JPS60240527A - Four-wheel vehicle for running on wasteland - Google Patents

Four-wheel vehicle for running on wasteland

Info

Publication number
JPS60240527A
JPS60240527A JP9457684A JP9457684A JPS60240527A JP S60240527 A JPS60240527 A JP S60240527A JP 9457684 A JP9457684 A JP 9457684A JP 9457684 A JP9457684 A JP 9457684A JP S60240527 A JPS60240527 A JP S60240527A
Authority
JP
Japan
Prior art keywords
spin
differential
wheel
wheels
transmitted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9457684A
Other languages
Japanese (ja)
Inventor
Hironobu Watanabe
渡辺 博允
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Motor Co Ltd
Original Assignee
Yamaha Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Motor Co Ltd filed Critical Yamaha Motor Co Ltd
Priority to JP9457684A priority Critical patent/JPS60240527A/en
Publication of JPS60240527A publication Critical patent/JPS60240527A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/34Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/12Differential gearings without gears having orbital motion
    • F16H48/14Differential gearings without gears having orbital motion with cams

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Retarders (AREA)
  • Arrangement And Driving Of Transmission Devices (AREA)

Abstract

PURPOSE:To make wear in a tire or an increase in driving resistance so as not to occur without slipping even if there is a running speed difference between front and rear wheels, by making driving force of an engine so as to transmit it to each of front and rear no-spin differentials via a central no-spin differential. CONSTITUTION:A front axle, or an output shaft, of a front no-spin differential 20 for front wheels 10 is connected to each front wheel 10 via a universal joint, while a rear axle 26, or an output shaft, of a rear no-spin differential 24 is connected to each rear wheel 12. And, output shafts 32a and 32b of a center no-spin differential 32 are connected to each of input shafts 20a and 24a of these no-spin differentials 20 and 24 via a universal joint. Rotation of an engine 28 is transmitted to the center no-spin differential 32 via a V-belt 34, a transmission 30 and a chain 36, and if these front and rear wheels are of the same diameter and each transmission ratio of each of these differentials 20 and 24 is in the same, these output shafts 32a and 32b of the differential 32 rotate at the same speed and are uniformly transmitted.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、超低圧タイヤ(いわゆるバルーンタイヤ)付
きの左右一対の前輪および後輪を備えた。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention includes a pair of left and right front and rear wheels equipped with ultra-low pressure tires (so-called balloon tires).

4輪駆動が可能な荒地走行用4輪車に関するもの(従来
技術) 荒地走破性に適しかつ操縦性にも優れた車輛として、出
願人は特開昭58−136.563号において左右一対
の後輪間にノースピンデフを介在させた後輪駆動の車輛
を提案した。しかしこの既提案の車輛では2つの駆動後
輪が同時にぬかるみにはまり込んで両後輪がスリップす
ると駆動力が路面に伝わらず、荒地走破性が十分でない
という問題があった。
Regarding a four-wheel vehicle capable of four-wheel drive for traveling on rough terrain (prior art) As a vehicle suitable for traveling on rough terrain and having excellent maneuverability, the applicant proposed a pair of left and right rear vehicles in Japanese Patent Application Laid-Open No. 58-136.563. We proposed a rear-wheel drive vehicle with a no-spin differential between the wheels. However, with this previously proposed vehicle, there was a problem in that if the two rear driving wheels got stuck in the mud at the same time and both rear wheels slipped, the driving force would not be transmitted to the road surface, resulting in insufficient ability to drive on rough terrain.

このため4輪車とし、前・後輪に回転を伝えるようにし
た4輪駆動とすることが考えられる。この4輪駆動の1
つの方式として、前・後輪軸にそれぞれ設けた各デフに
、エンジンの駆動力を直接伝える直結型4輪駆動がある
。しかし前・後輪に超低圧タイヤを装着した場合には、
走行中にタイヤが大きく変形し、前輪と後輪の見かけ上
の直径が大きく変わり易い。このため前・後輪の一方が
路面との間で滑り、タイヤの摩耗が促進され、駆動効率
も低下するという問題があった。
For this reason, it is conceivable to use a four-wheel vehicle with a four-wheel drive system that transmits rotation to the front and rear wheels. This four-wheel drive one
One type of system is a direct-coupled four-wheel drive, which directly transmits the engine's driving force to each differential installed on the front and rear axles. However, when ultra-low pressure tires are installed on the front and rear wheels,
The tires deform significantly during driving, and the apparent diameters of the front and rear wheels tend to change significantly. As a result, one of the front and rear wheels slips on the road surface, accelerating tire wear and reducing drive efficiency.

