JPS5969227A - Enlarging machining system in electric discharge machine - Google Patents

Enlarging machining system in electric discharge machine

Info

Publication number
JPS5969227A
JPS5969227A JP17669082A JP17669082A JPS5969227A JP S5969227 A JPS5969227 A JP S5969227A JP 17669082 A JP17669082 A JP 17669082A JP 17669082 A JP17669082 A JP 17669082A JP S5969227 A JPS5969227 A JP S5969227A
Authority
JP
Japan
Prior art keywords
machining
enlarged
frequency
working time
short
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17669082A
Other languages
Japanese (ja)
Inventor
Mitsuo Matsui
光夫 松井
Teruyuki Matsumura
松村 輝幸
Masashi Yukitomo
行友 正志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fanuc Corp
Original Assignee
Fanuc Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Corp filed Critical Fanuc Corp
Priority to JP17669082A priority Critical patent/JPS5969227A/en
Publication of JPS5969227A publication Critical patent/JPS5969227A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H7/00Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
    • B23H7/14Electric circuits specially adapted therefor, e.g. power supply
    • B23H7/18Electric circuits specially adapted therefor, e.g. power supply for maintaining or controlling the desired spacing between electrode and workpiece

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

PURPOSE:To make it possible to obtain a desired degree of working accuracy in simple control operation and as well to enable a working time to be shortened, by judging whether the frequency N of generation of a short-circuit signal issued during a predetermined working time becomes less than a set number Ns or not, so that a machining passage is enlarged when N<Ns. CONSTITUTION:An input control circuit ICT for controlling a tape reader TRD reads NC data from an NC tape TP and then delivers the data to a decoder circuit DEC. A computing and controlling unit OPCN having a processor part CPU, a control program memory CPM, etc., counts short-circuit signals SS within a predetermined working time Ts to judge whether the frequency of generation of the short circuit signal becomes less than a set number Ns or not each time when a working time is elapsed, and enlarges a machining passage it the frequency becomes below the set number Ns. A parameter memory PMM stores therein a set number Ns delivered from an operation panel PNL and a predetermined time Ts, and a memory STM stores therein an enlarged frequency (n), a working time T and a frequency N of generation of a short-circuit signal.

Description

【発明の詳細な説明】 本発明は放電加工機における拡大加工方式に関する〇 放電加工機には所定形状の電極をワークに接近した状態
で該電極とワーク間で放電を生じさせ、且つ電極をワー
クに対して相対的に移動させてワークに加工を施す形彫
放電加工機がある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an enlarged machining method in an electric discharge machine. In an electric discharge machine, an electrode of a predetermined shape is brought close to a workpiece, and an electric discharge is generated between the electrode and the workpiece. There is a die-sinking electric discharge machine that processes a workpiece by moving it relative to the machine.

第1図はか\る形彫放電加工機によりa動加コーを行な
う場合の概略説明図である。ポンチとなる電極EPはス
ピンドルSPにより支持されると共に、図示しないサー
ボモータにより矢印方向に加工送りが与えられる。又、
グイとなる被加二E体(ワーク)WKと電極BP間には
電源PSがら通電が行われる。従って、ワークWKとt
mABPf?5に微小間隙を形成しながら、該電極を加
工送りずれはワークWKは電極EPと同形に加工される
(揺動加工)。かくる形彫放電加工機によれば揺動加工
のみならず輪郭加工、拡大加工等も可能で、被加下物や
電極の種類により適宜所定の加工方法が選択されて加工
が行われる。第2図(A)は丸棒状電極BPを通路Cu
tに沿って移動させワークWKに円筒状の四部或いは貫
通穴を形成する輪郭加工の例であり、第2図(B)は角
状電極BPを矩形状の通路RTGに沿って移動させワー
クWKに矩形状の四部或いは貫通穴を形成する輪郭加工
の例である。
FIG. 1 is a schematic explanatory diagram of the case where a die-sinker electrical discharge machine is used to perform an a motion. The electrode EP serving as a punch is supported by a spindle SP, and a processing feed is applied in the direction of the arrow by a servo motor (not shown). or,
Electricity is supplied from the power supply PS between the workpiece WK and the electrode BP. Therefore, work WK and t
mABPf? While forming a minute gap in the electrode EP, the workpiece WK is machined into the same shape as the electrode EP (oscillating machining). The die-sinking electric discharge machine is capable of not only oscillating machining but also contour machining, enlargement machining, etc., and machining is performed by selecting a predetermined machining method as appropriate depending on the type of workpiece and electrode. Figure 2 (A) shows the passage Cu through the round rod-shaped electrode BP.
This is an example of contour processing in which four cylindrical parts or a through hole are formed in the workpiece WK by moving the square electrode BP along the rectangular path RTG. This is an example of contour processing in which four rectangular parts or a through hole are formed in the material.

