JPH0236673B2 - - Google Patents

Info

Publication number
JPH0236673B2
JPH0236673B2 JP59113457A JP11345784A JPH0236673B2 JP H0236673 B2 JPH0236673 B2 JP H0236673B2 JP 59113457 A JP59113457 A JP 59113457A JP 11345784 A JP11345784 A JP 11345784A JP H0236673 B2 JPH0236673 B2 JP H0236673B2
Authority
JP
Japan
Prior art keywords
thin film
beam source
source
substrate
vacuum chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59113457A
Other languages
Japanese (ja)
Other versions
JPS60255972A (en
Inventor
Yoshifumi Minowa
Eishin Murakami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP11345784A priority Critical patent/JPS60255972A/en
Publication of JPS60255972A publication Critical patent/JPS60255972A/en
Publication of JPH0236673B2 publication Critical patent/JPH0236673B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の技術分野〕 この発明は薄膜蒸着装置、とくに薄膜形成を制
御できるものに関するものである。 〔従来技術〕 従来、高密度、高品質の薄膜を形成する薄膜蒸
着装置としては第1図に示すようなクラスタイオ
ンビーム(以後ICBと略記する。)蒸着装置があ
つた。 図において、1は真空槽、2はICB源、3は
ICB、4は真空槽中に設置された基板、20は基
板4に蒸着すべき物質22の蒸気を真空槽1中に
噴出してクラスタを発生するクラスタ発生源で、
例えばカーボン製るつぼ23、電子衝撃用フイラ
メント24、及び熱シールド板28より構成され
る。21は上記クラスタをイオン化するイオン化
手段で、イオン化フイラメント25、電子引出し
用格子電極26及び熱シールド板28より構成さ
れる。27はイオン化されたクラスタを加速する
加速手段で加速電極である。 次に動作について説明する。真空槽1内は一般
に拡散ポンプ(図示せず)によつて1×
10-5Torr以下の高真空に保持されている。電子
衝撃によつて加熱されたるつぼ23の上部の小孔
から噴出した蒸着物質22は、断熱膨張により冷
却され、500〜2000個の元素がゆるく結合したク
ラスタとなる。るつぼ23から噴出したクラスタ
は、引出し電極26によつてイオン化フイラメン
ト25から引出された電子によつてイオン化さ
れ、加速電極27によつて加速されてICB3とな
り、基板4に蒸着する。 第2図及び第3図は従来の薄膜蒸着装置により
形成した薄膜を示す断面図である。 従来の装置は上記のように構成されているので
第2図に示すような段差のある基板や、第3図に
示すような容器41に蒸着する場合、その蒸着ビ
ームに平行な側面や陰になる面には蒸着薄膜5が
付着しにくいという欠点があつた。 〔発明の概要〕 この発明は上記のような従来のものの欠点を除
去するためになされたもので、真空槽中に設置さ
れた基板表面に薄膜を形成する蒸着用ビーム源及
びこの蒸着用ビーム源による蒸着時又は交互に、
薄膜の所定個所に集束イオンビームを照射し、形
成された薄膜をスパツタさせるスパツタ用イオン
ビーム源を同じ真空槽中に設けることにより、例
えば段差のある基板や容器の側面にも蒸着物質を
付着させ、所望の薄膜が形成できるものを提供す
るものである。 〔発明の実施例〕 以下、この発明の一実施例を図について説明す
る。第4図はこの発明の一実施例による薄膜蒸着
装置を示す構成図である。図において、11は真
空排気通路、12は開閉バルブ、2は真空槽1中
に設置された基板4表面に薄膜を形成する蒸着用
ビーム源で、この場合、第1図と同様のICB源で
ある。6は真空槽1中に設けられ、蒸着用ビーム
源2による薄膜形成時又は交互に基板の所定個所
にイオンビーム7を照射するスパツタ用イオンビ
ーム源であり、例えばデユオプラズマ形のような
集束イオンビーム(FIBと略記する。)7を発す
るFIB源であり、デユオプラズマトロン61、集
束レンズ62及び偏向装置63により構成され
る。40はFIB7の電流を集めるコレクター電極
である。 次に動作について説明する。 真空槽1内は一般に拡散ポンプ(図示せず)に
よつて1×10-5Torr以下の高真空に保持されて
いる。ICB2から噴出されたシヤワービーム状の
ICB3と、FIB源6から発生されたFIB7は同時
に基板4へ照射される。この時FIB7は偏向装置
63によりその位置が精度よく偏向制御され走査
される。第5図、第6図はこの発明の一実施例に
よる薄膜蒸着装置により形成した薄膜を示す断面
図であり、例えば第5図のように段差のある基板
4にAlをICB3により1Å/Secの速度が蒸着し
ながら、1〜10KeVのAr+のFIB7を、段差の谷
部へ向けて選択的に走査照射すると谷部に蒸着中
のAlの一部がスパツタされて、スパツタ粒子8
となり、ICBの蒸着しにくい側面(ICBに平行な
面)にスパツタ蒸着される。 又、第6図のような容器41にICB3を照射し
ながらICB3が蒸着しやすい容器41の底面に
FIB7を適度に照射、走査することにより、そこ
に蒸着中の蒸着薄膜5がスパツタされてスパツタ
粒子8となり、ICB3が蒸着しにくい側面にスパ
ツタ蒸着されて、均一に蒸着出来る。 なお、上記実施例ではICB3とFIB7は同時に
照射したが、交互に照射してもよい。 また、上記実施例では基板4を回転や並進させ
なかつたが、回転や並進と組合わせることによつ
て一層均一な膜が形成できる。 また、蒸着用ビーム源2として、上記実施例で
はICB源を用いたが、普通の真空蒸着ビーム源を
用いてもよい。またスパツタ用イオンビーム源6
として、デイオプラズマ形の集束イオンビーム源
を用いたが、PIG形イオン源やカウフマン形イオ
ン源など他のイオンビーム源を用いてもよい。 次表に、この発明に係わる蒸着用ビーム源とス
パツタ用イオンビーム源について、両者を対比さ
せて、まとめて示す。
[Technical Field of the Invention] The present invention relates to a thin film deposition apparatus, and particularly to one capable of controlling thin film formation. [Prior Art] Conventionally, a cluster ion beam (hereinafter abbreviated as ICB) evaporation apparatus as shown in FIG. 1 has been used as a thin film evaporation apparatus for forming high-density, high-quality thin films. In the figure, 1 is a vacuum chamber, 2 is an ICB source, and 3 is a
ICB, 4 is a substrate installed in a vacuum chamber, 20 is a cluster generation source that generates clusters by ejecting vapor of a substance 22 to be deposited onto the substrate 4 into the vacuum chamber 1;
For example, it is composed of a carbon crucible 23, an electron impact filament 24, and a heat shield plate 28. Reference numeral 21 denotes an ionization means for ionizing the cluster, which is composed of an ionization filament 25, an electron extraction grid electrode 26, and a heat shield plate 28. Reference numeral 27 is an accelerating means for accelerating the ionized clusters, which is an accelerating electrode. Next, the operation will be explained. The inside of the vacuum chamber 1 is generally 1× by a diffusion pump (not shown).