この問題を解決するものとして1通常の4輪駆動の自動
車と同様に、前・後輪軸にそれぞれ設けた各デフの間に
さらにセンターデフを設け、エンジン駆動力をこのセン
タルデフを介して前後の各デフに分配するようにした常
時(フルタイム)4輪駆動力式が考えられる。しかしこ
の場合には。
To solve this problem, 1.Similar to normal four-wheel drive cars, a center differential is provided between the differentials installed on the front and rear axles, and the engine driving force is transferred to the front and rear wheels through this central differential. A full-time four-wheel drive system that distributes the power to the differential is conceivable. But in this case.

超低圧タイヤが非常に柔かいことから旋回時に旋回方向
外側に車体が傾き易く、このため旋回方向内側の車輪が
容易にスリップする。この結果この状態で旋回方向外側
の車輪がぬかるみに入るとこの車輪も空転し、結局全て
の車輪の駆動力は路面には伝わらなくなる。すなわちこ
の場合にも荒地走破性が不十分になる状態が発生し得る
という問題があった。
Because the ultra-low pressure tires are extremely soft, the vehicle body tends to lean outward in the direction of the turn when turning, which causes the wheels on the inside in the direction of the turn to easily slip. As a result, if the wheel on the outside in the turning direction enters the mud in this state, this wheel will also spin, and eventually the driving force of all the wheels will not be transmitted to the road surface. In other words, in this case as well, there is a problem in that rough terrain running performance may be insufficient.

(発明の目的) 本発明はこのような事情に鑑みなされたもので1直結型
4輪駆動のようにタイヤの摩耗が増えたり。
(Objective of the Invention) The present invention was made in view of the above circumstances, and the tire wear increases as in a single direct connection type four-wheel drive.

駆動効率が低下したりすることがなく、また常時4輪駆
動のように1つの車輪がスリップすると駆動力が路面(
、二伝わらなくなるといった問題も解決することができ
る。荒地走破性に優れた4輪車!提供することを目的と
する。
There is no drop in drive efficiency, and when one wheel slips, as in constant four-wheel drive, the drive force is transferred to the road surface (
It is also possible to solve the problem of not being able to communicate. A four-wheeled vehicle with excellent running performance on rough terrain! The purpose is to provide.

(発明の構成) 本発明では、駆動時には低速側の出力軸に回転を伝え高
速側の出力軸を空転させるノースピンデフを、前輪間、
後輪間1前後輪間にそれぞれ設けることにより、前記目
的を達成する。すなわち本発明の目的は、超低圧タイヤ
付きの左右一対あ前輪および後輪を有する荒地走行用車
輛において。
(Structure of the Invention) In the present invention, a no-spin differential is installed between the front wheels, which transmits rotation to the output shaft on the low speed side and causes the output shaft on the high speed side to idle during driving.
The above objective is achieved by providing rear wheel spacing 1 between the front and rear wheels. That is, an object of the present invention is to provide a vehicle for running on rough terrain having a pair of left and right front wheels and rear wheels equipped with ultra-low pressure tires.

前輪を支持する前輪軸に介在した前ノースピンデフと、
後輪を支持する後輪軸に介在した後ノースピンデフと、
前・後輪間に配設したセンターノースピンデフとを備え
、センターノースピンデフの出力側に連結した一対の駆
動軸をそれぞれ前後のノースピンデフの入力側に連結す
る一方、センターデンの入力側をエンジンに連動連結し
たことを特徴とする荒地走行用4輪車によって達成され
る。
A front no-spin differential interposed on the front wheel axle that supports the front wheels;
A rear no-spin differential interposed on the rear axle that supports the rear wheels,
A pair of drive shafts connected to the output side of the center no spin differential are connected to the input sides of the front and rear no spin differentials, while the input side of the center no spin differential is connected to the input side of the front and rear no spin differentials. This is achieved by a four-wheeled vehicle for traveling on rough terrain, which is characterized by being interlocked with an engine.

