JPS60255324A - Method and device of electric discharge machining - Google Patents

Method and device of electric discharge machining

Info

Publication number
JPS60255324A
JPS60255324A JP10865284A JP10865284A JPS60255324A JP S60255324 A JPS60255324 A JP S60255324A JP 10865284 A JP10865284 A JP 10865284A JP 10865284 A JP10865284 A JP 10865284A JP S60255324 A JPS60255324 A JP S60255324A
Authority
JP
Japan
Prior art keywords
machining
pattern
locus
tool electrode
servo voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10865284A
Other languages
Japanese (ja)
Other versions
JPH078457B2 (en
Inventor
Shigeo Yamada
茂男 山田
Tamio Takawashi
高鷲 民生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP59108652A priority Critical patent/JPH078457B2/en
Publication of JPS60255324A publication Critical patent/JPS60255324A/en
Publication of JPH078457B2 publication Critical patent/JPH078457B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H7/00Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
    • B23H7/26Apparatus for moving or positioning electrode relatively to workpiece; Mounting of electrode
    • B23H7/28Moving electrode in a plane normal to the feed direction, e.g. orbiting

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

PURPOSE:To make smooth any processing by controlling, upon effecting electric discharge machining while enlarging a locus pattern with use of a small tool electrode, a change to an enlarged locus pattern based on a servo voltage detected in a revolution processing. CONSTITUTION:Upon processing a workpiece while enlarging A a desired shape pattern by several micrometers at a time, a pattern locus processing state in each revolution of the processing by a servo voltage detector 11 and entered in an NC device 12. And, a decision circuit decides whether or not the revolution locus processing is completely finished at each revolution completion point P. Namely, it is determined based on a rate occupied by servo voltage setting values in one revolution locus whenther the same revolution should further be conducted or a change to the next enlarged revolution locus conducted. With such arrangement, processing under minute electric conditions and wide area small electric conditions can smoothly be assured.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、放電加工装置とそれに用いる装置に関するも
のであって、更に詳しくは、加工すべき所望の形状より
小さい工具電極音用い、前記の所望の形状と一致する一
定形状のパターンを数μmずつ規則的に拡大した軌跡パ
ターンに7dい、前記工具電極を周回加工させたのち、
逐次拡大軌跡ノくターンへ移動させて被加工物を穴加工
する際に、工具電極移動制御を、被加工物と電極との間
隙を制御するために設けられているサーボ電圧全利用す
ることにより、判断させるようにしたものであり、これ
により加工の安定化と加工精度の向上、加工時間の短縮
を図るものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an electric discharge machining apparatus and an apparatus used therein, and more particularly, the present invention relates to an electric discharge machining apparatus and an apparatus used therefor, and more particularly, it uses a tool electrode sound smaller than a desired shape to be machined, and After machining the tool electrode around the locus pattern by enlarging it regularly by several μm for 7 days,
When drilling a hole in a workpiece by moving the workpiece through successive expansion trajectory turns, the tool electrode movement is controlled by making full use of the servo voltage provided to control the gap between the workpiece and the electrode. , and this is intended to stabilize machining, improve machining accuracy, and shorten machining time.

〔従来技術〕[Prior art]

一般に、放電加工による穴加工においては、加工すべき
所望形状と一致する一定形状のパターン(輪郭)を数μ
mずつ拡大した軌跡パターンに市って工具電極を移動さ
せ、最後に所望の形状、寸法の加工?被加工物節すこと
が行われている。これ全第1図によって説明すると、(
1)は加工すべき所望形状と一致する一定形状のパター
ン(例として角パターンを用いた、以下同様)であり、
(2)は前記パターン(1)を数μmずつ拡大した過程
の軌跡パターンである。(k)は大電気加工条件による
荒加工置載を示し、(B)は小電気加工条件による仕上
加工量域を示す。
In general, when drilling holes by electrical discharge machining, a pattern (contour) of a certain shape that matches the desired shape to be machined is created by several μm.
The tool electrode is moved along the trajectory pattern enlarged by m increments, and finally the desired shape and dimensions are machined. The workpiece is bound. To explain all this using Figure 1, (
1) is a pattern of a constant shape that matches the desired shape to be processed (a corner pattern is used as an example, the same applies hereinafter),
(2) is a locus pattern obtained by enlarging the pattern (1) by several μm. (k) shows the rough machining placement under large electrical machining conditions, and (B) shows the finishing machining amount range under small electrical machining conditions.