It is maintained in a high vacuum of less than 10 -5 Torr. The deposited material 22 ejected from the small hole in the upper part of the crucible 23 heated by electron bombardment is cooled by adiabatic expansion and becomes a cluster of 500 to 2000 elements loosely bonded together. The cluster ejected from the crucible 23 is ionized by electrons extracted from the ionization filament 25 by the extraction electrode 26, accelerated by the acceleration electrode 27, becomes ICB 3, and is deposited on the substrate 4. FIGS. 2 and 3 are cross-sectional views showing thin films formed by a conventional thin film deposition apparatus. Since the conventional apparatus is configured as described above, when depositing on a substrate with a step as shown in FIG. 2 or a container 41 as shown in FIG. There was a drawback that the vapor-deposited thin film 5 was difficult to adhere to the surface. [Summary of the Invention] The present invention was made to eliminate the drawbacks of the conventional ones as described above, and provides a vapor deposition beam source for forming a thin film on the surface of a substrate placed in a vacuum chamber, and this vapor deposition beam source. During deposition by or alternately,
By installing an ion beam source for sputtering in the same vacuum chamber, which irradiates a focused ion beam onto a predetermined location on a thin film and sputters the formed thin film, the deposition material can be attached to, for example, the side surface of a substrate or container with steps. , which enables the formation of a desired thin film. [Embodiment of the Invention] An embodiment of the invention will be described below with reference to the drawings. FIG. 4 is a block diagram showing a thin film deposition apparatus according to an embodiment of the present invention. In the figure, 11 is a vacuum exhaust passage, 12 is an on-off valve, and 2 is an evaporation beam source that forms a thin film on the surface of a substrate 4 installed in the vacuum chamber 1. In this case, it is an ICB source similar to that in FIG. be. Reference numeral 6 denotes an ion beam source for sputtering, which is provided in the vacuum chamber 1 and irradiates ion beams 7 to predetermined locations on the substrate during thin film formation using the evaporation beam source 2 or alternately. This is an FIB source that emits a beam (abbreviated as FIB) 7, and is composed of a dual plasmatron 61, a focusing lens 62, and a deflection device 63. 40 is a collector electrode that collects the current of the FIB 7. Next, the operation will be explained. The inside of the vacuum chamber 1 is generally maintained at a high vacuum of 1×10 −5 Torr or less by a diffusion pump (not shown). Shower beam ejected from ICB2
The ICB 3 and the FIB 7 generated from the FIB source 6 are simultaneously irradiated onto the substrate 4. At this time, the FIB 7 is precisely deflected and scanned by the deflection device 63. 5 and 6 are cross-sectional views showing a thin film formed by a thin film deposition apparatus according to an embodiment of the present invention. For example, as shown in FIG. When the Ar + FIB7 of 1 to 10 KeV is selectively irradiated toward the valleys of the steps while the deposition rate is being evaporated, a part of the Al being evaporated is sputtered at the valleys, forming spatter particles 8.
As a result, spatter is deposited on the side of the ICB that is difficult to deposit (the surface parallel to the ICB). Also, while irradiating the container 41 with ICB3 as shown in Fig. 6, the bottom surface of the container 41 where ICB3 is easily deposited is heated.
By appropriately irradiating and scanning the FIB 7, the thin film 5 being evaporated thereon is sputtered to become sputter particles 8, and the ICB 3 is sputter-deposited on the side surface where it is difficult to evaporate, thereby achieving uniform evaporation. In the above embodiment, the ICB 3 and the FIB 7 were irradiated simultaneously, but they may be irradiated alternately. Further, in the above embodiment, the substrate 4 was not rotated or translated, but by combining rotation and translation, a more uniform film can be formed. Further, as the vapor deposition beam source 2, although an ICB source is used in the above embodiment, an ordinary vacuum vapor deposition beam source may be used. In addition, the ion beam source 6 for sputtering
