JPS60238480A - Manufacture of carbon fiber-reinforced metal - Google Patents

Manufacture of carbon fiber-reinforced metal

Info

Publication number
JPS60238480A
JPS60238480A JP59093681A JP9368184A JPS60238480A JP S60238480 A JPS60238480 A JP S60238480A JP 59093681 A JP59093681 A JP 59093681A JP 9368184 A JP9368184 A JP 9368184A JP S60238480 A JPS60238480 A JP S60238480A
Authority
JP
Japan
Prior art keywords
carbon fiber
metal
metals
fibers
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59093681A
Other languages
Japanese (ja)
Inventor
Takashi Osaki
孝 大崎
Kohei Arakawa
公平 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkiso Co Ltd
Original Assignee
Nikkiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikkiso Co Ltd filed Critical Nikkiso Co Ltd
Priority to JP59093681A priority Critical patent/JPS60238480A/en
Publication of JPS60238480A publication Critical patent/JPS60238480A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To manufacture the titled high-quality carbon fiber-reinforced metal by forming a carbon fiber on a substrate by a gaseous-phase method, coating a base-material metal to be compounded or a protective film on the carbon fiber, and immersing the coated fiber into molten metal. CONSTITUTION:Carbon fibers 12 are grown thick on the surface of a substrate 11 of ceramics, graphite, metals, etc. by a gaseous-phase method. The whole body is put into a reaction tube as it is, and Ti, Zr, Ta, and Mo and an organic protective film of SiC, Si3N4, SiO2, etc. are coated on the carbon fiber 12 by the CVD or the P-CVD method. Or light metals such as Al, Mg, and Ti, low-melting point metals such as Zn, Sn, and Pb, iron-group metals such as Fe, Ni, and Co, heavy metals such as Cd, Mn, and Cu, or noble metals such as Au, and high- melting point metals such as W are coated as the base-material metal to be compounded. Then the body is immersed in the melt of said base-material metal, or added with metallic powder and metallic leaves, and heated and compressed to manufacture the high-quality carbon fiber-reinforced metal.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は炭素繊維と金属との複合材料の製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing a composite material of carbon fiber and metal.

更に詳しくはセラミックス、黒鉛、金属等の基板に成長
させた気相法による炭素繊維に複合材料の母材となる金
属または保護膜製被覆することを特徴とする炭素繊維強
化金属の製造方法に関する。
More specifically, the present invention relates to a method for manufacturing a carbon fiber reinforced metal, which comprises coating carbon fibers grown on a substrate of ceramics, graphite, metal, etc. by a vapor phase method with a metal or a protective film to serve as a base material of a composite material.

〔従来の技術〕[Conventional technology]

炭素繊維強化金属(CF RM)は炭素繊維の特性と金
属の特性を生かした高強度、高弾性率、軽量の耐熱材料
として期待され、研究開発が進められている。
Carbon fiber reinforced metal (CF RM) is expected to be a high-strength, high-modulus, lightweight, heat-resistant material that takes advantage of the characteristics of carbon fiber and metal, and research and development is progressing.

本発明は特に優れた特性を有する気相法による炭素繊維
を使用し、しかもこの繊維製造時の特徴を利用して高品
質の炭素繊維強化金属を製造する方法を提供するもので
ある。
The present invention provides a method for producing high-quality carbon fiber reinforced metal by using carbon fiber produced by a vapor phase process which has particularly excellent properties, and by utilizing the characteristics during production of this fiber.

一般に炭素繊維はポリアクリロニトリル繊維、ピッチ繊
維等の繊維を焼成して得られているが、近年炭化水素気
体を熱分解させ炭素繊維を製造する方法が研究されてい
る。この方法はセラミックス、金属、黒鉛等の基板上に
分散させた金属触媒粒子を介して炭化水素熱分解を行う
もので、熱分解により生成する炭素は触媒粒子の作用で
一方向に析出し、繊維状になる。この繊維は「気相法に
よる炭素繊維」または「気相成長炭素繊維」と呼ばれる
Generally, carbon fibers are obtained by firing fibers such as polyacrylonitrile fibers and pitch fibers, but in recent years, research has been conducted on methods of producing carbon fibers by thermally decomposing hydrocarbon gases. This method performs hydrocarbon thermal decomposition via metal catalyst particles dispersed on a substrate made of ceramics, metal, graphite, etc. Carbon produced by thermal decomposition is precipitated in one direction by the action of the catalyst particles, and fibers It becomes like this. This fiber is called "vapor-phase carbon fiber" or "vapor-grown carbon fiber."