(実施例) 以下図面に示す本発明の一実施例に基づき1本発明の詳
細な説明する。
(Example) The present invention will be described in detail below based on an example of the present invention shown in the drawings.

第1図は本発明の一実施例の平面図、第2図は側面図、
第3図は後面図である。これらの図で符号10 (10
a、10b)は前輪、12(12a。
FIG. 1 is a plan view of an embodiment of the present invention, FIG. 2 is a side view,
FIG. 3 is a rear view. In these figures, the symbol 10 (10
a, 10b) are the front wheels, 12 (12a.

12b)は後輪であり、これらには幅広超低圧タイヤが
装着されている。14はフレーム、16は運転シート、
18は操向ハンドルである。
12b) are the rear wheels, which are fitted with wide ultra-low pressure tires. 14 is the frame, 16 is the driver's seat,
18 is a steering handle.

20は前輪10用の前ノースピンデフであり。20 is a front no spin differential for front wheel 10.

その出力軸である左右の前輪軸22 (22a、 22
b)は自在継手(図示せず)を介して各前輪10に連結
されている。24は後輪12用の後ノースピンデフであ
り、その出力軸である左右の後輪軸26(26a、26
 b)は各後輪12に連結されている。
The left and right front wheel axles 22 (22a, 22
b) is connected to each front wheel 10 via a universal joint (not shown). 24 is a rear no spin differential for the rear wheels 12, and its output shaft is the left and right rear wheel shafts 26 (26a, 26
b) is connected to each rear wheel 12;

28はエンジン、30は前後進切換可能な変速機、32
はセンターノースピンデフである。エンジン28の回転
はVベルト34によって変速機30に伝えられる。変速
機30の出力はチェーン36によってセンターノースピ
ンデフ32に伝えられる。このセンターノースピンデフ
32の出力軸32a、j2bは、自在継手ビ介して前記
ノースピンデフ2’0.24の入力軸20a、24aに
連結されている。
28 is an engine, 30 is a transmission capable of switching forward and backward, 32
is a center north spin differential. The rotation of the engine 28 is transmitted to the transmission 30 by a V-belt 34. The output of the transmission 30 is transmitted to the center north spin differential 32 by a chain 36. The output shafts 32a, j2b of the center north spin differential 32 are connected to the input shafts 20a, 24a of the north spin differential 2'0.24 via a universal joint.

次にノースピンデフ20.24の構成を説明する。これ
らのノースピンデフ20. 24)1 fili] −
出願人によりすでに提案された特開昭58−13656
3号明細書に示されたものと同様に構成されている。す
なわち、出力側に連結された一対の車軸に回転差が生じ
た時には高速側の車軸を空転させ、低速側車軸だけに駆
動力を伝えるもので、旋回走行時には旋回方向内側の後
輪12(内輪)に駆動力を伝え、旋回方向外側の後輪1
2(外輪)を空転させるものである。
Next, the configuration of the no-spin differential 20.24 will be explained. These no spin differential 20. 24) 1 fili] -
JP 58-13656 already proposed by the applicant
The structure is similar to that shown in the specification of No. 3. That is, when a rotation difference occurs between a pair of axles connected to the output side, the high-speed side axle is made to idle, and driving force is transmitted only to the low-speed side axle. ) to the rear wheel 1 on the outside in the turning direction.
2 (outer ring) is made to idle.

ノースピンデフ20と24は同一の構成を有するから、
以下ノースピンデフ20を第4図の断面図と第5図の動
作説明図に基づいて説明する。
Since the no-spin differentials 20 and 24 have the same configuration,
The no-spin differential 20 will be explained below based on the cross-sectional view in FIG. 4 and the operation explanatory diagram in FIG. 5.