次に、動作について説明すると、被加工物に所望形状の
穴加工をするに当り、その所望形状と同一形状もしくは
異形状で所望形状の寸法より小さい電極を用いて放電加
工を行うには、先ず加工開始時に前記(1)の所望形状
を決定し、次に荒加工から仕上加工壕での加工条件と拡
大量および加工速度を決定し、(A)の大電気加工条件
の拡大量域と、rB)の小電気加工条件の拡大量域と全
区別し、それぞれの電気加工条件に合った1回の拡大量
が決定され、加工全体のパターンがプログラム化される
Next, to explain the operation, when drilling a hole of a desired shape in a workpiece, first, in order to perform electrical discharge machining using an electrode that is the same or different from the desired shape and smaller in size than the desired shape. At the start of machining, determine the desired shape in (1) above, then determine the machining conditions, enlargement amount, and machining speed from rough machining to finishing trench, and determine the enlargement amount range of the high electric machining conditions in (A), The expansion amount range of the small electric machining conditions of rB) is completely differentiated, one-time expansion amount matching each electric machining condition is determined, and the pattern of the entire machining is programmed.

この時各形状パターンは、プログラムに各加工条件別に
設定された速度で1周ずつ逐次拡大されて第1図に示す
如きパターン全体が出来上る。しかるのち、前記プログ
ラムにより通常の放電加工が行われる。
At this time, each shape pattern is sequentially enlarged one turn at a speed set for each processing condition in the program, and the entire pattern as shown in FIG. 1 is completed. Thereafter, normal electrical discharge machining is performed according to the program.

この放電加工は、加工液中に被加工物と工具電極全対向
させて浸漬し、前記被加工物と工具電極間に加工液を介
して電気放電現象を生じさせて、被加工物全所望の形状
に加工するものである。
In this electrical discharge machining, a workpiece and a tool electrode are immersed in a machining fluid with all of them facing each other, and an electrical discharge phenomenon is caused between the workpiece and the tool electrode through the machining fluid, so that the entire workpiece can be completely machined as desired. It is processed into a shape.

従来の形状拡大パターンによる放電加工方法は以上のよ
うに構成されているので、拡大量は加工する電気条件の
変更に伴い変化させるのが常であるが、最小拡大量が1
μ情であるため加工側面が大面積の場合と、加工電気条
件が微小条件の場合には、最小拡大量が1μ犠でも拡大
量としては大きく、そのため加工がスムーズに進行しな
くなるという欠点があった。
Since the conventional electric discharge machining method using a shape expansion pattern is configured as described above, the amount of expansion is usually changed as the electrical conditions for machining are changed, but the minimum amount of expansion is 1.
Because of the μ characteristics, if the machining side surface has a large area or if the machining electrical conditions are minute, even if the minimum expansion amount is 1μ, the expansion amount will be large, which has the disadvantage that machining will not proceed smoothly. Ta.

〔発明の概要〕[Summary of the invention]

本発明は、上記従来技術の欠点を改善するためになされ
たもので、被加工物と工具電極との間隙を制御するため
に設けられているサーボ電圧全利用することにより、工
具電極の移動制御を行い、プログラム上で処理する拡大
量とリード的制御限界の1μmにおいても、加工上拡大
量が大きい微小電気条件や大面積小電気条件加工がスム
ーズに行えるようにした放電加工方法を提供するもので
ある。
The present invention has been made to improve the drawbacks of the above-mentioned prior art, and controls the movement of the tool electrode by fully utilizing the servo voltage provided for controlling the gap between the workpiece and the tool electrode. To provide an electrical discharge machining method that allows machining to be performed smoothly under micro-electrical conditions or large-area, small-scale electrical conditions that require a large amount of machining expansion, even when the amount of expansion processed on the program is 1 μm, which is the lead control limit. It is.

又、本発明方法の更に1つの特徴とし℃、上記サーボ電
圧を利用することにより、大電気加工条件から小電気加
工条件への切換後の工具電極の動作(移動)を無加工状
態と加工状態の判Wrヲ行い、工具電極の大電気加工条
件から小電気加工条件への切換え後のギャップ差域内の
工具電極の移動を制御するものである。′ 又、本発明方法の更に1つの特徴として、拡大軌跡パタ
ーンとに工具電極をパターン形状の中心方向へ退避させ
るための退避軌跡を設けることをも要旨としている。
Another feature of the method of the present invention is that by using the servo voltage described above, the operation (movement) of the tool electrode after switching from high electrical machining conditions to low electrical machining conditions can be changed between the non-machining state and the machining state. This is to control the movement of the tool electrode within the gap difference region after the tool electrode is switched from the large electrical machining condition to the small electrical machining condition. Another feature of the method of the present invention is that a retraction locus is provided in the enlarged locus pattern for retracting the tool electrode toward the center of the pattern.