通常この繊維は直径2μ+s〜10μm、長さ1+wm
〜100mmで、基板上に密生する。気相法による炭素
繊維は結晶子の配向が良好で、かつ欠陥が極めて少ない
のでポリアクリロニトリル繊維(PAN系)、ピッチ繊
維(ピッチ系)等からの炭素繊維よりはるかに優れた機
械的性質を有する。
Usually this fiber has a diameter of 2μ+s~10μm and a length of 1+wm.
~100 mm, densely growing on the substrate. Carbon fiber produced by the vapor phase method has good crystallite orientation and extremely few defects, so it has far superior mechanical properties to carbon fiber made from polyacrylonitrile fibers (PAN type), pitch fibers (pitch type), etc. .

例えば、気相法による炭素繊維と他の方法による炭素繊
維を比較すると表1に示す通りである。
For example, Table 1 shows a comparison between carbon fibers produced by the vapor phase method and carbon fibers produced by other methods.

表1 〔発明が解決しようとする問題点〕 CFRMは、その優れた特性が期待されているにもかか
わらず、製造上の問題から予想された特性値が得られて
いない。すなわち炭素繊維は金属と濡れにくく、高温で
はアルミニウムやチタンなどとは反応1起し、またニッ
ケルや鉄に溶解する等の原因による。これらの問題を解
決するため、これまで数多くの製造方法が提案されてい
る。例えば炭素繊維表面をTiC,TiB、SiC,S
i3N、等の無機質保護膜で被覆した後、金属溶湯に浸
漬する溶浸法や、プラズマ・スプレー、メッキ、化学蒸
着、物理蒸着等の方法で繊維に金属を付与し、しかる後
に、金属と炭素繊維が反応しない条件で成形する方法で
ある。しかし、溶浸法の場合は完壁な保護膜が要求され
、プラズマ・スプレー、メッキ、化学蒸着、物理蒸着等
の方法ではできるだけ均一な金属膜が要求される。保護
膜を被覆する場合においても、金属を被覆する場合にお
いても均一な被膜が得られるという点では化学蒸着法お
よびプラズマ化学蒸着法が最も好ましい方法と言える。
Table 1 [Problems to be Solved by the Invention] Although CFRM is expected to have excellent properties, expected property values have not been obtained due to manufacturing problems. In other words, carbon fibers are difficult to wet with metals, react with aluminum, titanium, etc. at high temperatures, and dissolve in nickel and iron. Many manufacturing methods have been proposed to solve these problems. For example, the surface of carbon fiber is TiC, TiB, SiC, S.
After coating with an inorganic protective film such as i3N, metal is applied to the fiber by an infiltration method in which the fiber is immersed in molten metal, or by a method such as plasma spray, plating, chemical vapor deposition, physical vapor deposition, etc., and then the metal and carbon are coated. This is a method of molding under conditions where the fibers do not react. However, infiltration methods require a complete protective film, and methods such as plasma spray, plating, chemical vapor deposition, physical vapor deposition, etc. require a metal film that is as uniform as possible. The chemical vapor deposition method and the plasma chemical vapor deposition method are the most preferable methods in that a uniform coating can be obtained both when coating a protective film and when coating a metal.

しかしながら化学蒸着法(CV D)およびプラズマ化
学蒸着法(P−CV D)においても、繊維数が多く、
繊維が密集していると、繊維−繊維間に蒸着すべき物質
が入り込まず、繊維束の外周のみが被覆されてしまう。
However, even in chemical vapor deposition (CV D) and plasma chemical vapor deposition (P-CV D), the number of fibers is large;
If the fibers are densely packed, the substance to be deposited will not enter between the fibers, and only the outer periphery of the fiber bundle will be coated.

通常PAN系、ピッチ系の炭素繊維は5μm〜10μm
の繊維が1,000〜10,000本まとまった連続糸
として供給されるためこの繊維束内部まで、無機質保護
膜や金属を被覆することは非常に難しい。
Normally PAN-based and pitch-based carbon fibers are 5 μm to 10 μm.
Since 1,000 to 10,000 fibers are supplied as a continuous yarn, it is very difficult to coat the inside of this fiber bundle with an inorganic protective film or metal.

