JPS60235812A - Flexible propylene random copolymer - Google Patents

Flexible propylene random copolymer

Info

Publication number
JPS60235812A
JPS60235812A JP9164584A JP9164584A JPS60235812A JP S60235812 A JPS60235812 A JP S60235812A JP 9164584 A JP9164584 A JP 9164584A JP 9164584 A JP9164584 A JP 9164584A JP S60235812 A JPS60235812 A JP S60235812A
Authority
JP
Japan
Prior art keywords
propylene
polymer
copolymer
butene
boiling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9164584A
Other languages
Japanese (ja)
Inventor
Toshiyuki Kokubo
小久保 敏行
Norihiro Miyoshi
三好 徳弘
Tadatoshi Ogawa
忠俊 小川
Kiyohiko Nakae
清彦 中江
Seiji Kawai
清司 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP9164584A priority Critical patent/JPS60235812A/en
Publication of JPS60235812A publication Critical patent/JPS60235812A/en
Pending legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

PURPOSE:A random propylene/4C or higher alpha-olefin copolymer excellent in physical and mechanical properties and free of surface stickiness, having a specified composition and properties (alpha-olefin content and solvent-extractable component content). CONSTITUTION:A random copolymer having the following properties: (i) the content of 4C or higher alpha-olefins (preferably, butene-1 and hexene-1): 3-25mol%, (ii) intrinsic viscosity [eta]: 0.8-10dl/g, (iii) boiling n-heptane-insoluble portion: 7wt% or above, (iv) boiling ether-soluble portion: 2-20wt%, (v) rate of the area of signals of chemical shifts in the range of 19-21.1 to that of signals attributable to side chain methyl groups (as measured on the boiling ether-insoluble portion by <13>C-NMR): 3-30%, and (vi) rate of the above area to that on the boiling ether-soluble portion: 25-70%. By using this copolymer, it is possible to produce a film excellent in low-temperature heat-sealing property, transparency, and blocking resistance.

Description

【発明の詳細な説明】 本発明は、新規な軟質プロピレンランダム共重合体に関
する。詳しくは優れた物理的、機械的性質を有し、しか
も、表面粘着性のない、特にフィルムに加工した時に低
温ヒートシール性と透明性に優れ、しかも耐ブロッキン
グ性に優れた軟質プロピレンランダム共重合体に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel flexible propylene random copolymer. In detail, it is a soft propylene random copolymer that has excellent physical and mechanical properties, has no surface tackiness, has excellent low-temperature heat sealability and transparency when processed into a film, and has excellent blocking resistance. Regarding merging.

従来、プロピレンを主体とする軟質重合体が種々提案さ
れでいるが、未だ商業的価値をもったプロピレン系軟質
重合体は見い出されCいない。柔軟性をもたせる方法と
して、大別すると次の三種の方法が提案されている。
Hitherto, various soft polymers mainly composed of propylene have been proposed, but a propylene-based soft polymer with commercial value has not yet been found. Broadly speaking, the following three methods have been proposed as methods for providing flexibility.

■ プロピレンを低立体規則性重合する方法(例えば、
特開昭52−85288号、特開昭54−148091
号公報など。) ■ エチレンおよび/又は炭素数4以上のα−オレフィ
ンとプロピレンとを共重合する方法(例えば、特開昭4
9−’35487号、同58−79984号、同54−
85298号、同58−188720号公報など。) ■ 高結晶性プロピレン系重合体にエチレン系i合体、
エチレンープロピレンゴム、又は低立体規則性プロピレ
ン系重合体等の軟質化剤を配合する方法(例えば特開昭
52−72744号、同54−48845号、同54−
48846号、同54−120656号公報など。) 上記■の方法で得られたポリプロピレン重合体は成形物
やフィルムに加工した場合、加工物の表面にアタクチッ
クポリプロピレンがブリードし、表面粘着性のある加工
物しか得られず、著しく商品価値が低い。特にフィルム
に加工した場合は耐ブロッキング性に劣り、実用に供し
えない。
■ A method of polymerizing propylene with low stereoregularity (for example,
JP-A-52-85288, JP-A-54-148091
Publications, etc. ) ■ A method of copolymerizing ethylene and/or an α-olefin having 4 or more carbon atoms with propylene (for example, JP-A-4
9-'35487, 58-79984, 54-
No. 85298, No. 58-188720, etc. ) ■ Highly crystalline propylene polymer combined with ethylene,
A method of blending a softening agent such as ethylene-propylene rubber or a low stereoregular propylene polymer (for example, JP-A-52-72744, JP-A No. 54-48845, JP-A No. 54-54)
No. 48846, No. 54-120656, etc. ) When the polypropylene polymer obtained by the above method (■) is processed into molded products or films, atactic polypropylene bleeds onto the surface of the processed product, resulting in only processed products with surface tackiness, and the commercial value is significantly reduced. low. In particular, when processed into a film, it has poor blocking resistance and cannot be put to practical use.