Although a deioplasma-type focused ion beam source was used, other ion beam sources such as a PIG-type ion source or a Kaufmann-type ion source may also be used. The following table summarizes and compares the vapor deposition beam source and the sputtering ion beam source according to the present invention.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明によれば、真空槽中に薄
膜形成用の蒸着用ビーム源と、この蒸着用ビーム
源による薄膜形成時又は交互に基板の所定個所に
集束イオンビームを照射し、形成された薄膜をス
パツタさせるスパツタ用イオンビーム源とを設け
たので、蒸着用ビーム源により基板上に形成され
た薄膜の一部を、スパツタ用イオンビーム源によ
りスパツタして、マスクレスでフラツトなパター
ン蒸着や所望形状のパターン蒸着を行なつたり、
あるいはスパツタされたスパツタ物質を、基板の
別の個所に再付着させて、段差のある基板や容器
の側面にも均一な膜を形成する等、所望の薄膜を
形成できる効果がある。
As described above, according to the present invention, a evaporation beam source for forming a thin film is provided in a vacuum chamber, and a focused ion beam is irradiated onto a predetermined portion of a substrate during or alternately with the evaporation beam source to form a thin film. Since a sputtering ion beam source is provided, a part of the thin film formed on the substrate by the evaporation beam source is sputtered by the sputtering ion beam source, allowing maskless flat pattern evaporation. or perform pattern deposition of desired shape,
Alternatively, it is possible to form a desired thin film, such as by re-depositing the sputtered material on another part of the substrate to form a uniform film even on a stepped substrate or the side surface of a container.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の薄膜蒸着装置を示す構成図、第
2図、第3図は従来の薄膜蒸着装置により形成し
た薄膜を示す断面図、第4図はこの発明の一実施
例による薄膜蒸着装置を示す構成図、第5図及び
第6図はこの発明の一実施例による薄膜蒸着装置
により形成した薄膜を示す断面図、第7図及び第
8図はこの発明の一実施例による薄膜蒸着装置に
より形成した蒸着薄膜を示す斜視図である。 図において、1は真空槽、2は蒸着用ビーム
源、4は基板、5は薄膜、6はスパツタ用イオン
ビーム源、7はイオンビーム、20はクラスタ発
生源、21はイオン化手段、27は加速手段であ
る。なお、図中同一符号は同一又は相当部分を示
す。
FIG. 1 is a configuration diagram showing a conventional thin film deposition apparatus, FIGS. 2 and 3 are cross-sectional views showing a thin film formed by a conventional thin film deposition apparatus, and FIG. 4 is a thin film deposition apparatus according to an embodiment of the present invention. FIGS. 5 and 6 are cross-sectional views showing a thin film formed by a thin film deposition apparatus according to an embodiment of the present invention, and FIGS. 7 and 8 are cross-sectional views showing a thin film deposition apparatus according to an embodiment of the present invention. FIG. 2 is a perspective view showing a vapor-deposited thin film formed by. In the figure, 1 is a vacuum chamber, 2 is a beam source for evaporation, 4 is a substrate, 5 is a thin film, 6 is an ion beam source for sputtering, 7 is an ion beam, 20 is a cluster generation source, 21 is an ionization means, and 27 is an acceleration It is a means. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】 1 真空槽中に設置された基板表面に薄膜を形成
する蒸着用ビーム源及び上記真空中に設置され、
上記蒸着用ビーム源による薄膜形成時又は交互に
上記薄膜の所定個所に集束イオンビームを照射
し、上記薄膜をスパツタさせるスパツタ用イオン
ビーム源を備えた薄膜蒸着装置。 2 蒸着用ビーム源は基板に蒸着すべき物質の蒸
気を真空槽中に噴出してクラスタを発生するクラ
スタ発生源、上記クラスタをイオン化するイオン
化手段、及びイオン化されたクラスタを加速する
加速手段で構成されたことを特徴とする特許請求
の範囲第1項記載の薄膜蒸着装置。
[Claims] 1. An evaporation beam source for forming a thin film on the surface of a substrate placed in a vacuum chamber, and a source placed in the vacuum,
A thin film deposition apparatus comprising a sputtering ion beam source that sputters the thin film by irradiating a focused ion beam onto a predetermined location of the thin film during or alternately when forming the thin film using the deposition beam source. 2. The deposition beam source is composed of a cluster generation source that generates clusters by ejecting the vapor of the material to be deposited onto the substrate into a vacuum chamber, an ionization means that ionizes the clusters, and an acceleration means that accelerates the ionized clusters. A thin film deposition apparatus according to claim 1, characterized in that:
JP11345784A 1984-05-31 1984-05-31 Thin film vapor deposition apparatus Granted JPS60255972A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11345784A JPS60255972A (en) 1984-05-31 1984-05-31 Thin film vapor deposition apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11345784A JPS60255972A (en) 1984-05-31 1984-05-31 Thin film vapor deposition apparatus