支持ケース38内面には、前記入力軸20aに噛合する
大傘歯車40が軸受42により回転自在に保持されてい
る。この大傘歯車40にはスパイダ44が固定されてい
る。後輪軸26a、26bの内端には、スライド歯車4
6 (46a、46b)がスプライン結合により軸方向
にスライド可能に収付けられている。スパイダ44は両
側面に歯状突起群48.(48a、48b)’&備え、
これラバスライド歯車46に形成された凹部50 (5
0a。
On the inner surface of the support case 38, a large bevel gear 40 that meshes with the input shaft 20a is rotatably held by a bearing 42. A spider 44 is fixed to this large bevel gear 40. A slide gear 4 is provided at the inner end of the rear wheel axles 26a, 26b.
6 (46a, 46b) are housed so as to be slidable in the axial direction by spline connection. The spider 44 has tooth-like projections 48 on both sides. (48a, 48b)'& preparation,
A recess 50 (5) formed in the rubber slide gear 46
0a.

50b)に噛合する。なお、歯状突起群48は第5図に
示す平面展開状態で矩形に形成され、凹部50はこの歯
状突起群48の歯幅より広い。
50b). The tooth-like protrusion group 48 is formed into a rectangular shape in the planar unfolded state shown in FIG. 5, and the recess 50 is wider than the tooth width of the tooth-like protrusion group 48.

52はカムリングである。このカムリング52は、スパ
イダ44の中央の孔内(ニサークリップ54により取付
けられている。またカムリング52は。
52 is a cam ring. This cam ring 52 is attached to the center hole of the spider 44 (with a Nicer clip 54).

僅かな回転方向への遊び(第5図でXで示されている)
が許容されるようになっている。カムリング52の両側
面には平面略台形のカム56(56a。
Slight rotational play (indicated by X in Figure 5)
is now allowed. On both sides of the cam ring 52 are cams 56 (56a) each having a substantially trapezoidal planar shape.

56b)が形成されている。スライド歯車46には、こ
のカム56に係脱する略台形のカム溝58(58a、5
8b)が形成されている。スライド歯車46は復帰ばね
60 (60a、60b)によりスパイダ44方向へ押
圧され、カム溝58にカム56が係入する。支持ケース
38にはブレーキケース62が連結され、このブレーキ
ケース62には入力軸20aが挿通されている。なお入
力軸20aは第4図に示すように、その途中がカップリ
ング64で接続されている。
56b) is formed. The slide gear 46 has approximately trapezoidal cam grooves 58 (58a, 58
8b) is formed. The slide gear 46 is pressed toward the spider 44 by the return spring 60 (60a, 60b), and the cam 56 engages in the cam groove 58. A brake case 62 is connected to the support case 38, and the input shaft 20a is inserted through the brake case 62. As shown in FIG. 4, the input shaft 20a is connected in the middle with a coupling 64.

ブレーキケース62にはディスクブレーキ66が収容さ
れている。このブレーキ66は、カップリング64に固
定されたブレーキディスク68と。
A disc brake 66 is housed in the brake case 62. This brake 66 has a brake disc 68 fixed to the coupling 64.

ケース38に固定されたキャリパ(図示せず)とで形成
されている。
It is formed by a caliper (not shown) fixed to the case 38.

次に動作を説明する。直進時には左右後輪12に回転差
は生じないので1両スライド歯車46のカム溝58はカ
ムリング52のカム56に係入し。
Next, the operation will be explained. When the vehicle is traveling straight, there is no difference in rotation between the left and right rear wheels 12, so the cam groove 58 of the single slide gear 46 engages with the cam 56 of the cam ring 52.

歯状突起群48は凹部50に係合する。このため大傘歯
車40の回転は、スパイダ44.スライド歯車46を介
し左右の後輪軸26.後輪12に均等に伝えられる。
Teeth 48 engage recess 50 . Therefore, the rotation of the large bevel gear 40 is controlled by the spider 44. The left and right rear wheel axles 26. It is transmitted evenly to the rear wheels 12.