例えば、東しく株)製トレカT−300においては直径
約7μmの炭素繊維3,000本が直径1mm以下の繊
維束として市販されているが、この場合、繊維−繊維間
の平均距離は約8〜9μmと非常に狭く、よって、この
繊維束内部にまで、蒸着する原子が入り込むことが困難
になるからである。
For example, in Toshiku Co., Ltd.'s Trading Card T-300, 3,000 carbon fibers with a diameter of about 7 μm are commercially available as a fiber bundle with a diameter of 1 mm or less, but in this case, the average distance between fibers is about 8 This is because the diameter is very narrow at ~9 μm, making it difficult for atoms to be deposited to enter the inside of this fiber bundle.

他方、基板上に密生している炭素繊維は、基板の面から
遠くなるほど、繊維の発生密度が減少するが、最も密度
が高い基板面上においても、繊維−繊維間の距離は50
μmもあるので、蒸着する原子が入り込みやすい。
On the other hand, the density of carbon fibers growing densely on a substrate decreases as the distance from the substrate surface increases, but even on the substrate surface where the density is highest, the distance between fibers is 50
Since it has a diameter of μm, it is easy for atoms to be evaporated to enter.

CVD装置やP、−CV D装置で繊維に皮膜を付与し
ている時の装置の断面を示したのが第1図である。通常
、外部より加熱するため、内壁が最も高温となり、この
壁が最も高い速度で蒸着されることになる。つまり、繊
維よりも器壁の方が多く蒸着されてしまうというデメリ
ットがある。第1図においては、1は反応管、2はヒー
ター、3は繊維束である。
FIG. 1 shows a cross section of a CVD device or P,-CVD device when a film is applied to fibers. Typically, since heating is done from the outside, the inner wall will be at the highest temperature and will be deposited at the highest rate. In other words, there is a disadvantage that more vapor is deposited on the vessel wall than on the fibers. In FIG. 1, 1 is a reaction tube, 2 is a heater, and 3 is a fiber bundle.

〔問題点を解決するための手段〕 ゛ 第2図に気相法による炭素繊維が基板上に成長した時の
状況を示す。炭素繊維は基板に対しほぼ垂直方向に成長
している。通常は、繊維を基板からはがして使用するが
1本発明においては、基板上に成長している炭素繊維を
そのまま使用することに意義がある。すなわち、本発明
では、第2図のような炭素繊維が成長した基板をそのま
ま第1図の装置内に配置して、CVDまたはP−CVD
を行って、炭素繊維に無機質保護膜や金属を被覆する。
[Means for solving the problem] Fig. 2 shows the situation when carbon fibers are grown on a substrate by the vapor phase method. The carbon fibers grow almost perpendicularly to the substrate. Normally, the fibers are used after being peeled off from the substrate, but in the present invention, it is meaningful to use the carbon fibers grown on the substrate as they are. That is, in the present invention, a substrate on which carbon fibers have been grown as shown in FIG. 2 is placed in the apparatus shown in FIG.
The carbon fibers are coated with an inorganic protective film or metal.

保護膜を被覆した場合は、被覆繊維を基板から引きはが
した後、金属溶湯中に浸漬するかまたは金属粉、金属箔
を付与して加熱加圧する等の方法で金属を付与してCF
RMとする。
When a protective film is coated, the coated fibers are peeled off from the substrate and then CF
RM.

母材金属を被覆した場合(あるいは、保護膜被覆した場
合)、被覆繊維を積層、加熱加圧してCFRMとするこ
とができる。
When the base metal is coated (or when it is coated with a protective film), the coated fibers can be laminated, heated and pressed to form a CFRM.

〔作用〕[Effect]

本発明によれば、母材金属中に繊維が均一に分散するの
で、表1に示す様に高性能のCFRMが得られる。
According to the present invention, since the fibers are uniformly dispersed in the base metal, a high performance CFRM can be obtained as shown in Table 1.

本発明においてはCVD、または、P−CVDの方法に
ついてなんら限定されるものではない。
In the present invention, there are no limitations on the CVD or P-CVD method.

