JPS60245625A - Fiber-reinforced composite material and cured molding obtained therefrom - Google Patents

Fiber-reinforced composite material and cured molding obtained therefrom

Info

Publication number
JPS60245625A
JPS60245625A JP9970984A JP9970984A JPS60245625A JP S60245625 A JPS60245625 A JP S60245625A JP 9970984 A JP9970984 A JP 9970984A JP 9970984 A JP9970984 A JP 9970984A JP S60245625 A JPS60245625 A JP S60245625A
Authority
JP
Japan
Prior art keywords
fiber
direct bond
parts
composite material
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9970984A
Other languages
Japanese (ja)
Other versions
JPH0254847B2 (en
Inventor
Takanori Urasaki
浦崎 隆徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP9970984A priority Critical patent/JPS60245625A/en
Publication of JPS60245625A publication Critical patent/JPS60245625A/en
Publication of JPH0254847B2 publication Critical patent/JPH0254847B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:The titled composite material having excellent heat resistance, low water absorption and high strength, comprising a specified matrix resin and a reinfocing fiber. CONSTITUTION:A polyglycidyl compound having a unit structure of the formula [wherein R is H or methyl, R' is a direct bond, a 10C or lower aliphatic, alicyclic or aromatic hydrocarbon residue which may have a halogen substituent, m is 0 when R' is a direct bond, or 0 or 1 when R' is other than a direct bond, and n is a number to provide at least two (methyl)glycidyloxy groups] is obtained by reacting a novolak naphthol resin containing a naphthol component in the molecule, obtained by reacting alpha-naphthol with an aldehyde compound in the presence of an acid catalyst with (beta-methyl)epichlorohydrin. 90-20wt% reinforcing fiber is impregnated with 10-80wt% matric resin comprising the above polyglycidyl compound and an epoxy resin curing agent (e.g., diethylenetriamine).

Description

【発明の詳細な説明】 [産業上の技術分野] 本発明は、繊維状強化材と新規なポリグリシジルエーテ
ルとからなる繊維強化複合材料に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Technical Field] The present invention relates to a fiber-reinforced composite material comprising a fibrous reinforcing material and a novel polyglycidyl ether.

さらに詳細には、長繊維または/及び短繊維からなる繊
維状強化材と本質的に新規なポリスリシジルエーテルか
らなるエポキシ系マトリックス樹脂とから構成される繊
維強化複合材料およびそれから得られる成形物に関する
ものである。
More specifically, it relates to a fiber-reinforced composite material composed of a fibrous reinforcing material consisting of long fibers and/or short fibers and an epoxy matrix resin consisting of an essentially novel polysilicidyl ether, and a molded article obtained therefrom. It is something.

本発明の繊維強化複合材料から得られる成形物は、以下
詳細に述べるように、耐熱性がきわめて高く、しかも吸
水性が低いため、とくにきわめて耐環境性のすぐれた構
造材料あるいは電気・電子材料として有用な素材となる
As described in detail below, the molded product obtained from the fiber-reinforced composite material of the present invention has extremely high heat resistance and low water absorption, so it can be used as a structural material or electrical/electronic material that has particularly excellent environmental resistance. It becomes a useful material.

[従来技術] ビスフェノールA−ビスグリシジルエーテル型で代表さ
れるエポキシ樹脂は、繊維状強化材との接着性が良く、
さらに、力学特性や電気特性などの特性においても、バ
ランスのとれたマトリックス樹脂として有用な樹脂であ
ることは良く知られている。
[Prior art] Epoxy resins, typically of the bisphenol A-bisglycidyl ether type, have good adhesion to fibrous reinforcing materials.
Furthermore, it is well known that it is a useful resin as a matrix resin with well-balanced properties such as mechanical properties and electrical properties.

さらに、耐熱性エポキシ樹脂どしては、たとえば、(1
)テトラグリシジルメチレンシアニリンど、ジアミノジ
フェニルスルホンとを用いる方法、(2)フェノールノ
ボラック系ポリグリシジルエーテルとジアミノジフェニ
ルスルホンを用いる7)’ 71i ’Jとが良く知ら
れている。ことに後者についでは、フェノールノボラッ
クの分子量を制御づ−ることによって、硬化前の樹脂の
溶融粘度または溶液粘度を変化させることも可能である
Furthermore, heat-resistant epoxy resins such as (1
) A method using diaminodiphenylsulfone such as tetraglycidyl methylene cyaniline, and (2) a method using phenol novolak polyglycidyl ether and diaminodiphenylsulfone 7)'71i'J are well known. Particularly regarding the latter, by controlling the molecular weight of the phenol novolak, it is also possible to change the melt viscosity or solution viscosity of the resin before curing.

しかしながら、これらの耐熱性エポキシ樹脂を用いて得
られる複合材料の硬化成形物は、耐熱性が不充分であり
、かつ吸水性が大きいなどの欠点をもっている。
However, cured molded composite materials obtained using these heat-resistant epoxy resins have drawbacks such as insufficient heat resistance and high water absorption.

[発明の目的] 本発明の目的は、耐熱性にすぐれ、吸水率が低い新規な
エポキシ樹脂をマトリックスとする高強力、高耐熱且つ
低吸水性の複合材料を提供することにある。
[Object of the Invention] An object of the present invention is to provide a composite material with high strength, high heat resistance, and low water absorption, which has a matrix of a novel epoxy resin that has excellent heat resistance and low water absorption.

さらには、これら複合材料を好適な条件下で硬化成形さ
せることによって、構造材料、電気・電子材料等の分野
できわめて有用な硬化成形物を提供することが大きな目
的のひとつである。
Furthermore, one of the major objectives is to provide cured molded products that are extremely useful in the fields of structural materials, electrical and electronic materials, etc. by curing and molding these composite materials under suitable conditions.