右旋回時には外(左)輪12aが内(右)輪12bに対
して進むので、外輪12aの回転によりカム溝58aが
カム56aに乗り上げ、これに伴ってスライド歯車46
aが左方に移動して歯状突起群48aと凹部50aとの
係合が解放される。
When turning right, the outer (left) wheel 12a advances relative to the inner (right) ring 12b, so the rotation of the outer ring 12a causes the cam groove 58a to ride on the cam 56a, and as a result, the slide gear 46
a moves to the left, and the engagement between the tooth-like projection group 48a and the recess 50a is released.

従って内(右)輪12bだけに駆動力が伝えられるが、
内(右)輪12bが滑ったり直進走行に戻って両輪12
が等速になれば、再び両輪12に駆動力が伝わるように
なる。第5図(a)は右旋回時乞示し1図中Fはスパイ
ダ44.カムリング52の回転方向を示す。
Therefore, the driving force is transmitted only to the inner (right) wheel 12b,
If the inner (right) wheel 12b slips or returns to straight running, both wheels 12
When the speed becomes constant, the driving force is transmitted to both wheels 12 again. Fig. 5(a) shows the situation when turning right. F in Fig. 1 shows the spider 44. The rotation direction of the cam ring 52 is shown.

ディスクブレーキ66を効かせたり、エンジンブレーキ
を効かせると、制動力は駆動時とは逆向きにスパイダ4
4に加わる。第5図(b)はこの様子を示し8図中Bは
制動力の方向を示す。この時にはカムリング52はスパ
イダ44に対して前記位相Xだけ遅れて回転する。この
ため、左旋回中に制動すると、遅れ側である内(左)輪
12altllのスライド歯車46aのカム溝58aが
カム56aに乗り上げ、内輪12aが空転する。従って
この時には外(右)輪12bに制動力が働き、外輪12
bが滑ったり直進状態に戻って両輪12が等速になると
両輪12に制動力が伝わることになる。
When the disc brake 66 is applied or the engine brake is applied, the braking force is applied to the spider 4 in the opposite direction to that during driving.
Join 4. FIG. 5(b) shows this state, and B in FIG. 8 indicates the direction of the braking force. At this time, the cam ring 52 rotates behind the spider 44 by the phase X. Therefore, when braking is applied during a left turn, the cam groove 58a of the slide gear 46a of the inner (left) wheel 12altll, which is the lagging side, rides on the cam 56a, causing the inner ring 12a to idle. Therefore, at this time, braking force acts on the outer (right) wheel 12b, and the outer (right) wheel 12b
If the wheel b slips or returns to a straight running state and both wheels 12 become constant, the braking force will be transmitted to both wheels 12.

第6図はセンターノースピンデフ32の一部断面図であ
る。このデフ32は、出力軸32a。
FIG. 6 is a partial sectional view of the center no spin differential 32. This differential 32 has an output shaft 32a.

をフレーム14に軸受72a、72bで保持し。is held in the frame 14 by bearings 72a and 72b.

両軸受筒70a、70bの結合部間に、前記第4図のデ
フ20におけるスパイダ44を固定したものである。ま
た軸受筒70bにはスプロケット74が固定され、この
スプロケット74に前記チェーン36が巻掛けられてい
る。すなわちこのデフ32は、第4図におけるデフ2o
が大傘歯車4C1介 ゛して回転を入力するのに対し、
軸受筒70bがら回転を入力する点で、第4図のものと
異なる。しかし内部構造は同一であるから、その説明は
繰り返さない。
The spider 44 of the differential 20 shown in FIG. 4 is fixed between the connecting portions of both bearing sleeves 70a and 70b. Further, a sprocket 74 is fixed to the bearing tube 70b, and the chain 36 is wound around this sprocket 74. That is, this differential 32 is the same as the differential 2o in FIG.
In contrast to inputting rotation through large bevel gear 4C1,
This differs from the one shown in FIG. 4 in that rotation is input from the bearing tube 70b. However, since the internal structure is the same, its explanation will not be repeated.