本発明における無機質保護膜は1元素周期律表TVb(
Ti、Zr等)Vb(Ta等)、vrb(M o等)お
よびSiの炭化物、窒化物、硼化物、酸化物等であり、
炭素繊維を金属から保護し、金属と濡れるものが好まし
い。無機質保護膜の厚さは、繊維の体積が被覆前に対し
、被覆後で1.5倍以下であるようにすることが好まし
い。あまり無機質保護膜が厚いとCFRMの強度が低下
することが多い。
The inorganic protective film in the present invention is one element of the periodic table TVb (
Ti, Zr, etc.) Vb (Ta, etc.), vrb (Mo, etc.) and Si carbides, nitrides, borides, oxides, etc.
It is preferable to use a material that protects carbon fibers from metal and that can be wetted with metal. The thickness of the inorganic protective film is preferably such that the volume of the fibers after coating is 1.5 times or less than that before coating. If the inorganic protective film is too thick, the strength of the CFRM often decreases.

本発明における母材金属とは、A】、Mg、Ti等の軽
金属、Zn、Sn、Pb等の低融点金属、鉄属(pc、
 Ni、 Co)、Cd、 Mn、 Cu。
Base metals in the present invention include light metals such as A], Mg, and Ti, low melting point metals such as Zn, Sn, and Pb, iron metals (PC,
Ni, Co), Cd, Mn, Cu.

等の重金属、Au、 Ag、 Pt、Ir、Os、Pd
等の貴金属、Ta、W、Nb、Mo、■、Cr等の高融
点金属、Si’、Ge等の半導体金属等であり、CFR
Mにした時の繊維の体積が5〜75%の範囲内であるこ
とが好ましい。
Heavy metals such as Au, Ag, Pt, Ir, Os, Pd
CFR
It is preferable that the volume of the fiber when M is within the range of 5 to 75%.

本発明における無機質または金属を与えるCVD用原料
としては、有機金属化合物(フルキル金属、アリル金属
、π−コンプレックス、カルボニル金属等)または、無
機金属化合物(ハロゲン化物、水素化物等)が用られ無
機質保護膜を形成するには、炭化水素、窒素(アンモニ
ア)、ハロゲン化硼素、酸素等と反応させて炭化物、窒
化物、硼化物、酸化物等にする。母材金属の膜を形成す
るには。
In the present invention, organic metal compounds (fulkyl metal, allyl metal, π-complex, carbonyl metal, etc.) or inorganic metal compounds (halides, hydrides, etc.) are used as raw materials for CVD to provide inorganic substances or metals to protect inorganic substances. To form a film, it is reacted with hydrocarbons, nitrogen (ammonia), boron halides, oxygen, etc. to form carbides, nitrides, borides, oxides, etc. To form a film of base metal.

水素ガスや希ガスを用いてC,VD、又はP−CVDを
行う。
C, VD, or P-CVD is performed using hydrogen gas or rare gas.

〔実施例〕〔Example〕

以下実施例に従って、具体的に説明する。 A detailed description will be given below based on examples.

実施例 1゜ 外径50wn、内径44mn(肉厚3m)、長さ300
mmのアルミナ2ツ割管(基板)の内壁に、直径100
人〜300人の鉄超微粒子を塗布した。これを外径60
++n+内径52画(肉厚4nwn)の外部より電気ヒ
ーターで加熱される均熱部長さ600m+のアルミナ管
に配置した。
Example 1゜Outer diameter 50wn, inner diameter 44mm (thickness 3m), length 300
A diameter of 100mm is placed on the inner wall of a 2-mm alumina tube (substrate).
Ultrafine iron particles were applied to ~300 people. This has an outer diameter of 60
It was placed in an alumina tube with an internal diameter of 52 (wall thickness: 4 nwn) and a soaking section length of 600 m+, which was heated from the outside with an electric heater.

この管内を水素ガスを流通させながら。While hydrogen gas is flowing inside this tube.

1100℃、2時間、鉄超微粒子を還元した。Ultrafine iron particles were reduced at 1100°C for 2 hours.

しかる後、ベンゼン2体積%を含む水素ガスを1.00
m1/分を導入し、1090℃で1時間、、1180℃
で2間時気相成長反応を行い、炭素繊維製作成させた。
After that, 1.00% of hydrogen gas containing 2% by volume of benzene was added.
m1/min, 1 hour at 1090°C, 1180°C
A vapor phase growth reaction was carried out for 2 hours to produce carbon fiber.