第6図は拡大加工の例である。電極はA0点から移動を
開始しA、点へ移動後、A1B1C1−+D1→A1の
経路をたどって加工し、しかる後加工状態たとえば加工
面精度をみてA1点からA2点へ拡大を行い、その後A
2→B2→C7→D、→A、に沿って、換言すれば前回
と比べ少し太き目の径路をたどって加工し、再び適当な
時期にA3点へ拡大し、以下同様な動作を繰り返えして
最終的にAn→Bn→Cn −+ Dn−+Anまで拡
大加工を行なう。尚、An Bn Cn Dnは最終加
工形状であり、A1B1C1Di (i(n)は最終加
工形状に相似の形状である。
FIG. 6 is an example of enlarging processing. The electrode starts moving from point A0, moves to point A, and then processes along the path A1B1C1-+D1→A1.After that, the process is enlarged from point A1 to point A2 based on the machining condition, for example, the accuracy of the machined surface. A
Process along 2→B2→C7→D, →A, in other words, follow a slightly thicker path than the previous one, expand to point A3 again at an appropriate time, and repeat the same operation. Finally, enlarging processing is performed from An→Bn→Cn −+Dn−+An. Note that An Bn Cn Dn is the final processed shape, and A1B1C1Di (i(n) is a shape similar to the final processed shape.

さて、か\る拡大加工方式によれば大きな形状の形彫加
工が行なえ有益である。ところで、従来の拡大加工方式
においては、たとえば同じ径路をn回たどったら拡大さ
せるものであった。このため、n回の加工の繰返えし前
に所定の面精度が出て、拡大してもよいにもか\わらず
、従来の方式ではn回迄加工を繰返えす必要があり、加
工時間が長くなり、加工効率が低下する欠点があった。
Now, the enlarging method is useful because it allows die-sinking of large shapes. By the way, in the conventional enlargement processing method, for example, the same route is enlarged after being traversed n times. For this reason, although it is possible to achieve a predetermined surface accuracy and expand the surface accuracy before repeating the process n times, with the conventional method, it is necessary to repeat the process up to n times. This method had the disadvantage of increasing processing time and reducing processing efficiency.

従って、本発明は加工効率を向上できると共に、拡大し
てもよいかどうかの判別が簡単にでき、しかも任意の加
工精度を得ることができる放電加工機における拡大加工
方式を提供することを目的とする。
Therefore, an object of the present invention is to provide an enlargement machining method for an electric discharge machine that can improve machining efficiency, easily determine whether or not enlargement is allowed, and obtain arbitrary machining accuracy. do.

以下、本発明の実施例を図面に従って詳細に説明する。Embodiments of the present invention will be described in detail below with reference to the drawings.