次にこの実施例の動作暑説明する。エンジン28の回転
はVベルト34.変速機30.チェーン36を介し、セ
ンターノースピンデフ32に伝えられる。今、前・後輪
10.12が同径でかっ各デフ20.24の減速比が同
一であるとすれば、デフ32の出力軸32a、32bは
同一速度で回転するから、エンジン駆動力は両出力軸3
2a、32bに均等に伝えられる。ハンドル18が直進
位置にフ20,24を介し全ての車輪10.12に駆動
力が伝わる。この状態でハンドル18を左右に回し旋回
すれば、内輪が外輪に対し低速になり、最も低速の車輪
である旋回方向に向って内側の後輪にのみ駆動力が伝わ
る。この後輪がスリップすれば、この後輪と次に低速の
車輪とに駆動力が伝わる。反対に、ブレーキ66をかけ
たりエンジンブレーキをかけた時には、最も高速の車輪
にそのブレーキ力が伝わる。
Next, the operational temperature of this embodiment will be explained. The rotation of the engine 28 is controlled by the V-belt 34. Transmission 30. It is transmitted to the center no spin differential 32 via the chain 36. Now, if the front and rear wheels 10.12 have the same diameter and the reduction ratio of each differential 20.24 is the same, the output shafts 32a and 32b of the differential 32 rotate at the same speed, so the engine driving force is Both output shafts 3
2a and 32b equally. When the handle 18 is in the straight forward position, the driving force is transmitted to all wheels 10, 12 via the flaps 20, 24. In this state, if the handlebar 18 is turned left and right to turn, the inner wheels become slower than the outer wheels, and the driving force is transmitted only to the inner rear wheel in the turning direction, which is the slowest wheel. If this rear wheel slips, driving force is transmitted to this rear wheel and the next slowest wheel. Conversely, when the brakes 66 are applied or engine braking is applied, the braking force is transmitted to the fastest wheel.

このようにこの実施例によれば、常に最も低速の車輪に
駆動力が伝わり、最も高速の車輪にエンジンブレーキ力
が伝わ4゜ 今センターデフ32の出力軸32a、321)の1回転
に対する前輪10の走行距離をA、同じく後輪の走行距
離をBとした時。
As described above, according to this embodiment, the driving force is always transmitted to the slowest wheel, and the engine braking force is transmitted to the fastest wheel. When the mileage of the rear wheel is A, and the mileage of the rear wheel is B.

A)B となるように、各デフ20.24の減速比および前・後
輪10.12の径が決められているものとする。この時
には直進走行時には出力軸32aが32bよりも低速に
なるので、駆動力は出力軸32Hに伝わる。すなわち前
輪10に駆動力が伝わり5後輪12には駆動力は伝わら
ない。反対に。
It is assumed that the reduction ratio of each differential 20.24 and the diameters of the front and rear wheels 10.12 are determined so that A)B. At this time, since the output shaft 32a has a lower speed than the output shaft 32b during straight traveling, the driving force is transmitted to the output shaft 32H. That is, the driving force is transmitted to the front wheels 10, but not to the rear wheels 12. Conversely.

A<B ならば後輪12のみに駆動力が伝わる。A<B In this case, the driving force is transmitted only to the rear wheels 12.

従って、A?Bとなるようにタイヤ径および減速比を設
定した場合、あるいはタイヤ径の変化などによりA=B
でなくなった場合には2輪駆動で直進走行することにな
る。この時駆動輪に、スリップが発生すると自動的に他
の車輪に駆動力が伝わり、最終的に4輪駆動になる。
Therefore, A? If the tire diameter and reduction ratio are set so that A = B, or due to changes in tire diameter, etc.
If this happens, the vehicle will drive straight ahead in two-wheel drive. At this time, if a slip occurs in the drive wheel, the drive force is automatically transmitted to the other wheels, eventually resulting in four-wheel drive.