[発明の構成] 本発明は、α−ナフトールを主たるフェノール成分とす
るノボラック型ナフトール樹脂を骨格に含む新規なポリ
グリシジル化合物と該ポリグリシジル化合物と反応しう
るエポキシ樹脂硬化剤とからなるエポキシ系マトリック
ス樹脂と繊維強化材とから構成される繊維強化複合材料
である。
[Structure of the Invention] The present invention provides an epoxy matrix consisting of a novel polyglycidyl compound containing a novolak naphthol resin in its skeleton containing α-naphthol as the main phenol component, and an epoxy resin curing agent capable of reacting with the polyglycidyl compound. It is a fiber reinforced composite material composed of resin and fiber reinforced material.

すなわち、本発明は、下記式(I)で表わされる基本構
造を有するポリグリシジル化合物とエポキシ樹脂硬化剤
とから本質的になるマトリックス樹脂(A)と、Il雑
強化材(B)とから構成される繊維強化複合材料、並び
にその成形物である。
That is, the present invention comprises a matrix resin (A) consisting essentially of a polyglycidyl compound having a basic structure represented by the following formula (I) and an epoxy resin curing agent, and an Il miscellaneous reinforcing material (B). fiber-reinforced composite materials and molded products thereof.

但し、式(I)中、Rは水素原子又はメチル基を表わし
、R′は直接結合を表わすか、或いはハロゲン原子で置
換されていてもよい炭素原子数10以下の脂肪族、脂環
族又は芳香族の炭化水素残基を表わし、mはR′が直接
結合の場合は0であり、他の場合は0又は1であり、n
はポリグリシジル化合物中の(メチル)グリシジルオキ
シ基が2個以上になるように選ばれる。
However, in formula (I), R represents a hydrogen atom or a methyl group, and R' represents a direct bond, or an aliphatic, alicyclic or represents an aromatic hydrocarbon residue, m is 0 when R' is a direct bond, 0 or 1 in other cases, and n
is selected such that the number of (methyl)glycidyloxy groups in the polyglycidyl compound is two or more.

本発明にかかわるI11強化強化材斜のマトリックス樹
脂どして使用するポリグリシジル化合物は、下記一般式
(I ) T’表わされるi造単位を石づるものCある
The polyglycidyl compound used as the matrix resin of the I11 reinforcing material according to the present invention is one having an i-structured unit represented by the following general formula (I)T'.

上式においてRは水素原子またはメチル基であリ、とく
に水素原子であることが好ましい。R′は直接結合まI
こは炭素原子数10以下の脂肪族、脂環族又は芳香族の
炭化水素残基を表わし、それはハロゲン原子で買換され
ていてもよい。該炭化水素残塁の具体例どしては、メブ
レン、エチレン。
In the above formula, R is a hydrogen atom or a methyl group, and is particularly preferably a hydrogen atom. R' is a direct bond or I
This represents an aliphatic, alicyclic or aromatic hydrocarbon residue having up to 10 carbon atoms, which may be replaced with a halogen atom. Specific examples of the hydrocarbon residue include meblen and ethylene.

プロピレン、ヘキシレン、クロ日メチレン、シクロへ4
二シレン、フェニレン、トリレン、グリシジルオキシフ
ェニル、クロロワ1ニレン、メトギシフエニレン、ナノ
チレンなどをあけることが−Cきる。好ましいR′の例
は、直接結合;メチレン基や」−ヂレン基のような低級
アルキレン基;フェニレン基やグリシジルオキシフェニ
レン基のような芳香族炭化水素基であり、さらに好まし
くは、直接結合、メチレン基、ヒドロキシフェニレン基
、特に好ましくは直接結合である。
Propylene, hexylene, cyclomethylene, cycloto4
Disilene, phenylene, tolylene, glycidyloxyphenyl, chloroxyphenylene, methoxyphenylene, nanotylene, etc. can be used with -C. Preferred examples of R' are a direct bond; a lower alkylene group such as a methylene group or a "-dylene group; an aromatic hydrocarbon group such as a phenylene group or a glycidyloxyphenylene group, and more preferably a direct bond, a methylene group, hydroxyphenylene group, particularly preferably a direct bond.

上記一般式(I)で表わされるポリグリシジルエーテル
は、従来公知のフェノールノボラックのポリグリシジル
エーテルの製法と同様にしてつくることができるが、た
とえばα−ナフトールとアルデヒド化合物とを酸性触媒
の存在下反応させて分子中にナフトール成分を含むノボ
ラック型ナフトール樹脂とし、このナフトール樹脂にエ
ピクロルヒドリンまたはβ−メチルエピクロルヒドリン
を反応させてポリグリシジルエーテルとする方法を採用
するのが良い(特願昭58−90621号明細再参照)
The polyglycidyl ether represented by the above general formula (I) can be produced in the same manner as the conventionally known method for producing polyglycidyl ether of phenol novolak. It is preferable to adopt a method in which a novolac-type naphthol resin containing a naphthol component in the molecule is obtained, and this naphthol resin is reacted with epichlorohydrin or β-methylepichlorohydrin to form a polyglycidyl ether (Japanese Patent Application No. 58-90621). (re-reference)
.

前記一般式(I)中、nはR′の種類によっC異なるが
、上述のα−ナフトールとアルデヒド化合物との反応の
際の当量比をかえることににり増減のコントロールが可
能である。そして、生成づ′るポリグリシジルエーテル
は、たとえば下式(II)のように表わすことができる
In the general formula (I), n varies depending on the type of R', but its increase or decrease can be controlled by changing the equivalent ratio during the reaction of the above-mentioned α-naphthol and aldehyde compound. The polyglycidyl ether produced can be represented by the following formula (II), for example.