第4図は本発明の実施例ブロック図であり、TPはNC
テープで多数の数値制御データ(NCデータ)から成る
NCプログラムが記録されている。TRDはテープリー
グ、■CTは入力制御回路でありテープリーダTRDを
制御してNCテープTP、からNCデータを順次読取っ
て後段の解読回路に入力する。DECは解読回路である
。0PCNは演算及び制御ユニットであり処理部CPU
 、制御プログラムメモリCPM等を有している。そし
て、たとえば直線補間状態で目標位置がXe、 Ye、
 7.eであれば、該演算及び制餌1ユニノ) 0PC
NはXe−Xa−+ΔX、 Ye−Ya−+ΔY、 Z
e−Za−+ΔZ   (1)(但し、Xa、Ya、Z
aは各軸の現在位置である)の演算を実行してインクリ
メンタル値△X、△Y、△Zを求め、該インクリメンタ
ル値を次段のパルス分配器に出力すると共に、パルス分
配器から分配パルスxp、 Yp、 Zpが発生する毎
に次式%式%(2) (3) の演算を行なって残移動量Xm、 Ym、 Zm及び現
在位置(Xa、 Ya、 Za )を更新する。尚、(
3)式において符号は移動方向に依存し、正方向に移動
していれはプラス、負方向に移動していればマイナスと
なる。又、演算及び制御ユニツ) 0PCNは第5図の
流れ図に示す拡大加工処理を行なう。即ち、演算及び制
御ユニッ) 0PCNは所定加工時間Ts+(所定加工
距離でもよい)の間に発生する短絡信号SSを計数し、
該加工時間経過毎に短絡信号の発生回数が設定値Ns以
下になったがどうかを判別し、設定値Ns以下になった
とき通路を拡大し、設定値Ns以上のときには設定値以
下になる迄加工通路を拡大することなく同一の加工通路
に沿って電極をワークに対して相対的に移動させる。尚
、短絡信号とは電極がワークに接触したとき機械側から
発生する信号であり、短絡信号の発生回数が多いという
ことは荒加工の状態で加工面精度が出ていないことを意
味し、短絡信号の発生回数か少ないということは仕上げ
加工の状態となり加工面精度が出ていることを意味する
。PNLは操作盤、PMMは操作盤PNLより入力され
た前記設定値Ns及び所定時間Tsをそれぞれ記憶する
パラメータメモIJ 、STMは拡大回数n1加工時間
T及び短絡信号発生回数Nをそれぞれ記憶するメモリ、
UMMはユーザマクロメモリであり、このユーザマクロ
メモリには第5図に示す流れ図に基いて作成されたユー
ザマクロが記憶されている。尚、ユーザマクロとは、あ
る一群の命令で構成されるある機能をサブプログラムの
ようにメモリに予め登録しておくと共は、該登録された
機能を1つの命令で代表させ、その代表命令だけをNC
プログラム中に挿入しておくことにより該機能を実行さ
せるものである0そして、このユーザマクロの最大の特
徴は(イ)ユーザマクロ中で変数を使える、(ロ)変数
間の演算ができる、(ハ)変数に実際の値を設定できる
ということである。第6図は通常のNCプログラムとユ
ーザマクロの関係説明図であり、TPは通常のNCプロ
グラム、UMはユーザマクロである。NCプログラムの
適所にはユーザマクロ呼出命令、065 2口口・・・
ロ エ・・・ J△Δ・・・ΔKOO・・○;(4)が
挿入され、又マクロ識別名2口口・・・口のユーザマク
ロには第7図に示す通路A I −+ A C4−1→
Bi++→Ci+1→D i+1→Ai+1 に沿った
通路命令や複数の条件命令等がプログラムされている。
FIG. 4 is a block diagram of an embodiment of the present invention, where TP is NC
An NC program consisting of a large amount of numerical control data (NC data) is recorded on tape. TRD is a tape league, and CT is an input control circuit which controls the tape reader TRD to sequentially read NC data from the NC tape TP and input it to the subsequent decoding circuit. DEC is a decoding circuit. 0PCN is an arithmetic and control unit, and the processing unit CPU
, a control program memory CPM, etc. For example, in the linear interpolation state, the target position is Xe, Ye,
7. If e, the corresponding calculation and feeding control 1 unino) 0PC
N is Xe-Xa-+ΔX, Ye-Ya-+ΔY, Z
e-Za-+ΔZ (1) (However, Xa, Ya, Z
a is the current position of each axis) to obtain the incremental values △X, △Y, △Z, output the incremental values to the next stage pulse distributor, and output the distributed pulses from the pulse distributor. Every time xp, Yp, Zp occurs, the following equations %(2) and (3) are calculated to update the remaining movement amounts Xm, Ym, Zm and the current position (Xa, Ya, Za). still,(
In equation 3), the sign depends on the direction of movement; if the movement is in the positive direction, the sign is positive, and if the movement is in the negative direction, the sign is negative. Further, the calculation and control unit (0PCN) performs the enlargement process shown in the flowchart of FIG. That is, the calculation and control unit) 0PCN counts short circuit signals SS generated during a predetermined machining time Ts+ (which may also be a predetermined machining distance),
Each time the machining time elapses, it is determined whether the number of occurrences of the short circuit signal has become less than the set value Ns, and when it is less than the set value Ns, the passage is expanded, and when it is more than the set value Ns, it is continued until the number becomes less than the set value. To move an electrode relative to a workpiece along the same processing path without enlarging the processing path. The short circuit signal is a signal generated from the machine side when the electrode contacts the workpiece, and if the short circuit signal occurs frequently, it means that the machined surface accuracy is not achieved during rough machining. If the number of times the signal is generated is small, it means that the finish machining is in progress and the machined surface accuracy is achieved. PNL is an operation panel, PMM is a parameter memo IJ that stores the set value Ns and predetermined time Ts input from the operation panel PNL, and STM is a memory that stores the number of enlargements n1, the machining time T, and the number of short circuit signal occurrences N, respectively.
UMM is a user macro memory, and this user macro memory stores a user macro created based on the flowchart shown in FIG. Note that a user macro is a function in which a certain function consisting of a certain group of instructions is registered in memory in advance like a subprogram, and the registered function is represented by one instruction, and the representative instruction is NC only
It executes the function by inserting it into a program.0And the biggest features of this user macro are (a) variables can be used in the user macro, (b) operations can be performed between variables, ( c) It means that actual values can be set in variables. FIG. 6 is an explanatory diagram of the relationship between a normal NC program and a user macro, where TP is a normal NC program and UM is a user macro. User macro call command, 065 2 mouth...
RO E... J△Δ...ΔKOO...○; (4) is inserted, and the user macro with the macro identification name 2 mouth mouth... mouth is the path A I - + A shown in Fig. 7. C4-1→
Passage commands along Bi++→Ci+1→D i+1→Ai+1 and a plurality of conditional commands are programmed.

