracted with a mass spectrometric electromagnet 3 and irradiated on the base material 8 through a spectrometric slit 4. The beams B2, B3 show respectively lighter or heavier beams than the prescribed quantity. The energy of the ion irradiated on the base material 8 is regulated with the electrode 2 and the kind of the extracted ions can be changed over by changing over the strength of magnetic field of the magnet 3 with a control circuit 6. Thereby, the desired plural kinds of ions can be successively changed over and irradiated on the base material 8.

Description

【発明の詳細な説明】 (発明の分野) この発明は、薄膜形成装置に関し、特に、イオン照射と
真空蒸着とを併用した薄膜形成装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of the Invention) The present invention relates to a thin film forming apparatus, and particularly to a thin film forming apparatus that uses both ion irradiation and vacuum evaporation.

(先行技術の説明) 一般に、真空中において基月上に薄膜を形成する方法と
しては、蒸発材料を蒸発さuで、保持された基材表面に
それを蒸着させる方法(これを真空蒸着方法と呼ぶ)や
、蒸発材料にスパッタイオンを投射し、スパッタされた
材料を基材表面に付着さける方法(これをスパッタリン
グ方法と貯ぶ)が広く使用されている。
(Description of Prior Art) Generally, as a method for forming a thin film on a substrate in a vacuum, there is a method in which an evaporation material is evaporated and then deposited on the surface of a held base material (this is called a vacuum evaporation method). A method in which sputtered ions are projected onto an evaporated material and the sputtered material is deposited on the surface of a substrate (this is referred to as a sputtering method) is widely used.

一方、基材の表層の電気的・物理的・化学的特性を改善
する方法として、高エネルギーのイオンを基材に注入す
る方法(これをイオン注入方法と呼ぶ)が広く使用され
ている。また、低エネルギ−のイオンを基材表面に照射
して基材上にイオンにより薄膜を形成する方法(イオン
・ビー・ム・デポジション方法)も最近使用されつつあ
る。
On the other hand, as a method for improving the electrical, physical, and chemical properties of the surface layer of a base material, a method of implanting high-energy ions into a base material (this is called an ion implantation method) is widely used. In addition, a method (ion beam deposition method) in which a thin film is formed on a substrate by irradiating the surface of the substrate with low-energy ions (ion beam deposition method) has been recently used.

前記真空蒸着方法Jjよびスパッタリング方法によれば
、基材に輸送できる蒸着物質の量を大きくづることがで
きるがイ」着力の強い薄膜が得られないという面がある
。これに対し、イオン注入方法およびイオン・ビーム・
デポジション方法によれば、付着ノjの強い薄膜が得ら
れるが、基材に輸送できる物質の1f1cよ少ないとい
う而がある。イオン・ビーム・デポジション方法によっ
て付着力の強い特性が得られる理由は、次のように考え
られる。
According to the vacuum evaporation method Jj and the sputtering method, it is possible to increase the amount of the evaporation material that can be transported to the substrate, but a) a thin film with strong adhesion cannot be obtained. In contrast, ion implantation methods and ion beam
Although the deposition method produces a thin film with strong adhesion, less than 1f1c of material can be transported to the substrate. The reason why the ion beam deposition method provides strong adhesion properties is thought to be as follows.

すなわち、基材にイオン照射を行うと、照射イオンの一
部は基材表面の物質を衝突によってはね飛ばすために使
われる。この時、基材表面に付着していた不純物(膜形
成に悪影響を及ぼす物質)もはね飛ばされ、基材表面の
清浄化が行われるからである。また、照射イオンの持つ
エネルギーは数evから数百eVに及び、基材を構成す
る原子、分子の結合エネルギー(数eV)より大きいた
め、照射イオンは基材の表面よりも深い所にまで入り込
む。これにより、照射イオンは基材の深い位置から表面
まで分布するようになるため、基材を構成する結晶が連
続して変化させられ、丁度杭打ちのような効果が得られ
るからである。
That is, when a base material is irradiated with ions, some of the irradiated ions are used to knock off substances on the surface of the base material by collision. This is because at this time, impurities (substances that have an adverse effect on film formation) adhering to the surface of the base material are also blown away, and the surface of the base material is cleaned. In addition, the energy of the irradiated ions ranges from several ev to several hundred eV, which is greater than the bonding energy (several eV) of the atoms and molecules that make up the base material, so the irradiated ions penetrate deeper than the surface of the base material. . This is because the irradiated ions are distributed from deep to the surface of the base material, and the crystals constituting the base material are continuously changed, producing an effect similar to that of piling.