ただし、式(II)中、R、R′及びmは前記定義に同
じであり、nは0または1以上の数であり、好ましくは
1以上8、とくに好ましくは2以上5の範囲である。
However, in formula (II), R, R' and m are as defined above, and n is 0 or a number of 1 or more, preferably 1 or more and 8, particularly preferably 2 or more and 5.

nが小さいと、得られるエポキシ樹脂硬化物あるいは該
エポキシ樹脂系複合材料の耐熱性が低下するし、またあ
まり大きくなると、ノボラック型ナフトール樹脂からの
ポリグリシジルエーテルの反応収率が低下する傾向があ
るのに加えて、該ポリグリシジルエーテルの溶融時の粘
度が著しく高くなり成形性が悪くなるので、いずれも好
ましくない。
If n is small, the heat resistance of the resulting cured epoxy resin or the epoxy resin composite material will be reduced, and if n is too large, the reaction yield of polyglycidyl ether from novolak-type naphthol resin will tend to be reduced. In addition to this, the viscosity of the polyglycidyl ether when melted becomes extremely high, resulting in poor moldability, which are both unfavorable.

本発明で用いる新規ポリグリシジルエーテルは、従来公
知のエポキシ系樹脂用硬化剤によって硬化できる。これ
らの硬化剤と′しては、脂肪族、芳香族又は脂環族のア
ミン類、酸無水物、ポリアミド樹脂、ポリスルフィド樹
脂、三フッ化ホウ素アミンコンプレックス、ノボラック
樹脂、ジシアンジアミドなどをあげることかできる。
The novel polyglycidyl ether used in the present invention can be cured with a conventionally known curing agent for epoxy resins. Examples of these curing agents include aliphatic, aromatic or alicyclic amines, acid anhydrides, polyamide resins, polysulfide resins, boron trifluoride amine complexes, novolak resins, dicyandiamide, etc. .

さらに具体的には、ジ]−ヂレントリアミン、トリエチ
レンテトラミン、メタギシリレンジアミンのような脂肪
族アミン類、メタフエニレレンジアミン、4.4’ −
ジアミノシフゴーニルメタン。
More specifically, aliphatic amines such as di]-dylenetriamine, triethylenetetramine, metagysylylenediamine, metaphenylenediamine, 4.4'-
Diaminosifgonylmethane.

4.4′ −ジアミノジフェニルスルホン、4.4’ 
−ジアミノジフェニルエーテル、2.4−1〜ルイレン
ジアミンなどの芳香族アミン類、無水フタル酸。
4.4'-diaminodiphenylsulfone, 4.4'
- Aromatic amines such as diaminodiphenyl ether, 2.4-1 to lylene diamine, and phthalic anhydride.

無水テトラヒドロフタル酸、無水へキザヒドロフタル酸
、無水ナジック酸、無水メヂルナジツク酸。
Tetrahydrophthalic anhydride, hexahydrophthalic anhydride, nadic anhydride, medylnadic anhydride.

ベンゾフェンオンテトラカルボン酸無水物などの酸無水
物、アニリン、ベンジルアミン、エチルアミンなどのア
ミンと三フッ化ホウ素とのコンプレックス、ジシアンジ
アミドなどをあげることができる。
Examples include acid anhydrides such as benzophenonetetracarboxylic acid anhydride, complexes of amines such as aniline, benzylamine, and ethylamine with boron trifluoride, and dicyandiamide.

これらの硬化剤のうち、好ましくは、4,4′−ジアミ
ノジフェニルスルホン、4.4’−ジアミノジフェニル
メタン、ジシアンジアミドなどが用いられる。
Among these curing agents, 4,4'-diaminodiphenylsulfone, 4,4'-diaminodiphenylmethane, dicyandiamide and the like are preferably used.

本発明における繊維強化材(B)としては、複合材料用
強化材として知られている無機系あるいは有機系の繊維
を用いることができる。かかる無機系繊維の好ましい例
としては、炭素繊維、ガラス繊維、ボロン繊維、シリコ
ンカーバイド繊維、アルミナ繊維、シリカアルミナ繊維
を、また有機系繊維としてはアラミド繊維、ポリエステ
ルl1ilなどをあげることができる。とくに好ましく
は、炭素繊維およびアラミド繊維のようないわゆるアト
ベンストファイバーが用いられる。また炭素繊維として
は、ポリアクリロニトリル繊維を主たる出発原料とする
いわゆるPAN系炭素炭素繊維石炭や石油からのビッヂ
を原料どするいわゆるピッチ系炭素繊維が用いられる。
As the fiber reinforcing material (B) in the present invention, inorganic or organic fibers known as reinforcing materials for composite materials can be used. Preferred examples of such inorganic fibers include carbon fibers, glass fibers, boron fibers, silicon carbide fibers, alumina fibers, and silica alumina fibers, and examples of organic fibers include aramid fibers and polyester lil. Particularly preferably, so-called adventitious fibers such as carbon fibers and aramid fibers are used. As the carbon fibers, so-called PAN-based carbon fibers whose main starting material is polyacrylonitrile fibers and so-called pitch-based carbon fibers whose raw materials are bits from coal or petroleum are used.

かかる繊維の使用形態は、長繊維でもよいし、短かくカ
ットされ!〔短繊維でもよい。また、繊維を一方向に配
列して複合材料を製造することが可能であるし、あらか
じめ織物のように賦形した状態で使用することもできる
Such fibers can be used in long fibers or cut into short lengths! [Short fibers may also be used. Further, it is possible to manufacture a composite material by arranging the fibers in one direction, and it is also possible to use the composite material in a pre-shaped state like a textile.