以下は第5図の流れ図に対応するユーザマクロの例であ
る。
The following is an example of a user macro corresponding to the flowchart of FIG.

尚、通路データは第7図に示す通路に沿って電極が移動
するように作成されるものとし、又スタート点Aoは原
点であり、更には拡大幅は一定であるとする。
It is assumed that the path data is created so that the electrode moves along the path shown in FIG. 7, that the starting point Ao is the origin, and that the expansion width is constant.

2口口・・・口+ I” ’o + J” J。、 K
==ko;      −(a)01  ≠1−1  
           ・・・(b)30 42=0.
 + 3=0  :        ・・・(e)40
Y−2J・#1;            ・・・(f
)50   X −2I4h ;−(g)60   Y
+2J・#1;            ・・・(h)
Zo   X+2I・井、;            
 ・・・(i)so  IF(す2 LTす4) Go
 TQ 40  −(jJ90  工p(+ 3  G
T + 5 〕oo To  30   −<k+10
0  ≠1=+14−1           ・・・
(ホ)110   END I           
   −(n)M99  ;            
     °=(p)尚、(a)はユーザマクロ番号(
PO口・・・口)及び第7図中のto+JD及び拡大回
数k。を指定する命令、(b)は変数4P1を1にセッ
トする命令、換言すれば1に対応するレジスタ(拡大加
工回数を記憶するレジスタ)に1をセットする命令、(
C) 、 (n)は拡大加工回数がk。回になる迄シー
ケンス番号20〜100を繰返えす命令、(d)は電極
をX軸及びY軸方向にそれぞれI、Jづつ同時2軸の切
削移動を行わせる命令(第7図のAi→AI+1の切削
命令)、(e)は変数す2.≠3を零にする命令であり
、換言すれば加工時間T及び短絡信号発生回数Nを訃奈
事幸計数するレジスタを零にクリアする命令;(f)〜
(りはそれぞれY軸方向に一2J飛+(Ai−H点がら
B i++点への移動)、X軸方向に一2■葺+(Bi
++点がらC1+1点への移動)、Y軸方向に+2 、
JL+(Ci + 1点からD i+1点への移動)、
X軸方向に+2 IJ(D i+i点がらAi++点へ
の移動)それぞれ切削移動させる命令、(j)は加工時
間Tが予め定められた設定時間Ts(変1−4−4が指
示するレジスタに記憶されている)以上になっているか
どうがを判別し、T<Tsならば第7図に示すAi−z
→Bi+1→Ci++→D1+1→A i+1  の通
路に沿った加工を繰返えす条件命令、(k)は短絡信号
発生回数Nと設定値Nsの大挙を判別し、N>Nsであ
れば第3oシーケンスに戻りてT=o、N二りとして再
びAi++→Bi刊→C1+1→J)i+i→A i+
1の切削を繰返えす命令、(m)は変数4P1が示すレ
ジスタの内容、即ち拡大回数を1力?、ントアップする
命令、(p)はNCプログラムへの戻りを示す命令であ
る。尚、変数、% 101.≠201に対応するレジス
タにはX軸、Y軸方向の現在位置が記憶されているもの
とする。
2 mouths...mouth + I"'o + J" J. , K
==ko; −(a)01 ≠1-1
...(b) 30 42=0.
+3=0: ...(e)40
Y-2J・#1; ...(f
)50 X -2I4h ;-(g)60 Y
+2J・#1; ...(h)
Zo X+2I・I;
...(i) so IF (su2 LTsu4) Go
TQ 40 - (jJ90 engineering p (+ 3 G
T + 5]oo To 30 -<k+10
0≠1=+14-1...
(E) 110 END I
-(n)M99;
°=(p) Note that (a) is the user macro number (
PO mouth...mouth) and to+JD and the number of enlargements k in FIG. (b) is an instruction to set variable 4P1 to 1, in other words, an instruction to set 1 to the register corresponding to 1 (register that stores the number of enlargements), (
C), (n), the number of enlargements is k. (d) is a command to simultaneously move the electrode in two axes, I and J, in the X-axis and Y-axis directions (Ai→1 in Fig. 7). AI+1 cutting command), (e) is the variable 2. This is an instruction to zero ≠3, in other words, an instruction to clear to zero the register that counts the machining time T and the number of short circuit signal occurrences N; (f) ~
(respectively, 12J + (movement from Ai-H point to B i++ point) in the Y-axis direction, 12J+ (movement from Bi++ point) in the X-axis direction