気相成長反応終了後、Arガスを導入して、反応管を1
300℃に昇温した。温度が安定した後、A「ガス中に
5体積%の四塩化珪素と3体積%のアセチレンを導入し
、30分間CVDを行った。反応終了後、Ar雰囲気下
で200℃まで冷却した後、アルミナ2ツ割管をとり出
し、繊維を基板から引きはがして集めた。この繊維は平
均直径11μmであり、内側の直径10μmに相当する
部分は炭素で構成されており、外部は炭化珪素より成る
ものであった。
After the vapor phase growth reaction is completed, Ar gas is introduced and the reaction tube is
The temperature was raised to 300°C. After the temperature stabilized, 5% by volume of silicon tetrachloride and 3% by volume of acetylene were introduced into the A gas, and CVD was performed for 30 minutes. After the reaction was completed, the temperature was cooled to 200°C under an Ar atmosphere. An alumina split tube was taken out, and the fibers were peeled off from the substrate and collected.The fibers had an average diameter of 11 μm, the inner diameter of which was 10 μm was made of carbon, and the outer part was made of silicon carbide. It was something.

この繊維を700℃に加熱されたマグネシウム合金(A
Z61A)の溶湯中に分散させ。
These fibers were heated to 700°C to form a magnesium alloy (A
Disperse in the molten metal of Z61A).

CFRMとした。このCFRMは■す10%で引張強度
350MPaのものであった。
It was designated as CFRM. This CFRM was 10% thick and had a tensile strength of 350 MPa.

実施例2 実施例1と同じ方法で気相成長炭素繊維を作成した後、
反応管を冷却し、更に、真空排気した。反応管を300
℃に保持し、絶対圧がIPaになった処でArガスを導
入し、100Paとした後、反応管外部の高周波コイル
より、13.56MHz、0.2KW高周波を与え、低
温プラズマ髪発生させた。この雰囲気にAlCl3.5
iC14を含むArガスを導入し、300 Paの全ガ
ス圧とし、60分間、P−CVDを行なった。
Example 2 After creating vapor grown carbon fibers in the same manner as in Example 1,
The reaction tube was cooled and further evacuated. 300 reaction tubes
℃, and when the absolute pressure reached IPa, Ar gas was introduced to bring the pressure to 100 Pa, and then 13.56 MHz, 0.2 KW high frequency was applied from a high frequency coil outside the reaction tube to generate low-temperature plasma hair. . In this atmosphere, AlCl3.5
Ar gas containing iC14 was introduced, the total gas pressure was 300 Pa, and P-CVD was performed for 60 minutes.

この様にして得られたAl−8i合金被覆炭素繊維をで
きるだけ一方向に引き揃えて真空ホットプレスにて45
0℃、30MPa、20分の条件で成形し、CFRMと
した。このCFRMは繊維体積33%を有し、繊維軸方
向の引張強度が820MPa、弾性率が130GPaを
示した。
The Al-8i alloy-coated carbon fibers obtained in this way were pulled in one direction as much as possible and then heated in a vacuum hot press for 45 minutes.
It was molded under the conditions of 0° C., 30 MPa, and 20 minutes to obtain a CFRM. This CFRM had a fiber volume of 33%, a tensile strength in the fiber axis direction of 820 MPa, and an elastic modulus of 130 GPa.

本発明に従うと、最も繊維密度の高い基板が器壁に接触
し、最も温度が高くなるので、蒸着されやすくなる。従
って、通常蒸着しにくいとされる繊維密度の高い処が蒸
着しゃすなり、結果的には全体が比較的均一に蒸着され
ることになる。
According to the present invention, the substrate with the highest fiber density contacts the vessel wall and has the highest temperature, making it easier to deposit. Therefore, the vapor deposition is carried out in areas with high fiber density, which are normally difficult to vapor deposit, and as a result, the entire area is vapor deposited relatively uniformly.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、CVDまたはP−CVD&、:、よって繊維
に母材金属または保護膜を被覆する装置図である。1は
反応管、2はヒーター、3は繊維束、4は高周波コイル
を示す。 第2図は気相法によって基板11上に生成した炭素繊維
12の状態を示すものである。
FIG. 1 is a diagram of an apparatus for coating fibers with a base metal or a protective film by CVD or P-CVD. 1 is a reaction tube, 2 is a heater, 3 is a fiber bundle, and 4 is a high frequency coil. FIG. 2 shows the state of the carbon fibers 12 produced on the substrate 11 by the vapor phase method.