本発明にかかわる複合材料は、本質的に(A)マトリッ
クス樹脂と(B)強化用繊維とからなるが、これらのほ
かに、充てん剤、顔料、硬化促進剤、安定剤などを併用
することが可能である。
The composite material according to the present invention essentially consists of (A) a matrix resin and (B) reinforcing fibers, but in addition to these, fillers, pigments, curing accelerators, stabilizers, etc. may be used in combination. It is possible.

ポリグリシジルエーテルとエポキシ樹脂硬化剤から本質
的になるマトリックス樹脂(A>と繊維強化材(B)と
の使用割合はその使用目的に応じて任意に選ぶことがで
きるが、通N(A):(B)−10:90〜80 : 
20 (重量比)の比率で用いられる。
The ratio of the matrix resin (A> consisting essentially of polyglycidyl ether and an epoxy resin curing agent) and the fiber reinforcing material (B) can be arbitrarily selected depending on the purpose of use, but generally N (A): (B)-10:90-80:
20 (weight ratio).

好ましい割合は(A) : (B) =30ニア0〜7
0:30(重量比)の範囲である。
The preferred ratio is (A): (B) = 30 near 0 to 7
The range is 0:30 (weight ratio).

本発明の繊維強化複合材料を形成するに際しては、マト
リックス樹脂(A)と強化用[[(B)とをあらゆる方
法、すなわち混合、混練、積1iijなどの方法により
組合せることが可能である。tことえば、一方向にひき
そろえた強化用繊維に71−リックス樹脂またはその溶
液を含浸させることができるし、あらかじめil紐を平
織や朱子織などのような織物の状態に賦形したのらに上
記マトリックス樹脂を含浸させることもできる。
When forming the fiber-reinforced composite material of the present invention, the matrix resin (A) and the reinforcing compound (B) can be combined by any method, such as mixing, kneading, laminating, etc. For example, reinforcing fibers drawn in one direction can be impregnated with 71-Rix resin or its solution, or if the IL string is shaped in advance into a woven fabric such as plain weave or satin weave. It is also possible to impregnate the above matrix resin.

本発明にかかわる繊維強化複合材料は種々の成形方法に
より有用な成形物を提供することができる。代表的な成
形方法はコンプレッション成形であり、所定の形状の金
型を用いて機械的に圧縮あるいはオートクレーブ中で気
体による圧力をかけるなどによ、って成形することが可
能である。その他に通常用いられる成形方法たとえば積
層法、トランスフ戸−成形法など強化用繊維の形状など
にあわせC選択することができる。
The fiber-reinforced composite material according to the present invention can be used to provide useful molded products by various molding methods. A typical molding method is compression molding, which can be performed by mechanical compression using a mold of a predetermined shape or by applying gas pressure in an autoclave. Other commonly used molding methods, such as a lamination method and a transfer molding method, can be selected depending on the shape of the reinforcing fibers.

[作用効果] 本発明のm、w強化複合材11は、マトリックス樹脂と
してα−ナフトール骨格を構造単位中に含む新規なポリ
グリシジルエーテルを含み、そのため成形物の耐熱性と
くに高温時の力学特性ならびに耐水性がきわめて良好で
あるという特徴をもっている。
[Operation and Effect] The m, w reinforced composite material 11 of the present invention contains a novel polyglycidyl ether containing an α-naphthol skeleton in its structural unit as a matrix resin, and therefore improves the heat resistance of molded products, especially the mechanical properties at high temperatures, and It is characterized by extremely good water resistance.

すなわち、通常のエボギシ樹脂系複合材斜では到達が困
難であった200℃あるいはそれ以上の温度下での力学
特性が著しく改善され、さらに吸水処理後の力学特性も
良好である。
That is, the mechanical properties at temperatures of 200° C. or higher, which are difficult to reach with ordinary Evogishi resin composite materials, are significantly improved, and furthermore, the mechanical properties after water absorption treatment are also good.

つぎに実施例をあげて本発明をさらに詳細に説明する。Next, the present invention will be explained in more detail with reference to Examples.

なお、実施例中、単に「部」とあるのは「重量部」をあ
られす。
In the examples, "parts" simply means "parts by weight."

参考例1 α−ナフトール144部にシュウ酸1.6部、水16部
、クロルベンゼン144部を加えて100℃に加熱溶解
させてから35%ホルマリン68.6部を加え100〜
120℃で8時間加熱反応させたのちりOルベンゼン1
00部を水と共に蒸留除去し、残りをバットにうつして
120℃にて乾燥し、α−ナフトールノボラック153
部(融点170℃1分子1630(ジオキサン中凝固点
降下法による))を得た。
Reference Example 1 Add 1.6 parts of oxalic acid, 16 parts of water, and 144 parts of chlorobenzene to 144 parts of α-naphthol, heat and dissolve at 100°C, and then add 68.6 parts of 35% formalin to 100~
Dust O-benzene 1 after heating reaction at 120℃ for 8 hours
00 parts were distilled off together with water, and the remainder was transferred to a vat and dried at 120°C to obtain α-naphthol novolac 153.
1,630 parts per molecule (melting point: 170°C (by freezing point depression method in dioxane)) was obtained.