++ movement from point to C1+1 point), +2 in the Y-axis direction,
JL+ (movement from Ci + 1 point to D i + 1 point),
+2 IJ (movement from D i+i point to Ai++ point) cutting movement command in the X-axis direction, (j) is a command to move the machining time T to a predetermined setting time Ts (movement from the register indicated by Variation 1-4-4). If T<Ts, Ai-z shown in FIG. 7 is determined.
→Bi+1→Ci++→D1+1→A i+1 Conditional command to repeat machining along the path, (k) determines the number of short circuit signal occurrences N and the set value Ns, and if N>Ns, the 3rd o sequence Return to T=o, N again as Ai++ → Bi publication → C1+1 → J) i+i → A i+
The instruction to repeat cutting 1, (m) is the contents of the register indicated by variable 4P1, that is, the number of times of expansion. , an instruction to start up, and (p) is an instruction indicating a return to the NC program. In addition, variables, %101. It is assumed that the register corresponding to ≠201 stores the current position in the X-axis and Y-axis directions.

第4図に戻ってPWCは機械とNC装置間でのデータ授
受を司どる強電回路であり、該回路を介して短絡信号S
Sが機械側からNC装置に入力され、又NC装置から機
械側へM、S、T@能命令が出力される。
Returning to Figure 4, the PWC is a high-power circuit that controls data exchange between the machine and the NC device, and the short circuit signal S
S is input from the machine side to the NC device, and M, S, and T @ function commands are output from the NC device to the machine side.

次に第4図の動作を説明する。起動がか\ると、入力制
御回路ICTはテーブリータTRDを制御し、NCテー
プより1ブロツクづつNCデータを読取り、該NCデー
タを演算及び制御回路0PCNに入力し、該0PCNを
して数値制御処理を実行させる。
Next, the operation shown in FIG. 4 will be explained. When started, the input control circuit ICT controls the table reader TRD, reads NC data one block at a time from the NC tape, inputs the NC data to the arithmetic and control circuit 0PCN, and performs numerical control processing by 0PCN. Execute.

たとえば、電極を第3図のスタート位置であるん点へ位
置決めする。
For example, the electrode is positioned at the starting position in FIG.

ついで、NCテープから(4)に示すユーザマクロ0P
CN ハユーザマクロメモリUMMに記憶されているユ
ーザマクロ(プログラム番号P口口・・・口)の各命令
を順次読み出し、該ユーザマクロに従って拡大加工制御
を実行する。すなわち、 (イ)拡大回数nを記憶する記憶域(メモ)8TM(7
) 記tH,域STMa )の内容を1とする;(ロ)
  I=’o 、J=joとして同時2軸により電極ヲ
A i 点カラA1−H(但し第1回目ハ1=o)点へ
移動させる。
Next, from the NC tape, user macro 0P shown in (4)
CN He sequentially reads each command of the user macro (program number P 口口...口) stored in the user macro memory UMM, and executes enlargement processing control according to the user macro. That is, (a) Storage area (memo) 8TM (7
) The contents of tH, area STMa) are set to 1; (b)
With I='o and J=jo, the electrode is simultaneously moved from point A i to point A1-H (however, first time C1=o).