Claims (1)

【特許請求の範囲】[Claims] 気相法によって基板上に生成した炭素繊維に母材金属ま
たは保護吸殻被覆することを特徴とする炭素繊維強化金
属の製造方法。
A method for producing a carbon fiber-reinforced metal, which comprises coating carbon fibers produced on a substrate by a vapor phase method with a base metal or a protective butt.
JP59093681A 1984-05-10 1984-05-10 Manufacture of carbon fiber-reinforced metal Pending JPS60238480A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59093681A JPS60238480A (en) 1984-05-10 1984-05-10 Manufacture of carbon fiber-reinforced metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59093681A JPS60238480A (en) 1984-05-10 1984-05-10 Manufacture of carbon fiber-reinforced metal

Publications (1)

Publication Number Publication Date
JPS60238480A true JPS60238480A (en) 1985-11-27

Family

ID=14089142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59093681A Pending JPS60238480A (en) 1984-05-10 1984-05-10 Manufacture of carbon fiber-reinforced metal

Country Status (1)

Country Link
JP (1) JPS60238480A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5049409A (en) * 1985-03-20 1991-09-17 Sharp Kabushiki Kaisha Method for metal or metal compounds inserted between adjacent graphite layers
US5273778A (en) * 1985-03-20 1993-12-28 Sharp Kabushiki Kaisha Method for producing graphite intercalation compound
CN102373389A (en) * 2011-09-30 2012-03-14 常熟市星源金属涂层厂 Preparation method of three-dimensional woven carbon fiber-reinforced magnesium-based composite material
CN107723628A (en) * 2017-08-31 2018-02-23 宁波市佳利来机械制造有限公司 A kind of automobile drive electric motor shell

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5049409A (en) * 1985-03-20 1991-09-17 Sharp Kabushiki Kaisha Method for metal or metal compounds inserted between adjacent graphite layers
US5273778A (en) * 1985-03-20 1993-12-28 Sharp Kabushiki Kaisha Method for producing graphite intercalation compound
US5404837A (en) * 1985-03-20 1995-04-11 Sharp Kabushiki Kaisha Method for preparing a graphite intercalation compound having a metal or metal compounds inserted between adjacent graphite layers
CN102373389A (en) * 2011-09-30 2012-03-14 常熟市星源金属涂层厂 Preparation method of three-dimensional woven carbon fiber-reinforced magnesium-based composite material
CN107723628A (en) * 2017-08-31 2018-02-23 宁波市佳利来机械制造有限公司 A kind of automobile drive electric motor shell

Similar Documents

Publication Publication Date Title
US5967400A (en) Method of forming metal matrix fiber composites
JPS6147891B2 (en)
US5300322A (en) Molybdenum enhanced low-temperature deposition of crystalline silicon nitride
JPS58171502A (en) Pulverized composite powder of ceramic and metal
AU642449B2 (en) Multi-layer coatings for reinforcements in high temperature composites
US4737382A (en) Carbide coatings for fabrication of carbon-fiber-reinforced metal matrix composites
JPS60238480A (en) Manufacture of carbon fiber-reinforced metal
JPH1143827A (en) Hollow micro fiber and its production
JP3605133B2 (en) Carbide material coated with diamond-like carbon film functionally graded to substrate and method for producing the same
JP2005075720A (en) SiC-COATED CARBON NANOTUBE, MANUFACTURING METHOD THEREFOR AND COMPOSITE MATERIAL THEREOF
US5270112A (en) Hybrid reinforcements for high temperature composites and composites made therefrom
US20040258839A1 (en) Oxidation protective multiple coating method for carbon/carbon composites
CN111850498B (en) Carbon nanofiber reinforced nickel-based composite coating and preparation method thereof
JPH04333659A (en) Silicon carbide coating method
JPS60184652A (en) Manufacture of fiber-reinforced metal
JPH02267284A (en) Polycrystalline diamond object and production thereof by vapor synthesis method
JP3219314B2 (en) Method for producing boron carbide-based carbon material
JP2000185981A (en) Porous molded article of silicon carbide and its production
JPH0789777A (en) Improvement of oxidation stability of composite material containing fibrous reinforcement and glass, glass-ceramic or ceramic matrix
Gallois et al. Chemical Vapor Deposition of Ultrafine Ceramic Structures
JPH0737708B2 (en) Whisker surface modification method
JP2586083B2 (en) Manufacturing method of fiber molding
JP3046143B2 (en) Manufacturing method of fiber reinforced ceramics
JPH04327265A (en) Production of surface-coated carbon fiber
JP3453839B2 (en) Diamond reinforced composite material and method of manufacturing the same