又、本発明の2番目の特徴として、上記本発明方法を可
能とするための装置とし℃、加工液中に被加工物と工具
電極を対向させて浸漬し、前記被加工物と工具電極間に
加工液を弁して電気放電現象を生じさせて被加工物(所
望の形状に加工する放電加工装置において、被加工物と
工具電極の間隙を制御するサーボ電圧を検出するサーボ
電圧検出装置と、該サーボ電圧検出装置から潜られるサ
ーボ電圧値により工具電極の動作(移動)を制御するN
/C装置とを備えた放電加工装置t’に提供するもので
ある。
In addition, as a second feature of the present invention, an apparatus for realizing the above-mentioned method of the present invention is provided in which a workpiece and a tool electrode are immersed in a machining liquid while facing each other, and the workpiece and a tool electrode are In electrical discharge machining equipment that processes a workpiece into a desired shape by valving machining fluid to produce an electric discharge phenomenon, a servo voltage detection device detects a servo voltage that controls the gap between the workpiece and the tool electrode. , N that controls the operation (movement) of the tool electrode based on the servo voltage value detected from the servo voltage detection device.
/C device.

〔発明の実施例及びその効果〕[Embodiments of the invention and their effects]

以下、本発明の方法及び装置の一実施例?第2図に基づ
いて説明すると、(1)は第1図と同じ所望形状パター
ンであり、(2)はこれも菓1図と同じ所望形状パター
ンを数μ慣ずつ拡大した時の拡大軌跡パターンである。
The following is an example of the method and apparatus of the present invention. To explain based on FIG. 2, (1) is the same desired shape pattern as in FIG. 1, and (2) is an enlarged locus pattern when the same desired shape pattern as in FIG. 1 is enlarged by several micrometers. It is.

(ロ)は放電加工中被加工物と工具電極の間隙を制御す
るサーボ電圧全検出するサーボ電圧検出装置であり、(
6)は前記サーボ゛電圧検出装置から送られるサーボ電
圧値により工具電極の移動制御を判断するN/C装置で
ある。また、(A)(B)はそれぞれ1回毎の拡大量と
拡大開始から完了までの拡大域を示す。Poは所望形状
パターンの基点であり、P1〜PN は前記パターンの
拡大量?示す。(C)は拡大方向軌道線である。
(b) is a servo voltage detection device that detects all servo voltages that control the gap between the workpiece and tool electrode during electrical discharge machining;
6) is an N/C device that determines the movement control of the tool electrode based on the servo voltage value sent from the servo voltage detection device. Further, (A) and (B) respectively show the amount of enlargement each time and the enlarged area from the start of enlargement to the completion of enlargement. Po is the base point of the desired shape pattern, and P1 to PN are the enlargement amounts of the pattern? show. (C) is an expansion direction trajectory line.

次に、本発明の動作について説明する。被加工物に所望
形状の加工をするため、所望形状と同一形状もしくは異
形状で所望形状寸法より小さい電極を用いて被加工′+
1lJt加工することは従来と同じであるが、本発明で
は政小電気加工条件もしくは大加工面積?小亀気卯工条
沖で加工する場合に、毎回数μ洛ずつ拡大する(A)の
最小限界が1μ常であることによって生ずる前のパター
ン加工時の残留加工分が負荷され、加工状態に悪影響を
与えていたのを改善するために、各周回におけるパター
ン軌跡加工状態をサーボ電圧検出装置でサーボ電圧とし
て検出し、その検出値′frN/C装#(ロ)にセット
された判断回路もしくはプログラムにより各周回完了点
Pで周回軌跡加工が完全に完了したかどうかを判断させ
るもので、1周回軌跡中にサーボ電圧の設定値(+6〜
+6V)の占める割合(サーボ電圧+6〜+6vの時間
÷1周回時間)により、同一周回させるか又は次の拡大
周回軌跡に移動させる。
Next, the operation of the present invention will be explained. In order to machine the workpiece into the desired shape, use an electrode that is the same as the desired shape or has a different shape and is smaller than the desired shape.
1lJt machining is the same as the conventional method, but in the present invention, is it a small electric machining condition or a large machining area? When machining is carried out off the coast of Komeki Ukojo, the minimum limit of (A), which expands by several micrometers each time, is always 1 micrometer, which causes the residual processing from the previous pattern processing to be loaded, which has an adverse effect on the processing condition. In order to improve this, the pattern locus machining status in each round is detected as a servo voltage by a servo voltage detection device, and the judgment circuit or program set in the detected value 'frN/C device #(b) This is to judge whether or not the orbital machining is completely completed at each orbit completion point P, and the set value of the servo voltage (+6 to
+6V) (time of servo voltage +6 to +6V divided by one revolution time), the same revolution is made or the movement is made to the next enlarged revolution locus.