一方、イオン注入方法では、基本的には新しく薄膜を形
成覆るものではないため付着力の問題は発生しないが、
通常用いられる数KeVから数十KeVのエネルギーで
は、注入イオンが効果を発生する深さは、数白人程度と
、極めで浅い領域に限られる。但し、この程度の厚みの
薄膜を形成した基材にイオン注入を行なった場合、前記
のイオン・ビーム・デポジション方法の場合と同様に杭
打ちのような効果が得られる。
On the other hand, with the ion implantation method, basically a new thin film is not formed and covered, so there is no problem with adhesion.
With the normally used energy of several KeV to several tens of KeV, the depth at which the implanted ions produce an effect is limited to an extremely shallow region of several whites. However, when ions are implanted into a base material on which a thin film of this thickness is formed, an effect similar to piling can be obtained as in the case of the ion beam deposition method described above.

このようなイオン照射より生じる効果に着目して、真空
蒸着方法により蒸着薄膜を形成する際、蒸着と同時また
は交互に、質量選別したイオンを照射することにより、
イオン・ビーム・デポジション方法単独によっては不足
していた薄膜形成速度を補うことができ、かつ、付着力
特性が良い薄膜形成方法が既に提案されている。しかし
ながら、従来のこの方法では、イオン照射と真空蒸着に
より2元系の薄膜を形成することはできるが、照射イオ
ンが単一種類であるため3元系以上の複合薄膜を形成す
ることはできなかった。更に、多層薄膜を形成するため
にはイオン源物質をその都度取り替えなIプればならず
非常に面倒であった。
Focusing on the effects caused by such ion irradiation, when forming a deposited thin film using a vacuum evaporation method, by irradiating mass-selected ions simultaneously or alternately with the evaporation,
A method for forming a thin film that can compensate for the insufficient thin film formation speed of the ion beam deposition method alone and has good adhesion properties has already been proposed. However, with this conventional method, although it is possible to form a binary thin film by ion irradiation and vacuum deposition, it is not possible to form a ternary or higher composite thin film because the irradiated ions are of a single type. Ta. Furthermore, in order to form a multilayer thin film, the ion source material must be replaced each time, which is extremely troublesome.

(発明の目的) この発明は、3元系以上の複合薄膜を形成することがで
き、史に容易に多層薄膜を形成することができる薄膜形
成装置を提供することを目的とする。
(Objective of the Invention) An object of the present invention is to provide a thin film forming apparatus that can form a ternary or higher composite thin film and easily form a multilayer thin film.

(実施例の説明) この発明は、真空中で基材に対してイオンを照射するイ
オン照射手段と前記基材に対して蒸発物質を蒸着させる
真空蒸着手段とを備える薄膜形成装置であって、前記イ
オン照射手段は、照射に用いる複数種類のイオンを同時
に発生させかつ加速するイオン発生手段と、磁界の強さ
を調整することにより前記複数種類のイオンの内の所定
のイオンを抽出して前記基材に照射する質量分析手段と
、質量分析手段の磁界の強さを切替えることにより質量
分析手段によって抽出するイオンの種類を自動的に切替
える制御手段とを備えることを特徴とする。以下、この
発明を実施例に基づいC説明する。
(Description of Embodiments) The present invention is a thin film forming apparatus comprising ion irradiation means for irradiating a base material with ions in vacuum, and vacuum evaporation means for depositing an evaporation substance onto the base material, The ion irradiation means includes an ion generation means for simultaneously generating and accelerating a plurality of types of ions used for irradiation, and an ion generation means for extracting predetermined ions from the plurality of types of ions by adjusting the strength of a magnetic field. It is characterized by comprising a mass spectrometer that irradiates the base material, and a control device that automatically switches the type of ions extracted by the mass spectrometer by switching the strength of the magnetic field of the mass spectrometer. Hereinafter, this invention will be explained based on examples.

第1図は、この発明の一実施例を示す概略図である。こ
の実施例に係る薄膜形成装置は、真空槽9中の基材8に
対してイオンを照射するイオン照射手段と、基材8に対
して蒸発物質を蒸着させる真空蒸着手段とを備える。
FIG. 1 is a schematic diagram showing an embodiment of the present invention. The thin film forming apparatus according to this embodiment includes ion irradiation means for irradiating ions onto a substrate 8 in a vacuum chamber 9, and vacuum evaporation means for depositing an evaporation substance onto the substrate 8.