従って直結型4輪駆動でかつA+Bとなった場合のよう
に、良路走行時に前・後輪の一方が路面との間で滑りを
発生しながら走行するというような状態が起らず、タイ
ヤの摩耗が増えたり、駆動効率が低下したりすることが
ない。またA笑Bの場合に悪路走行時に駆動力が伝って
いる車輪がスリップすれば、この車輪と次に低速の車輪
とに駆動力が伝わり、順次低速側の車輪に駆動力が伝っ
て最終的に自動的に4輪駆動となる。なおA=Bの状態
で走行する時には4輪に均等に駆動力が伝えられること
は勿論である。
Therefore, when driving on a good road, one of the front and rear wheels does not slip while driving on the road surface, which is the case with direct-coupled four-wheel drive and A+B, and the tires There is no increase in wear or decrease in drive efficiency. In addition, in the case of A and B, if the wheel to which the driving force is being transmitted slips when driving on a rough road, the driving force is transmitted to this wheel and the next slow-speed wheel, and then the driving force is sequentially transmitted to the slow-speed wheel, and the final automatically switches to four-wheel drive. It goes without saying that when the vehicle travels in the state where A=B, the driving force is equally transmitted to the four wheels.

(発明の効果) 本発明は以上のように、駆動力を低速側の出力軸に伝え
高速側の出力軸を空転させる構造のノースピンデフを、
前輪間、後輪間および前後輪間にそれぞれ配設し、エン
ジ″ンの駆動力を中央のノースピンデフを介して前・後
の各ノースピンデフに伝えるように構成したから、前・
後輪の走行速度差があっても、直結型4輪駆動の場合の
ように良路走行時にいずれかの車輪が路面との間で滑っ
たりぜず、従ってタイヤの摩耗や駆動抵抗が増大するこ
とがない。また悪路走行時に駆動力が加っている車輪が
スリップすれば8順次低速側の車輪にも駆動力が伝わる
ようになり最終的に4輪駆動となり確実に駆動力を路面
に伝えられる。この結果荒地走破性が向上する。なお前
・後輪の走行距離が同一になる状態の下では、常に4輪
駆動で走行できるのは勿論である。
(Effects of the Invention) As described above, the present invention provides a no-spin differential with a structure that transmits driving force to the output shaft on the low speed side and causes the output shaft on the high speed side to idle.
They are arranged between the front wheels, between the rear wheels, and between the front and rear wheels, and are configured so that the driving force of the engine is transmitted to the front and rear no-spin differentials via the central no-spin differential.
Even if there is a difference in running speed between the rear wheels, unlike in the case of direct-coupled four-wheel drive, one of the wheels will not slip between itself and the road surface when driving on a good road, which will increase tire wear and drive resistance. Never. Furthermore, if the wheel to which the driving force is applied slips when driving on a rough road, the driving force is transmitted sequentially to the wheels on the lower speed side, resulting in four-wheel drive and the driving force can be reliably transmitted to the road surface. As a result, rough terrain running performance is improved. Of course, under conditions where the distance traveled by the front and rear wheels is the same, the vehicle can always be driven in four-wheel drive.

【図面の簡単な説明】[Brief explanation of the drawing]

図は同じく側面図と後面口、第4図はノースピンデフの
断面図、第5図はその動作説明図、第6図はセンターノ
ースピンデフの一部断面図である。 10・・・前輪、12・・・後輪。 20.24+ 32・・・ノースピンデフ、22・・・
前輪軸、26・・・後輪軸。 28・・・エンジン。 特許出願人 ヤマハ発動機株式会社 代理人 弁理士 山 1) 文 雄 第1図 第と図 第3図 第4図 第5図 (Q)(b)
The figures are a side view and a rear opening, FIG. 4 is a sectional view of the no spin differential, FIG. 5 is an explanatory view of its operation, and FIG. 6 is a partial sectional view of the center no spin differential. 10...front wheel, 12...rear wheel. 20.24+ 32...No spin differential, 22...
Front wheel axle, 26... rear wheel axle. 28...Engine. Patent Applicant Yamaha Motor Co., Ltd. Agent Patent Attorney Yama 1) Text Yu Figure 1 and Figure 3 Figure 4 Figure 5 (Q) (b)

Claims (1)