上記サーボ電圧の判断基準とする+δに+6vは、この
間で任意の電圧の設定ができ且つ前記サーボ電圧の占め
る割合の設定も任意に設定できるものである。
+6 V is used as the criterion for determining the servo voltage, and an arbitrary voltage can be set therebetween, and the proportion occupied by the servo voltage can also be set arbitrarily.

又、上記実施例ではサーボ電圧の場合を説明したが、加
工電流値を検出しても同様の作用・効果が得られる。さ
らに、拡大軌跡方向は図上方向のみでなく660°どの
方向4Cあっても同様であることは言うまでもない。
Further, in the above embodiment, the case of using a servo voltage was explained, but similar actions and effects can be obtained even if the machining current value is detected. Furthermore, it goes without saying that the direction of the enlarged locus is not limited to the upward direction in the drawing, but is the same regardless of the direction 4C within 660°.

以上のように、本発明は所望形状パターンを数μ情ずつ
拡大する毎回の所望形状パターンの周回加工をサーボ電
圧値で監視と判断させることにより、形状パターンの各
拡大周回加工を確実に行わせ、安定した加工状態を常に
保つことができる。それにより異常加工の防止、加工精
度の向上が図られるばかりでなく、類似のプログラム上
の処理の煩雑さや予想不備が皆無となる効果がある。
As described above, the present invention ensures that each round of enlarging the desired shape pattern is performed by determining that the round processing of the desired shape pattern is monitored by the servo voltage value every time the desired shape pattern is enlarged by several micrometers. , stable machining conditions can be maintained at all times. This not only prevents abnormal machining and improves machining accuracy, but also eliminates the complexity and predictive deficiencies of similar program processing.

次に、本発明方法のさらに1つの実施例を説明する。こ
の実施例は被加工物と工具電極との間隙を制御するため
に設けられているサーボ電圧を利用することにより、工
具電極の動作(移動)を無加工状態と加工状態の判断が
可能で、前記サーボ電圧値の一定レベルを共に無加工状
態と区別し、無加工状態時の電極移動を変更できるよう
にしたものである。
Next, a further embodiment of the method of the present invention will be described. In this embodiment, by using the servo voltage provided to control the gap between the workpiece and the tool electrode, it is possible to determine the operation (movement) of the tool electrode between the non-machining state and the machining state. The constant level of the servo voltage value is distinguished from the non-processing state, and the electrode movement in the non-processing state can be changed.

第6,4図に共通の(1)は所望形状パターンであり、
(2)は所望形状パターンヶ数μ情ずつ拡大した時の軌
跡パターンであって、加工中のサーボ電圧全サーボ電圧
検出装置<11)で検出し、この電圧値をN/C装置装
置2)に送り、ここで判断させて(A)の大電気加工条
件から(B)の小電気加工条件に切換後の加工状態によ
り、無加工状態と判断された場合(C)のギャップ差域
内の加工を省略し1. (5)の拡大軌跡上を拡大方向
へ工具電極を移動させるものである。−第5図は、大電
気加工条件と小電気加工条件の放電ギャップ差を具体的
に示した模式図であり、α諦は工具電極、α4は被加工
物、(Gl)は大電気加工条件による加工で生じる放電
ギャップ、(SR1)は面粗度を表わす。また、(G2
)は小電気加工条件により生じる放電ギャップ、(S’
R2)は面粗度を表わす。(C)は前記両条件の放電ギ
ャップの差を表わす。
(1) common to FIGS. 6 and 4 is a desired shape pattern,
(2) is a locus pattern when the desired shape pattern is enlarged by the number μ, and the servo voltage during processing is detected by the total servo voltage detection device <11), and this voltage value is sent to the N/C device 2). If the machining condition after switching from the large electric machining condition (A) to the small electric machining condition (B) is determined to be a non-machining condition, machining within the gap difference region (C) is performed. Omitted 1. (5) The tool electrode is moved on the enlarged locus in the enlarged direction. - Figure 5 is a schematic diagram specifically showing the difference in discharge gap between large electrical machining conditions and small electrical machining conditions, where αY is the tool electrode, α4 is the workpiece, and (Gl) is the large electrical machining condition. The discharge gap (SR1) generated by machining represents the surface roughness. Also, (G2
) is the discharge gap caused by small electrical machining conditions, (S'
R2) represents surface roughness. (C) represents the difference in discharge gap between the two conditions.