(ハ)加工時間T及び短絡信号発生回数Nを記憶するメ
モリSTMの記憶域STMb、 STMcの内容を零に
クリアする; に)ついで、変数I、J、Kをそれぞれ’0.」01k
o(Io + Jo + koは実際には数値である〕
として第7図に示す通路Ai刊→B i++→CI+1
→Di++→Ai+1  に沿った(但し第1回目はi
 = 0 )第1回目の拡大加工を行なう; (ホ) A1+1→B i+1→C1+1→D++1→
Al+1の加工終了後、加工時間Tと予めパラメータメ
モリPMMに記憶されている設定間Tsとの大小を判別
し、T (T sであれは再σA1刊→Bi+1→ 、
→Ai刊の通路加工を行4「う(尚、加工時間は演算及
び制御回路0PCN内蔵のソフト々イマーにより削時さ
れて記憶域STMbに記憶されている);(へ) T≧
Tsとなれば、バラメークメモリPMMに記憶されてい
る設定値Nsと記憶域STMcに記憶されている短絡信
号発生回数Nとの大小を判別し、N ) N sであれ
ば(/→〜(ホ)のステップを繰り返えす。
(c) Clear the contents of the storage areas STMb and STMc of the memory STM that store the machining time T and the number of short circuit signal occurrences N to zero; (c) Next, set the variables I, J, and K to '0. ”01k
o (Io + Jo + ko is actually a number)
The passage Ai → B i++ → CI+1 shown in Figure 7 as
→Di++→Ai+1 (however, the first time is i
= 0) Perform the first enlargement process; (E) A1+1→B i+1→C1+1→D++1→
After finishing the machining of Al+1, determine the magnitude of the machining time T and the setting interval Ts previously stored in the parameter memory PMM, and calculate
→ Perform passage machining in Ai publication 4 (The machining time is cut by the software timer built in the calculation and control circuit 0PCN and is stored in the storage area STMb); (Go) T≧
If Ts, determine the magnitude of the setting value Ns stored in the bulk memory PMM and the number of short circuit signal occurrences N stored in the storage area STMc, and if Ns, then (/→~( Repeat step e).

尚、設定時間Ts及び設定値Nsは希望する加工面精度
を考慮して決足される。又、短絡信号SSが発生すれば
上記(ニ)〜(へ)の処理と並行して記憶域STMcの
内容か1カウントアツプされる。
Incidentally, the set time Ts and the set value Ns are determined in consideration of the desired machined surface accuracy. Further, when the short circuit signal SS is generated, the contents of the storage area STMc are incremented by one in parallel with the above processes (d) to (f).

(ト)そして、NsNsとなれば拡大回数nを1カウン
トアツプし、ついでn>koが成立するかどうか、換言
すれば先程加工した通路が最終通路であるかどうかを判
別し、最終通路であれば(n>ko)拡大加工を終了す
る。しかし、最終通路でなけれLl’(n≦ko)、ス
テップ(ロ)に戻って通路を拡大する。
(G) Then, if NsNs, the number of expansions n is incremented by 1, and then it is determined whether n>ko holds true, in other words, whether the passage processed earlier is the final passage, and whether it is the final passage or not. If (n>ko), the enlarging process ends. However, if it is not the final passage Ll' (n≦ko), the process returns to step (b) and the passage is enlarged.

そして以後ステップCロン〜(ト)を最終通路が加工さ
れる迄続行する。
Thereafter, steps Cron to (g) are continued until the final passage is machined.

(イ)拡大加]二か終了すれば、ユーザマクロの末尾に
記録されているM99により、以後NCテープから読出
したNCデータに基いて制御か行われる。
(a) Expansion] When the second step is completed, M99 recorded at the end of the user macro performs control based on the NC data read from the NC tape.

尚、NCテープを用いずにNCデータをメモリに記憶さ
せ、メモリからNCデータを読み出すいわゆるメモリ運
転もできる。
Note that a so-called memory operation in which NC data is stored in a memory and read from the memory without using an NC tape is also possible.