Publications (2)

Publication Number Publication Date
JPS60255972A JPS60255972A (en) 1985-12-17
JPH0236673B2 true JPH0236673B2 (en) 1990-08-20

Family

ID=14612721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11345784A Granted JPS60255972A (en) 1984-05-31 1984-05-31 Thin film vapor deposition apparatus

Country Status (1)

Country Link
JP (1) JPS60255972A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0427276U (en) * 1990-06-29 1992-03-04

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR910002578B1 (en) * 1988-01-19 1991-04-27 닙폰 가이시 카부시키카이샤 Method for producing a high density sintered body of silicon carbide
JPH02104661A (en) * 1988-10-12 1990-04-17 Mitsubishi Electric Corp Thin film forming device
JPH03202461A (en) * 1989-12-29 1991-09-04 Nissin Electric Co Ltd Formation of highly insulating thin silicon oxide film
JP3169151B2 (en) * 1992-10-26 2001-05-21 三菱電機株式会社 Thin film forming equipment

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5668932A (en) * 1979-11-07 1981-06-09 Sekisui Chem Co Ltd Manufacture of magnetic recording medium

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5668932A (en) * 1979-11-07 1981-06-09 Sekisui Chem Co Ltd Manufacture of magnetic recording medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0427276U (en) * 1990-06-29 1992-03-04

Also Published As

Publication number Publication date
JPS60255972A (en) 1985-12-17

Similar Documents

Publication Publication Date Title
JPH05171423A (en) Deflection electron gun device for vacuum deposition
JP2501828B2 (en) Thin film deposition equipment
JPH0236673B2 (en)
JP2710670B2 (en) Crucible for steam source
JPS63472A (en) Vacuum device for forming film
JPS60124931A (en) Device for vapor deposition of thin film
JPS60262963A (en) Device for vapor-depositing compound thin film
JPH0215630B2 (en)
JPS60125368A (en) Vapor deposition device for thin film
JP2566602B2 (en) Ion source
JPH0351087B2 (en)
JPH05339720A (en) Device for formation of thin film
JPH02104661A (en) Thin film forming device
JPS6329925A (en) Forming device for compound thin-film
JPH0541698B2 (en)
JPS60124930A (en) Device for vapor deposition of thin film
JPS60124923A (en) Device for vapor deposition of thin film
JPS60124916A (en) Device for vapor deposition of thin film
JPH0543783B2 (en)
JPH0510423B2 (en)
JPS60124933A (en) Device for vapor deposition of thin film
JPH0719746B2 (en) Thin film deposition equipment
JPS63161168A (en) Formation of film by ion beam sputtering
JPH04289161A (en) Apparatus for forming film
JPS60124935A (en) Device for vapor deposition of thin film