第6図は、第6,4図を図式化したもので、(3)は大
電気加工条件の拡大域rA)の最終の形状パターン位置
であり、その時(6)の位置まで被加工物が加工される
ことを示す。(4)は小電気加工条件の拡大域(B)の
最終の形状パターン位置であり、その時(7)の位置ま
で被加工物が加工されることを示す。(5)は加工穴中
心位置より拡大する時工具電極が移動する拡大軌跡線で
、無加工状態の時はこの拡大軌跡線上を工具電極は拡大
方向にのみ移動する。
Figure 6 is a diagrammatic representation of Figures 6 and 4, where (3) is the final shape pattern position of the enlarged area rA) of the large electrical machining conditions, and at that time the workpiece has reached the position (6). Indicates that it will be processed. (4) is the final shape pattern position of the enlarged area (B) of the small electrical machining conditions, and indicates that the workpiece is then processed up to the position (7). (5) is an enlarged locus line along which the tool electrode moves when enlarging from the center position of the machined hole; in the non-machining state, the tool electrode moves only in the enlarging direction on this enlarged locus line.

次に、この実施例の動作について説明するさ、被加工物
に所望形状の加工?するため、所望形状と同一形状もし
くは異形状で所望形状寸法より小さい電極を用いて被加
工物を加工することは従前通りであるが、この実施例で
は、加工条件全大電気加工条件から小電気加工条件に切
換える時に生じる各電気条件の放電ギャップ(G+)(
Gz)の差(C) ’k、工具電極(至)と被加工物0
4の間隙を制御するサーボ電圧を検出するサーボ電圧検
出装置αυにより検出し、この電圧値’iN/C装置で
サーボ電圧のレベル値と比較することによって、無加工
状態と加工状態との区別を判断させ、無加工状態の時は
工具電極03を拡大軌跡線(5)上管拡大方向のみに移
動させ、検出電圧値が加工状態であると判断された時は
(])のパターンを各電気条件の拡大域で現在まで拡大
された最大拡大値で形状パターンを画きつつ加工する。
Next, we will explain the operation of this embodiment. Therefore, it is conventional to process the workpiece using an electrode that has the same shape as the desired shape or a different shape and is smaller than the desired shape, but in this example, the machining conditions are changed from the full-scale electrical machining conditions to the small-scale Discharge gap (G+) for each electrical condition that occurs when switching to machining conditions (
Gz) difference (C) 'k, tool electrode (to) and workpiece 0
The servo voltage that controls the gap in 4 is detected by the servo voltage detection device αυ, and this voltage value is compared with the level value of the servo voltage by the iN/C device, thereby distinguishing between the unprocessed state and the processed state. When it is in the non-machining state, the tool electrode 03 is moved only in the enlarged direction of the enlarged locus line (5) on the upper tube, and when the detected voltage value is determined to be in the machining state, the pattern in ( ]) is Processing is performed while drawing a shape pattern using the maximum enlargement value that has been enlarged up to now in the enlargement range of the conditions.

そη、により、加工の電気条件が切換えられた時に発生
する放電ギャップ差(C)が無加工状態となって工具電
極α]の形状パターン軌跡移動が省略される。
Due to this, the discharge gap difference (C) that occurs when the electrical conditions for machining are switched becomes a non-machined state, and the movement of the shape pattern locus of the tool electrode [alpha] is omitted.

又、上記実施例ではサーボ電圧の場合を説明したが、加
工電流値を検出しても同様の作用・効果が得られる。
Further, in the above embodiment, the case of using a servo voltage was explained, but similar actions and effects can be obtained even if the machining current value is detected.

以上のように、この実施例においては、サーボ電圧のレ
ベルにより加工状態を判断させるように構成したことに
よって、無加工状態の工具電極の移動に無駄がなくなり
、かつそれにより加工時間の短縮が図られ、プログラム
上の煩雑な操作も不要で簡単なプログラムで済むようK
なった。
As described above, in this embodiment, by configuring the machining state to be judged based on the level of the servo voltage, there is no wasted movement of the tool electrode in the non-machining state, and the machining time is thereby reduced. It is designed so that complicated operations on the program are unnecessary and only a simple program is required.
became.

次に、本発明方法のさらに一つの実施例を説明する。こ
の実施例は拡大軌跡パターン上に、工具電極をパターン
形状の中心方向へ退避させるための退避軌跡を設けるこ
とにより、異常加工?解消するものである。
Next, another embodiment of the method of the present invention will be described. In this embodiment, a retraction locus for retracting the tool electrode toward the center of the pattern shape is provided on the enlarged locus pattern to prevent abnormal machining. It is something that will be resolved.

以下、この実施例’に第7.8図によって説明する。第
8図における(2)はパターンの基点Po′ft中心と
し℃角形輪郭を画く形状軌跡パターンであり、(D)は
工具電極を加工面から加工穴中心方向へ退避させる軌跡
の間隔全話す。(F)は異常加工退避動作量内の間隔で
ある。なお、第7図における(E)は基点Poから放射
状に工具電極全退避移動させる放射形状パターンであり
、(2)は基点Pot中心に角形状の輪郭を画いて移動
する形状軌跡パターンである。
This embodiment will be explained below with reference to FIG. 7.8. In FIG. 8, (2) is a shape locus pattern that draws a °C rectangular outline centered on the base point Po'ft of the pattern, and (D) represents the entire interval of the locus for retracting the tool electrode from the machining surface toward the center of the machining hole. (F) is the interval within the abnormal machining retraction movement amount. Note that (E) in FIG. 7 is a radial shape pattern in which the tool electrode is completely retracted radially from the base point Po, and (2) is a shape locus pattern in which the tool electrode is moved while drawing a rectangular outline around the base point Po.