又、以上の説明では所定時間Tsの間に発生した短絡信
号SSの発生回数が設定値以下になったら拡大するもの
として説明したが、所定加工距離の間に発生した短絡信
号の発生石1数が設定値以下になったら拡大するように
もできる。そして、この場合は、パルス分配器PDCか
ら発生する分配パルス数を監視して加工距離が所定の加
工距離になったかどうかを判別する必要がある。
In addition, in the above explanation, it has been explained that the number of occurrences of the short circuit signal SS that occurred during the predetermined time Ts is increased when the number of occurrences of the short circuit signal SS becomes less than the set value, but the number of short circuit signals that occur during the predetermined machining distance is 1. It is also possible to enlarge the image when the value falls below a set value. In this case, it is necessary to monitor the number of distributed pulses generated from the pulse distributor PDC to determine whether the machining distance has reached a predetermined machining distance.

更に、以上の説明では設定値Nsが一定の場合について
説明したがNsを加工通路が大きくなるにつれ小にする
ように制御してもよい。これは設定値が小さい程加工面
精度が向上すること、及び最終通路から離れた通路には
それ程加工面精度が要求されないことを考慮したもので
、このようにすることにより加工時間を短縮することが
できる。
Further, in the above description, the case where the set value Ns is constant has been explained, but Ns may be controlled to become smaller as the machining path becomes larger. This is done considering the fact that the smaller the setting value is, the better the machined surface accuracy is, and that the machined surface accuracy is not required as much for passages away from the final passage.By doing this, the machining time can be shortened. I can do it.

以上、本発明によれば所定の加工時間或いは所定の加工
距離の間に生じる短絡信号の発生回数Nが設定値Ns以
下になったかどうかを判別し、N(Nsになったことに
より加工通路を拡大するようにしたから制御が簡単であ
り、又設定値Nsを変えることにより任意の加工面精度
を得ることができ、更には加工時間を短縮でき加工効率
を高めることができる。
As described above, according to the present invention, it is determined whether the number of occurrences N of short circuit signals occurring during a predetermined machining time or a predetermined machining distance has become less than a set value Ns, and when N (Ns) has been reached, the machining path is closed. Since it is enlarged, control is easy, and by changing the set value Ns, any desired machining surface accuracy can be obtained, and furthermore, machining time can be shortened and machining efficiency can be increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は影彫放電加工機の説明し1、第2閾は輪郭加工
説明図、第6図は拡大加工説明図、第4図は本発明の実
施例ブロック図、第5図は処理の流れ図、第6図はユー
ザフクロとNCテープとの関係説明図、第7図はユーザ
マクロ説明図である。 0PCN・・・演算及び制御回路、DMM・・・データ
メモリ、PMM・・・パラメータメモリ、8TM−°゛
メモリ014M・・・ユーザマクロメモリ。 第S図 第6図 第7図 Ln                      B
Fig. 1 is an explanation of the shadow carving electric discharge machine, the second threshold is an explanatory drawing of contour machining, Fig. 6 is an enlarged explanatory drawing of machining, Fig. 4 is a block diagram of an embodiment of the present invention, and Fig. 5 is a processing diagram. Flow chart, FIG. 6 is an explanatory diagram of the relationship between the user bag and the NC tape, and FIG. 7 is an explanatory diagram of the user macro. 0PCN...Arithmetic and control circuit, DMM...Data memory, PMM...Parameter memory, 8TM-°゛Memory 014M...User macro memory. Figure S Figure 6 Figure 7 Ln B
.

Claims (3)