イオン照射手段は、照射に用いる複数種類のイオンを同
時に発生さUるイオン源1と、イオン源1からのイオン
ビームを加速および減速づる加速・減速電極2と、加速
・減速電極2からのイオンビームを質量分析する質量分
析電磁石3 J3よび分析スリット4と、質量分析電磁
石3へ励磁電流を供給する電[5と、電源5から供給す
る励磁電流を制御する制御回路6とを備える。
The ion irradiation means includes an ion source 1 that simultaneously generates multiple types of ions used for irradiation, an acceleration/deceleration electrode 2 that accelerates and decelerates the ion beam from the ion source 1, and ions from the acceleration/deceleration electrode 2. It includes a mass spectrometry electromagnet 3 J3 that performs mass analysis of the beam, an analysis slit 4, an electric current 5 that supplies excitation current to the mass spectrometry electromagnet 3, and a control circuit 6 that controls the excitation current supplied from the power source 5.

イオン源1は、複数種類のイオン源物質を同時に導入す
ることができ、これにより照射に用いる複数種類のイオ
ンを同時に発生させることができる。イオン源1から複
数種類のイオン、例えばUいに質量の異なるイオンビー
ムB1〜B3が加速・減速電極2により引出され、質量
分析電磁石3により所定質量のイオンビームB1を抽出
し、これが分析スリット4を通過して基材8に照射され
る。図中B およびB3は、それぞれ、所定の貿量より
も軽いイオンビーl\および重いイオンビームを示す。
The ion source 1 can simultaneously introduce a plurality of types of ion source substances, thereby simultaneously generating a plurality of types of ions used for irradiation. Multiple types of ions, for example ion beams B1 to B3 with very different masses, are extracted from the ion source 1 by the acceleration/deceleration electrode 2, and the ion beam B1 of a predetermined mass is extracted by the mass analysis electromagnet 3, which is then passed through the analysis slit 4. The light passes through and is irradiated onto the base material 8. In the figure, B and B3 indicate an ion beam that is lighter than the predetermined amount and an ion beam that is heavier, respectively.

基材8に照射されるイオンのエネルギーは、加速・減速
電極2により調整される。また、質量分析型1i li
3の磁界の強さを切替えることにより、即ち、電源5か
ら質量分析電磁石3に供給づる励11電流Iの大きさを
制御回路6によって切替えることにより、質量分析電磁
石3によって抽出するイオンの種類を切替えることがで
きる。これによって、不要のイオン種を除去しつつ、所
望の複数種類のイオン種を順次切替えて基材8に照射す
ることができる。
The energy of the ions irradiated onto the base material 8 is adjusted by the acceleration/deceleration electrode 2. In addition, mass spectrometry type 1i li
By switching the strength of the magnetic field 3, that is, by switching the magnitude of the excitation current I supplied from the power supply 5 to the mass spectrometer electromagnet 3 by the control circuit 6, the type of ions extracted by the mass spectrometer electromagnet 3 can be changed. Can be switched. Thereby, the base material 8 can be irradiated with a plurality of desired ion species while sequentially switching between them while removing unnecessary ion species.

制御回路6の主な例としては、次の二つのものがある。There are two main examples of the control circuit 6 as follows.

−・つは、第2図に示すように磁気レンυを用いるもの
である。即ち、質量分析電磁も3内にホール素子等の磁
気センサ61を設けて、質量分析電磁63の磁界の強さ
を検出し、これに対応した信号を比較回路63に与える
。一方、基準信号発生回路62を設けて、質量分析電磁
石3内に所定の強さの磁界を発生させるのに基準となる
信号を比較回路63に与える。比較回路63は、入力さ
れた両信号の比較を行い、その差が零となるように電源
5から質量分析磁石3に供給される励磁電流Iを制御す
る。これにより、質量分析電磁石3内の磁場の履歴を考
慮することなく、それの磁界の強さを所定のものに制御
することがぐきる。
-・One uses a magnetic lens υ as shown in FIG. That is, a magnetic sensor 61 such as a Hall element is provided inside the mass spectrometer electromagnetic device 3 to detect the strength of the magnetic field of the mass spectrometer electromagnetic device 63 and provide a signal corresponding to this to the comparison circuit 63 . On the other hand, a reference signal generation circuit 62 is provided to supply a reference signal to the comparison circuit 63 for generating a magnetic field of a predetermined strength within the mass analysis electromagnet 3. The comparison circuit 63 compares both input signals, and controls the excitation current I supplied from the power supply 5 to the mass spectrometry magnet 3 so that the difference becomes zero. This makes it possible to control the strength of the magnetic field to a predetermined value without considering the history of the magnetic field within the mass spectrometer electromagnet 3.