次に、この実施例の動作について説明する。被加工物に
所望の形状を加工する時、大電気加工条件から徐々に小
電気加工条件に移行させて仕上げをする。この時、放電
ギャップと加工代全加味して放電現象全行わせるので、
工具電極を加工面に接近させなければならないのは従来
と同様であるが、被加工物の加工側面に沿って移動する
量が大きい形状軌跡′パターンの場合は、異常加工が発
生した場合に工具電極全退避させるのが困難であった。
Next, the operation of this embodiment will be explained. When processing a desired shape on a workpiece, finishing is performed by gradually transitioning from large electrical processing conditions to small electrical processing conditions. At this time, the entire discharge phenomenon takes into account the discharge gap and machining allowance, so
As in the past, the tool electrode must be brought close to the machining surface, but in the case of a shape locus pattern that moves a large amount along the machining side of the workpiece, the tool electrode must be moved close to the machining surface when abnormal machining occurs. It was difficult to evacuate all the electrodes.

そこで、この実施例では形状軌跡パターン(2)上に1
異常加工回避動作量(F+D )の範囲内に工具電極を
加工穴(8)の内側へ適量の工具電極退避軌跡を設け、
任意のどの地点で異状加工が発生しても解消できるよう
にしたものである。又、工具電極を加工穴(8)の内側
に退避させる退避軌跡量(D)は、加工電気条件により
変化させるのが可能であり、同様に退避動作量内の間隔
(F)も可変が可能である。
Therefore, in this embodiment, 1
An appropriate amount of tool electrode retraction trajectory is provided within the range of the abnormal machining avoidance movement amount (F + D), and the tool electrode is moved inside the machining hole (8).
This makes it possible to eliminate abnormal machining even if it occurs at any point. In addition, the retraction locus amount (D) for retracting the tool electrode inside the machined hole (8) can be changed depending on the machining electrical conditions, and the interval (F) within the retraction operation amount can also be changed in the same way. It is.

上記の実施例は角形状の退避軌跡について説明したけれ
ども、細形状の加工においても可能であることは言うま
でもない。また、退避軌跡への工具電極の動作を加工状
態の良否が判断できるサーボ電圧全検出し、それ?判断
する回路を設けることにより、必要に応じ工具電極を退
避させることも可能である。
Although the above embodiments have been described with respect to rectangular retraction trajectories, it goes without saying that machining of narrow shapes is also possible. In addition, all servo voltages can be detected to determine whether the machining condition is good or not when the tool electrode moves toward the retreat path. By providing a judgment circuit, it is also possible to evacuate the tool electrode as necessary.

以上のように、この実施例によれば、形状軌跡パターン
内に異常加工回避動作量内の工具電極の退避軌跡を設け
ることによって、加工側面に清って移動する工具電極を
加工面より常時必要量退避させることができるので、異
常加工の回避が容易に行える。
As described above, according to this embodiment, by providing a retraction locus for the tool electrode within the abnormal machining avoidance movement amount within the shape locus pattern, the tool electrode that moves cleanly to the machining side is always required from the machining surface. Since the amount can be evacuated, abnormal machining can be easily avoided.