ついでこのα−ナフトールノボラックに1ピクロルヒド
リン920部を加え100℃にて50%苛性ソ−ダ水溶
液79部を2.5時間にわたって滴下し、滴゛下後更に
30分間加熱反応させた。この量水はエピクロルヒドリ
ンと共沸させて系外に除去した。反応接エピクロルヒド
リンは減圧下で除去し、トルエンを加えて反応物をとか
し、ついでこの溶液を濾別することによって、反応で生
成したゲル、塩化ナトリウム、未反応の苛性ソーダなど
を除去した。
Next, 920 parts of 1-pichlorohydrin was added to this α-naphthol novolac, and 79 parts of a 50% aqueous solution of caustic soda was added dropwise at 100°C over 2.5 hours. After the dropwise addition, the mixture was heated for an additional 30 minutes. This amount of water was azeotroped with epichlorohydrin and removed from the system. The epichlorohydrin involved in the reaction was removed under reduced pressure, toluene was added to dissolve the reactant, and the solution was then filtered to remove the gel produced in the reaction, sodium chloride, unreacted caustic soda, and the like.

ここで得られた溶液を減圧下に加熱して溶媒を除去し、
メチルイソブチルケトン170部にとかし、10%苛性
ソーダ水溶液79部と共に90℃で8時間撹拌下に加熱
反応させた。
The solution obtained here is heated under reduced pressure to remove the solvent,
The mixture was dissolved in 170 parts of methyl isobutyl ketone, and heated and reacted with 79 parts of a 10% aqueous sodium hydroxide solution at 90° C. for 8 hours while stirring.

つぎに反応物に、メチルイソブチルケトンとエピクロル
ヒドリンの混合物を加え生成物を稀釈してから水洗、リ
ン酸水溶液洗浄、水洗を順次行ったのち再び溶媒を減圧
下に除去してポリグリシジルエーテル160部を得た。
Next, a mixture of methyl isobutyl ketone and epichlorohydrin was added to the reaction mixture to dilute the product, followed by washing with water, washing with an aqueous phosphoric acid solution, and washing with water in sequence, and then removing the solvent under reduced pressure again to obtain 160 parts of polyglycidyl ether. Obtained.

このポリグリシジルエーテルはエポキシ当量240(g
/q)ジオキサン中凝固点降下法でめた分子量は107
0.融点120℃であった。
This polyglycidyl ether has an epoxy equivalent of 240 (g
/q) The molecular weight determined by freezing point depression method in dioxane is 107
0. The melting point was 120°C.

参考例2〜3 35%ホルマリンの使用量を59.9部、77.0部と
する以外は参考例1と同様にしてα−ナフトールノボラ
ックを合成し、ひきつづきこれを用いてポリグリシジル
エーテルの合成を作った。得られた結果は表に示した。
Reference Examples 2 to 3 α-naphthol novolac was synthesized in the same manner as Reference Example 1 except that the amount of 35% formalin used was 59.9 parts and 77.0 parts, and this was subsequently used to synthesize polyglycidyl ether. made. The results obtained are shown in the table.

(以下余白) 参考例4 α−ナフトール144部、 p−オキシベンズアルデビ
ド82部を130℃に加熱溶融し、この中に36%塩酸
0.2部とp−トルエンスルホン酸0.3部を加え、1
00℃で1時間、つづいて190℃〜200℃で8時間
加熱反応させた。このとき反応の結果生成してくる水を
反応系外に留出させた。ここで得た反応物は反応器より
とりだし、粉砕し、熱水で洗浄後乾燥した。19られた
ノボラック型ナフ1−−ル樹脂は207部で、融点は3
00℃以上、ジAキ1ノンにどかして凝固点降下法によ
りめた分子mは535(分子中にナフトール成分を平均
2,6個、 p−じドロキシベンズフルデヒド成分を平
均1.6個含み、且つ分子中にヒドロキシル基を4 、
2 ft!!l含む)であった。ついでこのノボラック
型ナフl−−ル樹脂200部にエピクロルヒドリン14
40部、1−リメチルベンジルアンモニウムクロライド
2.4部を加えて 110〜b ℃に加熱しつつ、50%苛性ソーダ水溶液135部を2
時間かけて加えた。この量水とエピクロルヒドリンどの
共沸によって水を系外に除去した。つい(・苛性ソーダ
水溶液を加えてから更に2時間同温度で水を系外に除去
しつつ加熱反応させた。反応終了後エピクロルヒドリン
を減圧下で留去し、メヂルイソブヂルケトンにて抽出し
、水洗して苛性ソーダおよび塩化ナトリウムを除去し、
リン酸水溶液にて洗浄後、メチルイソブヂルケトン溶液
が中性になるまで水洗し、最後にメチルイソブチルケト
ンを減圧下で除去し、目的どするポリグリシジルエーテ
ル250部を得た。
(Left below) Reference Example 4 144 parts of α-naphthol and 82 parts of p-oxybenzaldebide were heated and melted at 130°C, and 0.2 part of 36% hydrochloric acid and 0.3 part of p-toluenesulfonic acid were added thereto. In addition, 1
The reaction was carried out by heating at 00°C for 1 hour and then at 190°C to 200°C for 8 hours. At this time, water produced as a result of the reaction was distilled out of the reaction system. The reaction product obtained here was taken out from the reactor, pulverized, washed with hot water, and then dried. The amount of novolak-type naphyl resin obtained was 207 parts, and the melting point was 3.
The molecule m determined by the freezing point depression method by passing it into di-Aquinone at 00°C or higher is 535 (average of 2.6 naphthol components and 1.6 average of p-di-droxybenzfuldehyde components in the molecule). Contains 4 hydroxyl groups in the molecule,
2ft! ! (including l). Next, 14 parts of epichlorohydrin was added to 200 parts of this novolak type naphyl resin.
40 parts, 2.4 parts of 1-limethylbenzyl ammonium chloride was added, and while heating to 110~B℃, 135 parts of 50% caustic soda aqueous solution was added to 2.4 parts of 1-limethylbenzylammonium chloride.
I added it over time. This amount of water was removed from the system by azeotroping between the water and epichlorohydrin. After adding the caustic soda aqueous solution, the reaction was heated at the same temperature for another 2 hours while water was removed from the system. After the reaction was completed, epichlorohydrin was distilled off under reduced pressure and extracted with medyl isobutyl ketone. , wash with water to remove caustic soda and sodium chloride,
After washing with an aqueous phosphoric acid solution, the solution was washed with water until the methyl isobutyl ketone solution became neutral, and finally the methyl isobutyl ketone was removed under reduced pressure to obtain 250 parts of the desired polyglycidyl ether.