【特許請求の範囲】[Claims] (1)最終加工通路と相似形の通路に沿って電極をワー
クに対し相対的に移動させると共に、加工通路を順次拡
大してワークに加工を施す放電加工機における拡大加工
方式において、所定加工時間或いは所定加工距離の間に
発生する短絡信号を計数し、該計数値が予め設定されて
いる値以下になったとき加工通路を拡大することを特徴
とする放電加工機における拡大加工方式。
(1) In the enlarged machining method of an electric discharge machine, in which the electrode is moved relative to the workpiece along a path similar to the final machining path, and the machining path is sequentially enlarged to machine the workpiece, a predetermined machining time is Alternatively, an enlarged machining method for an electrical discharge machine is characterized in that short-circuit signals generated during a predetermined machining distance are counted, and when the counted value becomes equal to or less than a preset value, the machining path is expanded.
(2)前記計数値が前記予め設定された値以下にならな
い時には、該設定値以下になる迄加工通路を拡大するこ
となく同一の加工通路に治って電極をワークに対し相対
的に移動させて放電加工を行なうことを特徴とする特許
請求の範囲第(1)項記載の放電加工機における拡大加
工方式。
(2) When the count value does not become less than the preset value, the machining path is not enlarged until the count value becomes less than the preset value, and the electrode is moved relative to the workpiece. An enlarged machining method in an electric discharge machine according to claim (1), characterized in that electric discharge machining is performed.
(3)前記予め設定された値を加工通路が大きくなるに
つれ小にすることを特徴とする特許請求の範囲第(1)
項又は第(2)項記載の放電加工機における拡大加工方
式。
(3) Claim (1) characterized in that the preset value is decreased as the machining path becomes larger.
An enlargement machining method in an electrical discharge machine according to item (2) or item (2).
JP17669082A 1982-10-07 1982-10-07 Enlarging machining system in electric discharge machine Pending JPS5969227A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17669082A JPS5969227A (en) 1982-10-07 1982-10-07 Enlarging machining system in electric discharge machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17669082A JPS5969227A (en) 1982-10-07 1982-10-07 Enlarging machining system in electric discharge machine

Publications (1)

Publication Number Publication Date
JPS5969227A true JPS5969227A (en) 1984-04-19

Family

ID=16018024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17669082A Pending JPS5969227A (en) 1982-10-07 1982-10-07 Enlarging machining system in electric discharge machine

Country Status (1)

Country Link
JP (1) JPS5969227A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60255324A (en) * 1984-05-30 1985-12-17 Mitsubishi Electric Corp Method and device of electric discharge machining
JPH07156019A (en) * 1993-11-29 1995-06-20 Mitsubishi Electric Corp Electric discharge machining device
WO2001045889A1 (en) * 1999-12-20 2001-06-28 Mitsubishi Denki Kabushiki Kaisha Method and apparatus for electrodischarge machining

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60255324A (en) * 1984-05-30 1985-12-17 Mitsubishi Electric Corp Method and device of electric discharge machining
JPH07156019A (en) * 1993-11-29 1995-06-20 Mitsubishi Electric Corp Electric discharge machining device
WO2001045889A1 (en) * 1999-12-20 2001-06-28 Mitsubishi Denki Kabushiki Kaisha Method and apparatus for electrodischarge machining
US6667453B1 (en) 1999-12-20 2003-12-23 Mitsubishi Denki Kabushiki Kaisha Electric discharge machining method and apparatus with control of rocking function parameters

Similar Documents

Publication Publication Date Title
US4649252A (en) Wire-cut electric discharge machining method
CN107340754B (en) Numerical controller
US6791055B1 (en) Method and apparatus for electrodischarge machining
Yang et al. A study on an open architecture CNC system with a NURBS interpolator for WEDM
CN101249579A (en) Punch machine program generating device, recording medium storing a program for generating a punch machine program, and wire-cut electric discharge machine
JPS5969227A (en) Enlarging machining system in electric discharge machine
US4891487A (en) Electrode return control for electric spark machine
JP3405797B2 (en) Laser output control system
JPS6234754A (en) Surface machining method
JPH08168925A (en) Numerical controller for wire cut electric discharge machine
JP2001228909A (en) Machine tool and its control method
JP3328150B2 (en) Tool path data generation method
US5064985A (en) Method for controlling withdrawal of electrode in electric-discharge machine
GB2147121A (en) A method of and apparatus for controlling an electroerosion process
JPS63295085A (en) Cnc laser beam machining method
JPH06102914A (en) Method for generating machining program for numerical controller
JPH0635096B2 (en) NC processing method and device
EP0090049B1 (en) Method of controlling backstep in electric discharge machining apparatus
JP3188396B2 (en) Feed rate control method and apparatus in numerical control
Li et al. Smoothing the extrapolation of four-axis simultaneous control in ruled surface WEDM
JPH06126540A (en) Method and apparatus for electric discharge machining
JPS60239804A (en) Correcting method of positional error
JPS60105012A (en) Feed control method for numerically controlled machine tool
JP2618724B2 (en) NC data creation method and apparatus
JP2640467B2 (en) Numerical control unit