〔発明の効果〕〔Effect of the invention〕

上記本発明の各実施例の効果に明らかな如く、本発明に
よれば、加工状態を常に安定した状態に保つことができ
、異常加工の防止、加工精度の向上が図られるばかりで
なく、工具電極の移動に無駄がなくなり、類似のプログ
ラム上の処理の煩雑さや予想不備が皆無となるなどの諸
効果を奏する。
As is clear from the effects of the embodiments of the present invention described above, according to the present invention, the machining state can always be kept stable, abnormal machining can be prevented, machining accuracy is improved, and the tool There are various effects such as there is no waste in moving the electrodes, and there is no need to worry about the complexity of similar program processing or any predictive deficiencies.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は所望形状パターンとその拡大軌跡パターンを示
す模式図、第2図は本発明の放電加工装置の配置を示す
模式図、第3〜6図は本発明の別の一実施例を示し、第
6図は拡大軌跡パターンの模式図、第4図は本発明装置
を用いた配置の模式図、第5図は電気条件毎の工具電極
と被加工物の関係を示す模式図、第6図は第4図と第5
図を総合した模式図、第7.8図は本発明のさらに別の
一実施例を示し、第7図は退避軌跡の一例を示す模式図
、第8図は退避軌跡量全説明するための模式図である。 (1)・・・所望形状パターン、 (2)・・・軌跡パ
ターン、(3)・・・大電気加工条件の拡大域(A)の
最終形状パターン位置、 (4)・・・小電気加工条件の拡大域(i)の最終形パ
ターン位置、 (5)・・・拡大軌跡線、(6バ7)・・・加工位置、
αη・・・サーボ電圧検出装置、(2)・・・N/C装
置、(至)・・・工具電極、σ◆・・・被加工物、(A
)・・・大電気加工条件拡大域、(B)・・・小電気加
工条件拡大域、(C)・・・放電ギャップの差域、(D
)・・・退避軌跡の間隔、rE)・・・放射状退避パタ
ーン、(F)・・・退避動作量内の間隔、(G1)・・
・大電気加工条件の放電ギャップ、(G2)・・・小電
気加工条件の放電ギャップ、(S R1)(S R2)
・・・面粗度。 代理人 弁理士 木 村 三 朗 四 同 佐々木 宗 治 し−」 第4図 第5図 第7図 第8図
FIG. 1 is a schematic diagram showing a desired shape pattern and its enlarged locus pattern, FIG. 2 is a schematic diagram showing the arrangement of the electrical discharge machining apparatus of the present invention, and FIGS. 3 to 6 show another embodiment of the present invention. , FIG. 6 is a schematic diagram of an enlarged locus pattern, FIG. 4 is a schematic diagram of the arrangement using the device of the present invention, FIG. 5 is a schematic diagram showing the relationship between the tool electrode and the workpiece under each electrical condition, and FIG. The figures are Figures 4 and 5.
FIG. 7.8 is a schematic diagram illustrating yet another embodiment of the present invention, FIG. 7 is a schematic diagram showing an example of an evacuation trajectory, and FIG. 8 is a schematic diagram for explaining the total amount of evacuation trajectory. It is a schematic diagram. (1) Desired shape pattern, (2) Trajectory pattern, (3) Final shape pattern position of expanded area (A) of large electrical machining conditions, (4) Small electrical machining Final pattern position of expanded area (i) of condition, (5)... enlarged locus line, (6 bar 7)... machining position,
αη...Servo voltage detection device, (2)...N/C device, (To)...Tool electrode, σ◆...Workpiece, (A
)...large electric machining condition enlarged area, (B)...small electric machining condition enlarged area, (C)...discharge gap difference area, (D
)... Interval of evacuation locus, rE)... Radial evacuation pattern, (F)... Interval within evacuation movement amount, (G1)...
・Discharge gap under large electrical machining conditions, (G2)...Discharge gap under small electrical machining conditions, (S R1) (S R2)
···Surface roughness. Agent: Patent Attorney Rōji Kimura, Sou Sasaki (Fig. 4, Fig. 5, Fig. 7, Fig. 8)

Claims (4)

【特許請求の範囲】[Claims] (1)加工すべき所望の形状より小さい同一形状もしく
は異形状の工具電極を用い、前記所望の形状に一致する
一定形状のパターン全規則的に拡大した軌跡パターンに
沿い周回加工した後火の拡大軌跡パターンへ逐次移動さ
せて被加工物を加工するに際し、工具電極の次の拡大軌
跡パターンへノ移動制御を個々の周回加工中に検出した
サーボ電圧値により判断させることを特徴とする放電加
工方法。
(1) Using a tool electrode of the same shape or a different shape that is smaller than the desired shape to be machined, the pattern of a certain shape that matches the desired shape is processed in circles along a regularly enlarged locus pattern, and then the flame is expanded. An electric discharge machining method characterized in that, when machining a workpiece by sequentially moving to a locus pattern, control of movement of a tool electrode to the next enlarged locus pattern is determined based on a servo voltage value detected during individual machining cycles. .
(2)上記工具電極の拡大軌跡パターンへの移動におい
て、大電気加工条件から小電気加工条件への切換え後の
ギャップ差域内の制御を、その加工中に検出したサーボ
電圧値により判断させることを特徴とする特許請求の範
囲第1項記載の放電加工方法。
(2) In the movement of the tool electrode to the enlarged locus pattern, the control within the gap difference region after switching from large electric machining conditions to small electric machining conditions is determined by the servo voltage value detected during the machining. An electric discharge machining method according to claim 1, characterized in that:
(3)上記拡大軌跡パターン上に、工具電極をパターン
形状の中心方向へ退避させるだめの退避軌跡を設けるこ
とを特徴とする特許請求の範囲第1項記載の放電加工方
法。
(3) The electric discharge machining method according to claim 1, wherein a retraction locus for retracting the tool electrode toward the center of the pattern shape is provided on the enlarged locus pattern.
(4)加工液中に被加工物と工具電極を対向させて浸漬
し、前記被加工物と工具電極間に加工液を介−して電気
放電現象分生じさせて被加工物を所望の形状に加工する
放電加工装置において、被加工物と工具電極の間PJt
制御するサーボ電圧を検出するサーボ電圧検出装置と、
該サーボ電圧検出装置から送られるサーボ電圧値により
工具電極の動作(移動)を制御するN / c装置と?
備えたことを特徴とする放電加工装置。
(4) A workpiece and a tool electrode are immersed in a machining fluid so as to face each other, and an electrical discharge phenomenon is generated between the workpiece and the tool electrode via the machining fluid to shape the workpiece into a desired shape. In electrical discharge machining equipment that processes
a servo voltage detection device that detects a servo voltage to be controlled;
An N/C device that controls the operation (movement) of the tool electrode based on the servo voltage value sent from the servo voltage detection device?
An electrical discharge machining device characterized by:
JP59108652A 1984-05-30 1984-05-30 EDM method Expired - Lifetime JPH078457B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59108652A JPH078457B2 (en) 1984-05-30 1984-05-30 EDM method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59108652A JPH078457B2 (en) 1984-05-30 1984-05-30 EDM method