ここで得られたポリグリシジルエーテルは融点110℃
で塩酸ジオキサン法でめたエポキシ当量は240 (q
 /当量)であり、またジオキサンにとかしC凝固点降
下法でめた分子量は800?1″市っだ。また、このポ
リグリシジルエーテルの元素分析結果は、C: 77.
8% H: 5 、5%ぐあった。
The polyglycidyl ether obtained here has a melting point of 110°C.
The epoxy equivalent obtained by the hydrochloric acid dioxane method is 240 (q
/equivalent), and the molecular weight determined by the C freezing point depression method after dissolving in dioxane is 800?1''.The elemental analysis results of this polyglycidyl ether are C: 77.
8% H: 5.5%.

[実施例1] 参考例1C得られたポリグリシジルニーアル25部に、
4.4’ −ジアミノジフェニルスルボン5.6部およ
びアセトン30部を加えて溶液とした。この樹脂溶液中
に炭素繊耗の長m雑くトレカT 400゜6000フイ
ラメント(3600De 、) (東しく4未¥A))
を浸漬して炭素繊維に樹脂溶液を含浸させつつドラム上
に巻きつける。ついでアセ1ヘンを除いC加熱処理を行
なってプリプレグをえた。
[Example 1] To 25 parts of the polyglycidyl Nial obtained in Reference Example 1C,
5.6 parts of 4.4'-diaminodiphenylsulfone and 30 parts of acetone were added to form a solution. In this resin solution, a length of carbon abrasion is found in the trading card T 400゜6000 filament (3600De, ) (Toshiku 4 not yet ¥A))
The carbon fibers are impregnated with a resin solution and wound onto a drum. Next, the acetate was removed and a C heat treatment was performed to obtain a prepreg.

こうしてえられたプリプレグを180 ”Cに設定した
加熱プレス装置中の金型中に積層し、加圧キコアした。
The prepreg thus obtained was laminated into a mold in a hot press set at 180''C and pressed to a high temperature.

さらに220°Cに設定した熱風循環式恒温槽中で4時
間保持してボストキコアを行なって、すみ2mm、Nt
&維含有率65 Vol、%の−h向m M1強化成形
物をえた。
Furthermore, it was kept in a hot air circulation constant temperature bath set at 220°C for 4 hours to perform Bostki core, and the corner was 2 mm and the Nt
& fiber content 65 Vol, % -h direction m M1 reinforced molded product was obtained.

比較のため、N、N、N’ 、N’−テトラグリシジル
ジアミノジフェニルメタンをエポキシ樹脂とする複合材
料成形物(強化繊維1−レカT 1150゜65 Vo
l、%)を実施例1と同様にして調製した。
For comparison, a composite material molded product (reinforced fiber 1-Reca T 1150°65 Vo
1, %) was prepared in the same manner as in Example 1.

上記成形物から平行部分の厚み1mm、幅12.!im
mの試験片を切り出し、通常の方法により引張り試験を
実施した。また厚み2 mm 、幅12.5mmの試験
片を用いて曲げ試験を行った。
The parallel part of the above molded product has a thickness of 1 mm and a width of 12. ! im
A test piece of m was cut out and subjected to a tensile test using a conventional method. A bending test was also conducted using a test piece with a thickness of 2 mm and a width of 12.5 mm.

表−1に本発明の複合材料の力学14竹の測定結果を示
す。表からも明らかhように、本発明の成形物は200
°Cにd3りる引張強度及び曲げ強度はきわめて高い保
持率を頼持し−Cおり、本発明の複合月利の優秀性を示
している。
Table 1 shows the measurement results of 14 bamboo mechanical properties of the composite material of the present invention. As is clear from the table, the molded product of the present invention has a
The tensile strength and flexural strength at d3 °C exhibited extremely high retention rates, demonstrating the superiority of the composite monthly yield of the present invention.

[実施例2] 実施例1で得られた複合材料成形物より実施例と同様に
して曲げ特性測定試験片を切り出し、所定の温度に設定
した恒温槽中に保持し、その雰囲気で3点曲げ試験を実
施した。その結果を[表−2]に示づ。すなわら、従来
の1ボキシ樹脂(比較例2)が200℃前後から急激に
物性低下を示すの対し、本発明の複合月利は200℃を
こえた高温でもすぐれた物性の保持を示すことが確かめ
られた。
[Example 2] A specimen for measuring bending properties was cut out from the composite material molded product obtained in Example 1 in the same manner as in the example, kept in a constant temperature bath set at a predetermined temperature, and subjected to three-point bending in that atmosphere. A test was conducted. The results are shown in [Table-2]. In other words, while the conventional 1-boxy resin (Comparative Example 2) shows a sudden decline in physical properties from around 200°C, the compound monthly yield of the present invention shows excellent physical properties maintained even at high temperatures exceeding 200°C. was confirmed.