更に第3図に示すように、基1(3号を所定のパターン
で切替えることにより、質量分析電磁石3の磁界の強さ
を切替えることができ、従って基材8に照射されるイオ
ンの種類を所定のパターンで切替えることができる。
Furthermore, as shown in FIG. 3, by switching the base 1 (No. 3) in a predetermined pattern, the strength of the magnetic field of the mass spectrometer electromagnet 3 can be changed, and therefore the type of ions irradiated onto the base material 8 can be changed. It can be switched in a predetermined pattern.

制御回路6のもう一つの例は、前述したような磁気セン
勺を用いないものである。即ち、マイクロコンピュータ
を用い、これに質量分析電磁lJ3の励磁電流の変化に
対する磁界の強さの変化を示す履歴曲線を予め記憶さけ
ておく。そしてこの履歴曲線により、所定の磁界の強さ
に必要な励磁電流をめ、電源5を制御する。更に、プロ
グラムににり励磁電流を所定のパターンで切替えること
により、前述と同様に基材8に照射されるイオンの種類
を所定のパター・ンで切替える。
Another example of the control circuit 6 is one that does not use a magnetic sensor as described above. That is, a microcomputer is used, and a history curve showing changes in the strength of the magnetic field with respect to changes in the excitation current of the mass spectrometer electromagnetic IJ3 is stored in advance. Then, based on this history curve, the excitation current required for a predetermined magnetic field strength is determined and the power source 5 is controlled. Furthermore, by switching the excitation current in a predetermined pattern according to the program, the type of ions irradiated onto the base material 8 is switched in a predetermined pattern in the same way as described above.

真空蒸着手段は、真空槽9内に設【ブられていて、蒸発
物質を基材8に向けて蒸発させる蒸発装置7を備える。
The vacuum evaporation means includes an evaporator 7 that is installed in a vacuum chamber 9 and evaporates the evaporation substance toward the base material 8 .

この蒸発装置7としては、抵抗加熱式蒸発源、電子ビー
ム加熱式蒸発源の他、イオンビームスパッタ蒸発源を用
いることができる。また、それらの蒸発源を併用しても
よい。
As the evaporator 7, an ion beam sputter evaporation source can be used in addition to a resistance heating evaporation source, an electron beam heating evaporation source. Further, these evaporation sources may be used in combination.

以上のような装置椛成により、基材8に対してイオンビ
ーム照射と真空蒸着とを同時に行ってもよく、あるいは
、イオンビーム照射と真空蒸着とを交互に行ってもよい
With the use of the above-described apparatus, ion beam irradiation and vacuum deposition may be performed on the substrate 8 at the same time, or ion beam irradiation and vacuum deposition may be performed alternately.

この場合、前述したように、イオン源1からは照射に用
いる複数種類のイオンが同時に発生されており、それら
を制御回路6によつC短時間(例えば、5秒以下)で切
替えC暴利8に照射することができるので、3元系以上
の複合薄膜を形成することができる。更に、多層薄膜を
形成する場合でもイオン源物質をその都度取り替える必
要はなく非常に容易である。
In this case, as described above, multiple types of ions used for irradiation are simultaneously generated from the ion source 1, and the control circuit 6 switches between them in a short period of time (for example, within 5 seconds). Since it is possible to irradiate the same amount of light, it is possible to form a composite thin film of three or more elements. Furthermore, even when forming a multilayer thin film, there is no need to replace the ion source material each time, which is very easy.

薄膜形成時の照射イオン堡は、電流計または電流積算計
(図示省略)でモニタすることができ、真空蒸着の厚み
は膜厚計(図示省略)ぐモニタすることができる。また
、薄膜形成時におりるイオン照射量および真空蒸着膜厚
を予め設定しておき、それぞれが設定値に達するとイオ
ン照射および真空蒸着を停止させる自動操作機構を本装
圓に更に付加してもよい。
The irradiation ion barrier during thin film formation can be monitored with an ammeter or a current integrator (not shown), and the thickness of vacuum evaporation can be monitored with a film thickness meter (not shown). In addition, an automatic operation mechanism can be added to this system to preset the ion irradiation amount and vacuum evaporation film thickness during thin film formation, and stop the ion irradiation and vacuum evaporation when each reaches the set value. good.