Publications (2)

Publication Number Publication Date
JPS60255324A true JPS60255324A (en) 1985-12-17
JPH078457B2 JPH078457B2 (en) 1995-02-01

Family

ID=14490236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59108652A Expired - Lifetime JPH078457B2 (en) 1984-05-30 1984-05-30 EDM method

Country Status (1)

Country Link
JP (1) JPH078457B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010023188A (en) * 2008-07-18 2010-02-04 Sodick Co Ltd Swing discharge machining method and swing discharge machining apparatus in engraving discharge machining operation
JP2012101295A (en) * 2010-11-08 2012-05-31 Mitsubishi Electric Corp Electrical discharge machining apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5754029A (en) * 1980-09-19 1982-03-31 Mitsubishi Electric Corp Discharge processing method and device
JPS58120427A (en) * 1982-01-06 1983-07-18 Inoue Japax Res Inc Electrical discharge machining device
JPS5969227A (en) * 1982-10-07 1984-04-19 Fanuc Ltd Enlarging machining system in electric discharge machine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5754029A (en) * 1980-09-19 1982-03-31 Mitsubishi Electric Corp Discharge processing method and device
JPS58120427A (en) * 1982-01-06 1983-07-18 Inoue Japax Res Inc Electrical discharge machining device
JPS5969227A (en) * 1982-10-07 1984-04-19 Fanuc Ltd Enlarging machining system in electric discharge machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010023188A (en) * 2008-07-18 2010-02-04 Sodick Co Ltd Swing discharge machining method and swing discharge machining apparatus in engraving discharge machining operation
JP2012101295A (en) * 2010-11-08 2012-05-31 Mitsubishi Electric Corp Electrical discharge machining apparatus

Also Published As

Publication number Publication date
JPH078457B2 (en) 1995-02-01

Similar Documents

Publication Publication Date Title
US4818834A (en) Process for drilling chamfered holes
US4507536A (en) Beam-machining method and apparatus
JP2003165030A (en) Wire electric discharge machining device and wire electric discharge machining method
KR980000727A (en) Electric Discharge Processing Equipment and Method
Kaneko et al. Three-dimensional numerically controlled contouring by electric discharge machining with compensation for the deformation of cylindrical tool electrodes
JPS60255324A (en) Method and device of electric discharge machining
US4606007A (en) NC electroerosion method and apparatus
US4400606A (en) Method and apparatus for discharge machining polygonal contours
JPH09108945A (en) Electric discharge machining device and method
JP3269678B2 (en) Electrostatic chuck device and electrostatic chuck method
JPS637233A (en) Nc type electric discharge machine for carving
JPS5921737B2 (en) Spark erosion processing method
CN109290651A (en) A kind of method of belt electrode migration processing round arrays slot
JPH034335B2 (en)
JP2952369B2 (en) Wire cut electric discharge machining method
Kruth Automatic supervision in physical and chemical machining
JPS6119373B2 (en)
JPS6158257B2 (en)
JPH10156630A (en) Electrical discharge machining method
JPS6260212B2 (en)
JP3715090B2 (en) Electric discharge machining apparatus and electric discharge machining method
JPH0125656B2 (en)
JPS6322219A (en) Wire electric spark machining method
JP2762198B2 (en) Electric discharge machining method and apparatus
JPH04226832A (en) Electric discharge machining device