[実施例3] 実施例1で得られた複合材料の成形物の耐水性を評価す
るめに、試験片を沸騰水中に10日間連続して浸漬し、
とりだしたのち、付着している水を乾いた布でふきとっ
て重量変化どして吸水率を測定した。さらにこの浸漬処
理した試験片について常温及び250℃における曲げ強
度を測定し、処理前の特性との比較を行なった。その結
果を[表−3]に示す。表からもあきらかなように本発
明にかかわる新規樹脂を用いた複合材料は、吸水率が小
さく、曲げ強度とくに高温における曲げ強度及び強度保
存率が高く、耐熱性並びに耐水性がきわめて良いことを
見いだした。
[Example 3] In order to evaluate the water resistance of the molded composite material obtained in Example 1, a test piece was continuously immersed in boiling water for 10 days,
After taking it out, the adhering water was wiped off with a dry cloth and the weight change was measured to measure the water absorption rate. Further, the bending strength of the immersion-treated test piece at room temperature and 250°C was measured and compared with the properties before treatment. The results are shown in [Table 3]. As is clear from the table, it has been found that the composite material using the new resin related to the present invention has low water absorption, high bending strength, especially high bending strength and strength preservation rate at high temperatures, and extremely good heat resistance and water resistance. Ta.

実施例4〜6 参考例2〜4で得た各ポリグリシジルエーテル25部に
4,4′−ジアミノジフェニルスルホン6.2部をそれ
ぞれ加え、更にそれぞれメチルエチルケト230部を加
えて樹脂溶液をつくり実施例1と同様に炭素繊維に含浸
させ、一方向繊維強化成形物を得た。ここで得られた成
形品の力学特性をしらべた結果を表に示す。
Examples 4 to 6 6.2 parts of 4,4'-diaminodiphenylsulfone was added to 25 parts of each polyglycidyl ether obtained in Reference Examples 2 to 4, and 230 parts of methyl ethyl keto were added to each to prepare a resin solution. Carbon fibers were impregnated in the same manner as in 1 to obtain a unidirectional fiber-reinforced molded product. The results of examining the mechanical properties of the molded product obtained here are shown in the table.

実施例7 参考例1で得られたポリグリシジルエーテル24部に4
,4′−ジアミノジフェニルスルホン6.2部およびア
セトン30部を加えて溶液とし、この樹脂溶液中にアラ
ミド繊維の長繊維(ケプラー49、000フィラメント
、1420デニール、デュポン社製)を含浸させドラム
に巻きつけた。ついで実施例1と同様にして成形、ポス
トキュアを行って厚み2mm、繊維含有率60Vo1%
の一方向m維強化成形物を得た。得られた成形品の力学
特性をしらべた結果を表に示づ。
Example 7 4 parts to 24 parts of the polyglycidyl ether obtained in Reference Example 1
, 6.2 parts of 4'-diaminodiphenylsulfone and 30 parts of acetone were added to form a solution, and long aramid fibers (Keplar 49,000 filament, 1420 denier, manufactured by DuPont) were impregnated in this resin solution and placed in a drum. I wrapped it around it. Then, molding and post-curing were performed in the same manner as in Example 1 to obtain a product with a thickness of 2 mm and a fiber content of 60Vo1%.
A unidirectional m-fiber reinforced molded product was obtained. The results of examining the mechanical properties of the molded products obtained are shown in the table.

実施例8 参考例I T”得られたポリグリシジルエーテル25部
に3.3′−ジアミノジフェニルスルボン6.2部およ
びアセトン30部を加えて溶液どし、この樹脂溶液中に
ガラス繊維の良識M (10,000フイラメント、 
20,000デニール)を含浸させドラムに巻きつけた
。ついで実施例1と同様にしで成形、ポストキュアを行
って厚み2 m 、繊維含有率65Vo1%の一方向m
維強化成形物を得た。得られた成形品の力学特性をしら
べた結果を表に示す。
Example 8 Reference Example I 6.2 parts of 3,3'-diaminodiphenyl sulfone and 30 parts of acetone were added to 25 parts of the obtained polyglycidyl ether, and a solution was prepared. M (10,000 filaments,
20,000 denier) and wrapped around a drum. Next, molding and post-curing were performed in the same manner as in Example 1 to give a thickness of 2 m and a fiber content of 65Vo1% in one direction.
A fiber-reinforced molded product was obtained. The results of examining the mechanical properties of the obtained molded product are shown in the table.

実施例9 参考例4で得られたポリグリシジルエーテル24部に4
,4′−ジアミノジフェニルスルホン6.2部およ、び
アレ1〜ン30部を加えて溶液とし、この樹脂溶液にタ
ルク粉末9部を加えて混合し、アセトンを蒸発除去して
から180℃に設定した金型中に入れプレス成型機で加
圧キコアした。ざらに220℃に設定した熱風循環式恒
温槽中で4時間保持してポストキュアを行って厚み2 
mmの成形物を19だ。
Example 9 4 parts to 24 parts of the polyglycidyl ether obtained in Reference Example 4
, 6.2 parts of 4'-diaminodiphenylsulfone, and 1 to 30 parts of arene were added to form a solution. To this resin solution, 9 parts of talc powder was added and mixed. After removing the acetone by evaporation, the mixture was heated at 180°C. It was placed in a mold set to 1 and then pressurized with a press molding machine. Post-cure was performed by holding the film in a hot air circulation constant temperature bath set at roughly 220°C for 4 hours to achieve a thickness of 2.
The molded product is 19 mm.

得られた成形品の力学特性をしらべた結果を表に示す。The results of examining the mechanical properties of the obtained molded product are shown in the table.