基材8へ照射されるイオン種としては、基材表面の清浄
化および付着特性改善のためには、アルゴンイオンなど
の不活性ガスイオンあるいは蒸着物質と同一種類の元素
が用いられる。化合物薄膜形成のためには、その化合物
を構成する元素のイオンが用いられる。
As the ion species irradiated onto the base material 8, inert gas ions such as argon ions or the same type of element as the vapor deposited substance are used in order to clean the base material surface and improve adhesion characteristics. To form a compound thin film, ions of elements constituting the compound are used.

最後に、本装置による薄膜形成の例を以下に示す。Finally, an example of thin film formation using this apparatus is shown below.

Ll(ステンレス基材表面に窒化チタン薄膜を形成) まず、イオン源でアルゴンイオンと窒素イオンを同時に
発生させる。アルゴンイオンで基材表面を清浄化した後
、質量分析電磁石により窒素イオンに切替え、同時に電
子ビーム加熱式蒸発装置より焼結体窒化チタン塊を溶融
蒸発させることにより、強固に付着した窒化チタン薄膜
を形成することができた。
Ll (Formation of a titanium nitride thin film on the surface of a stainless steel base material) First, argon ions and nitrogen ions are generated simultaneously using an ion source. After cleaning the surface of the base material with argon ions, switching to nitrogen ions using a mass spectrometer electromagnet, and simultaneously melting and evaporating the sintered titanium nitride mass using an electron beam heating evaporator, the tightly adhered titanium nitride thin film can be removed. was able to form.

性λ(鉄基材表面にチタン−窒素−炭素系高硬度合金を
形成) イオン源でアルゴンイオンを発生させ、これを基材に照
射して基材表面の清浄化を行なった後、イオン源で窒素
イオンと炭素イオンとを同時に発生させ、質量分析電磁
石による切替えでこれらを交互に基材表面に照射すると
同時に、電子ビーム加熱式蒸発装置によりチタンを蒸発
させ基材にイ」ける。これにより、鉄基材上に付着力の
優れた高硬度合金を形成することができた。
(Formation of a titanium-nitrogen-carbon-based high-hardness alloy on the surface of an iron base material) After generating argon ions in an ion source and cleaning the base material surface by irradiating the base material with the argon ions, the ion source Nitrogen ions and carbon ions are generated at the same time, and a mass spectrometry electromagnet is used to alternately irradiate the surface of the substrate with these ions.At the same time, titanium is vaporized using an electron beam heating evaporator and irradiated onto the substrate. This made it possible to form a high-hardness alloy with excellent adhesion on the iron base material.

(発明の効果) 以上説明したように、この発明によれば、3元系以上の
複合薄膜を形成することができ、更に多層簿膜を容易に
形成することができる。
(Effects of the Invention) As described above, according to the present invention, it is possible to form a ternary or higher composite thin film, and furthermore, it is possible to easily form a multilayer film.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の一実施例を示す概略図である。第
2図は、制御回路の−・例を示ずブ[lツク図である。 第3図は、基準信号と質量分析電磁もの磁界の強さの切
替を示す図である。 1・・・イオン源、3・・・質量分析電磁石、5・・・
電源、6・・・制御回路、7・・・蒸発製向、8・・・
基材、9・・・真空槽 代理人 弁理士 山本恵二 弁理士 告田茂明 弁理士 有田肖弘
FIG. 1 is a schematic diagram showing an embodiment of the present invention. FIG. 2 is a block diagram without showing an example of the control circuit. FIG. 3 is a diagram showing switching of the reference signal and the strength of the magnetic field of the mass spectrometer electromagnetic device. 1... Ion source, 3... Mass analysis electromagnet, 5...
Power supply, 6... Control circuit, 7... Evaporation direction, 8...
Base material, 9...Vacuum tank agent Patent attorney Keiji Yamamoto Patent attorney Shigeaki Houda Patent attorney Takahiro Arita

Claims (2)