【特許請求の範囲】 超低圧タイヤ付きの左右一対の前輪および後輪を有する
荒地走行用車輛(二おいて。 前輪を支持する前輪軸に介在した前ノースピンデフと、
後輪を支持する後輪軸に介在した後ノースピンデフと、
前・後輪間に配設したセンターノースピンデフとt備え
、センターノースピンデフの出力側に連結した一対の駆
動軸をそれぞれ前後のノースピンデフの入力側に連結す
る一方、センターデフの入力側をエンジン(ユ連動連結
したことン特徴とする荒地走行用4輪車。
[Scope of Claims] A vehicle for driving on rough terrain having a pair of left and right front wheels and a rear wheel with ultra-low pressure tires.
A rear no-spin differential interposed on the rear axle that supports the rear wheels,
A center no spin differential is installed between the front and rear wheels, and a pair of drive shafts connected to the output side of the center no spin differential are connected to the input sides of the front and rear no spin differentials. A four-wheeled vehicle for traveling on rough terrain, featuring an interlocking engine.
JP9457684A 1984-05-14 1984-05-14 Four-wheel vehicle for running on wasteland Pending JPS60240527A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9457684A JPS60240527A (en) 1984-05-14 1984-05-14 Four-wheel vehicle for running on wasteland

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9457684A JPS60240527A (en) 1984-05-14 1984-05-14 Four-wheel vehicle for running on wasteland

Publications (1)

Publication Number Publication Date
JPS60240527A true JPS60240527A (en) 1985-11-29

Family

ID=14114111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9457684A Pending JPS60240527A (en) 1984-05-14 1984-05-14 Four-wheel vehicle for running on wasteland

Country Status (1)

Country Link
JP (1) JPS60240527A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6320225A (en) * 1986-07-11 1988-01-27 Kubota Ltd Four wheel drive device
JPS6320224A (en) * 1986-07-11 1988-01-27 Kubota Ltd Four wheel drive device
JPS6320223A (en) * 1986-07-11 1988-01-27 Kubota Ltd Four wheel drive device
JPS63199130A (en) * 1987-02-10 1988-08-17 Kubota Ltd Four-wheel-drive unit

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6320225A (en) * 1986-07-11 1988-01-27 Kubota Ltd Four wheel drive device
JPS6320224A (en) * 1986-07-11 1988-01-27 Kubota Ltd Four wheel drive device
JPS6320223A (en) * 1986-07-11 1988-01-27 Kubota Ltd Four wheel drive device
JPH054246B2 (en) * 1986-07-11 1993-01-19 Kubota Kk
JPH054247B2 (en) * 1986-07-11 1993-01-19 Kubota Kk
JPS63199130A (en) * 1987-02-10 1988-08-17 Kubota Ltd Four-wheel-drive unit

Similar Documents

Publication Publication Date Title
US4561518A (en) Recreational vehicle with limited differential
JP3100406U (en) Transmission mechanism for driving four wheels
JPS60240527A (en) Four-wheel vehicle for running on wasteland
JPS6229255B2 (en)
US6672986B2 (en) Normally interlocked universal differential device
JPS6358445B2 (en)
JPS6226124A (en) Three-wheel drive vehicle for traveling on rough ground
JPH0343052Y2 (en)
JPS6320224A (en) Four wheel drive device
JPS61271126A (en) Four-wheel drive vehicle
JPH0377089B2 (en)
JPS6320225A (en) Four wheel drive device
RU2268426C2 (en) Differential
JPS6320223A (en) Four wheel drive device
JPS61223366A (en) Power transmission device for 4-wheel driven car
JPS6250237A (en) Change over device between two-wheel-drive and four-wheel-drive for car
KR19990010339A (en) Always four wheel drive
JPH02283529A (en) Front and rear wheels drive device for vehicle
JPH0422736B2 (en)
JPH02279426A (en) All-wheel drive device for vehicle
JPS60868B2 (en) Power transmission device for toy vehicles
JPH04231761A (en) Differential device
JPS62149512A (en) Power transmission device for four-wheel drive vehicle
JPS63110031A (en) Four-wheel drive vehicle with viscous coupling
JPS5945223A (en) Power transmission mechanism of four-wheet drive vehicle