特許出願人 工 業 技 術 院 長Patent applicant: Institute of Technology Director

Claims (2)

【特許請求の範囲】[Claims] (1)下記式(I)で表わされる基本構造を有するポリ
グリシジル化合物とエポキシ樹脂硬化剤とから本質的に
なるマトリックス樹脂(A)と繊維強化材(B)とから
構成される繊維強化複合材料。 ポリグリシジル化合物とエポキシ樹脂硬化剤とが但し、
式(I)中、Rは水素原子又はメチル基を表わし、R′
は直接結合を表わすか、或いはハロゲン原子で置換され
ていてもよい炭素原子数10以下の脂肪族、脂環族又は
芳香族の炭化水素残基を表わし、mはR′が直接結合の
場合は0であり、他の場合は0又は1であり、nはポリ
グリシジル化合物中の(メチル)グリシジルオキシ基が
2個以上になるように選ばれる。
(1) A fiber-reinforced composite material consisting of a matrix resin (A) consisting essentially of a polyglycidyl compound having the basic structure represented by the following formula (I) and an epoxy resin curing agent, and a fiber reinforcement material (B) . However, the polyglycidyl compound and the epoxy resin curing agent
In formula (I), R represents a hydrogen atom or a methyl group, and R'
represents a direct bond or represents an aliphatic, alicyclic or aromatic hydrocarbon residue having 10 or less carbon atoms which may be substituted with a halogen atom, and m is a direct bond when R' is a direct bond. In other cases, it is 0 or 1, and n is selected so that the number of (methyl)glycidyloxy groups in the polyglycidyl compound is 2 or more.
(2)下記式(I)で表わされる基本構造を有するポリ
グリシジル化合物とエポキシ樹脂硬化剤とから本質的に
なるマトリックス樹脂(A)と繊維強化材(B)とから
構成される繊維強化複合材料の硬化成形物。 但し、式(I)中、Rは水素原子又はメチル基を表わし
、R′は直接結合を表わすか、或いはハロゲン原子で置
換されていてもよい炭素原子数10以下の脂肪族、脂環
族又は芳香族の炭化水素残基を表わし、mはR′が直接
結合の場合は0であり、他の場合は0又は1であり、n
はポリグリシジル化合物中の(メチル)グリシジルオキ
シ基が2個以上になるように選ばれる。
(2) A fiber-reinforced composite material consisting of a matrix resin (A) consisting essentially of a polyglycidyl compound having the basic structure represented by the following formula (I) and an epoxy resin curing agent and a fiber reinforcement material (B) hardened molded product. However, in formula (I), R represents a hydrogen atom or a methyl group, and R' represents a direct bond, or an aliphatic, alicyclic or represents an aromatic hydrocarbon residue, m is 0 when R' is a direct bond, 0 or 1 in other cases, and n
is selected such that the number of (methyl)glycidyloxy groups in the polyglycidyl compound is two or more.
JP9970984A 1984-05-19 1984-05-19 Fiber-reinforced composite material and cured molding obtained therefrom Granted JPS60245625A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9970984A JPS60245625A (en) 1984-05-19 1984-05-19 Fiber-reinforced composite material and cured molding obtained therefrom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9970984A JPS60245625A (en) 1984-05-19 1984-05-19 Fiber-reinforced composite material and cured molding obtained therefrom

Publications (2)

Publication Number Publication Date
JPS60245625A true JPS60245625A (en) 1985-12-05
JPH0254847B2 JPH0254847B2 (en) 1990-11-22

Family

ID=14254597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9970984A Granted JPS60245625A (en) 1984-05-19 1984-05-19 Fiber-reinforced composite material and cured molding obtained therefrom

Country Status (1)

Country Link
JP (1) JPS60245625A (en)

Also Published As

Publication number Publication date
JPH0254847B2 (en) 1990-11-22

Similar Documents

Publication Publication Date Title
EP0127198B1 (en) Preimpregnated reinforcements and high strength composites therefrom
US5093155A (en) Process for sizing reinforcing fiber by applying sulfone compounds containing sulfonyl groups and sized reinforcing fibers obtained thereby
EP0217657B1 (en) Low-viscosity epoxy resin, resin composition containing it, and fibre-reinforced composite material containing cured product of the composition
EP1454936B1 (en) Epoxy resin compositions for fiber-reinforced composite materials, process for production of the materials and fiber-reinforced composite materials
US5599856A (en) Epoxy resin systems containing modifiers
EP0487164A2 (en) Thermosetting resin composition and a composite material comprising the cured product of the resin composition as its matrix
EP0241931B2 (en) Epoxy resins based on tetraglycidyl diamines
JPS6015420A (en) Epoxy composition containing oligomeric diamine curing agentand high power composite material therefrom
JP4708797B2 (en) Process for producing fiber reinforced thermoplastic and fiber reinforced thermoplastic
EP0133281A2 (en) Curable fibre reinforced epoxy resin composition
US4500582A (en) Modified amine hardener systems
JPH0519567B2 (en)
US3677804A (en) Moldable needle-like assemblies
JPS6086117A (en) Epoxy resin composition
JPS63186741A (en) Fiber-reinforced composite material
JPH0347848A (en) Production of prepreg
JPS60245625A (en) Fiber-reinforced composite material and cured molding obtained therefrom
JPH04234423A (en) Matrix epoxy resin composition having improved storage stability
US5244719A (en) Prepreg with improved room temperature storage stability
JPH051159A (en) Fiber-reinforced composite material reinforced with porous resin particles
JPS61138622A (en) Fiber-reinforced composite material, and cured product produced therefrom
JPH0381342A (en) Manufacture of prepreg
JPH04502152A (en) Styrene-terminated multifunctional oligomeric phenols as novel thermosetting resins for composite materials
JP3517468B2 (en) Carbon fiber reinforced composite material
JPH0873631A (en) Prepreg and method for producing the same

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term