【特許請求の範囲】[Claims] (1) 真空中で基材に対してイオンを照射するイオン
照射手段と前記基材に対して蒸発物質を蒸着させる真空
蒸着手段とを備える薄膜形成装置であって、前記イオン
照射手段【よ、 照射に用いる複数種類のイオンを同時に発生させかつ加
速するイオン発生手段と、 前記イオン発生手段によって加速されたイオンの経路上
に設けられでいて、磁界の強さを調整することにより前
記複数種類のイオンの内の所定のイオンを抽出して前記
基材に照射する質量分析手段と、 前記質量分析手段に接続されていて、質量分析手段の磁
界の強さを切替えることにより、質量分析手段によって
抽出するイオンの種類を自動的に切替える制御手段とを
備える、薄膜形成装置。
(1) A thin film forming apparatus comprising an ion irradiation means for irradiating a substrate with ions in a vacuum, and a vacuum evaporation means for depositing an evaporated substance onto the substrate, the ion irradiation means ion generation means for simultaneously generating and accelerating a plurality of types of ions used for irradiation; and an ion generation means provided on the path of the ions accelerated by the ion generation means, and configured to generate and accelerate the plurality of types of ions by adjusting the strength of a magnetic field. a mass spectrometer for extracting a predetermined ion from among the ions and irradiating the base material; A thin film forming apparatus comprising: a control means for automatically switching the type of ions to be used.
(2) 前記制御手段は、予め定められたパターンに従
つ−(、質量分析手段によって抽出するイオンの種類を
切替える、特許請求の範囲第1項記載の薄膜形成装置。
(2) The thin film forming apparatus according to claim 1, wherein the control means switches the type of ions extracted by the mass spectrometry means according to a predetermined pattern.
JP11350984A 1984-06-01 1984-06-01 Thin film forming apparatus Pending JPS60258468A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11350984A JPS60258468A (en) 1984-06-01 1984-06-01 Thin film forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11350984A JPS60258468A (en) 1984-06-01 1984-06-01 Thin film forming apparatus

Publications (1)

Publication Number Publication Date
JPS60258468A true JPS60258468A (en) 1985-12-20

Family

ID=14614133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11350984A Pending JPS60258468A (en) 1984-06-01 1984-06-01 Thin film forming apparatus

Country Status (1)

Country Link
JP (1) JPS60258468A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62255137A (en) * 1986-04-28 1987-11-06 日新電機株式会社 Film carrier type substrate and manufacture thereof
JPH01215966A (en) * 1988-02-23 1989-08-29 Nissin Electric Co Ltd Manufacture of high-hardness tin film
JPH01215965A (en) * 1988-02-23 1989-08-29 Nissin Electric Co Ltd Manufacture of tin film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62255137A (en) * 1986-04-28 1987-11-06 日新電機株式会社 Film carrier type substrate and manufacture thereof
JPH01215966A (en) * 1988-02-23 1989-08-29 Nissin Electric Co Ltd Manufacture of high-hardness tin film
JPH01215965A (en) * 1988-02-23 1989-08-29 Nissin Electric Co Ltd Manufacture of tin film

Similar Documents

Publication Publication Date Title
US4657774A (en) Method for thin film formation
US5346600A (en) Plasma-enhanced magnetron-sputtered deposition of materials
US4622919A (en) Film forming apparatus
US20090071818A1 (en) Film deposition apparatus and method of film deposition
JPH021230B2 (en)
EP0558061A1 (en) Improvements in physical vapour deposition processes
KR100206525B1 (en) Process and device for coating substrates
JPS59208841A (en) Vapor stream and ion stream generator
Armour et al. The use of ion beams in thin film deposition
JPS60258468A (en) Thin film forming apparatus
JPH0456761A (en) Thin film forming device
US6398923B1 (en) Multiple species sputtering method
JP2008280579A (en) Electron-beam sputtering device
JPH0236673B2 (en)
CN113718219B (en) Thin film deposition method and thin film deposition apparatus
JPH02163366A (en) Formation of chromium layer onto iron or steel product surface
JPH0784650B2 (en) Vacuum deposition method and vacuum deposition apparatus
JPS61201772A (en) Method and device for forming thin film
JPH0849074A (en) Thin film producing device and method therefor
JPH0758031A (en) Ion deposition thin film forming apparatus and film forming method using the same
JPH0121226B2 (en)
JPS616271A (en) Method and device for bias ion plating
JPH03267365A (en) Thin film formation device
JP3340803B2 (en) High-speed atomic beam sputter deposition apparatus and method for producing functionally graded thin film
JPH04350156A (en) Thin film forming device