上記■の方法で得られた共重合体は組成分布や分子量分
布が広く、共重合体の加工物は表面粘着性があるため商
品価値が低い。また、これらの多くのものは組成分布が
広く、コモノマーがブロック的に共重合され、フィルム
加工すると透明性が劣る。特に、コモノマーとしてエチ
レンを共重合する場合にこの様な現象が顕著である。し
tこがっC1このような方法で得られる共重合体は通常
、炭化水素溶媒等で洗浄し、表面粘着性の原因となる低
分子量で低立体規則性重合体成分を除去する操作を必要
とする。このため、洗浄後の共重合体は高立体規則性で
あり柔軟性の乏しい重合体になる。この■の方法の中に
は、溶液重合法で得られ、低立体結晶性部分を除去しな
い共重合体も有るが、非とうn−ヘプタン不溶分が極め
て小さい共重合体であり、フィルムに加工した時に耐ブ
ロッキング性が悪く、商品価値の低いものである。
The copolymer obtained by the method (2) above has a wide composition distribution and molecular weight distribution, and the processed product of the copolymer has a low commercial value because of its surface tackiness. In addition, many of these have a wide composition distribution, comonomers are copolymerized in a block manner, and when processed into films, the transparency is poor. This phenomenon is particularly noticeable when copolymerizing ethylene as a comonomer. Copolymers obtained by this method usually require washing with a hydrocarbon solvent to remove the low molecular weight, low stereoregularity polymer components that cause surface stickiness. shall be. Therefore, the copolymer after washing becomes a polymer with high stereoregularity and poor flexibility. In this method (2), there are copolymers obtained by solution polymerization without removing the low stereocrystalline portion, but these copolymers have extremely small amounts of non-n-heptane insoluble matter and can be processed into films. When this happens, the blocking resistance is poor and the commercial value is low.

上記■の方法で得られた組成物もまた、フィルムに加工
した場合、耐ブロッキング性に優れ、同時に透明性と低
温ヒートシール性に優れた柔軟なフィルムを得ることは
できない。また、この方法は混線工程が必要となると共
に、品質の安定性が乏しくなり、工業的生産上必ずしも
満足すべき方法ではない。
When the composition obtained by the method (2) above is also processed into a film, it is not possible to obtain a flexible film that has excellent blocking resistance and at the same time excellent transparency and low-temperature heat sealability. In addition, this method requires a crosstalk process and has poor quality stability, and is not necessarily a satisfactory method for industrial production.

本発明者らはこのような実情に鑑み、鋭意研究の結果、
優れた物理的、機械的性質を有し、上記欠点が改良され
た柔軟性を有するプロピレンランダム共重合体を見い出
し本発明に到達した。
In view of these circumstances, the inventors of the present invention have conducted extensive research and have found that
The present invention has been accomplished by discovering a propylene random copolymer that has excellent physical and mechanical properties and has flexibility that improves the above-mentioned drawbacks.

すなわち本発明はプロピレンと炭素数4以上のα−オレ
フィンのランダム共重合体であって、(1)炭素数4以
上のα−オレフィンの含量が3〜25 m01%、 (2)極限粘度「り」が0.8〜l Od/!/9、(
8)sとうn−へブタン不溶分が7 wt96以上、(
4)沸とうエーテル可溶分が2−20wt%、(5)s
とうエーテル不溶分の180−NMRによる側鎖メチル
に基づくシグナルのうちケミカルシフト190〜21.
2 ppmの範囲のシグナル面積の百分率が8.0〜8
0%、および(6)沸とうエーテル可溶分の”O−NM
aによる側鎖メチルに基づくシグナルのうちケミカルシ
フト19.0〜21.2ppmの範囲のシグナル面構百
分率が25〜70%であることを特徴とする軟質プロピ
レンランダム共重合体を提供する。
That is, the present invention is a random copolymer of propylene and an α-olefin having 4 or more carbon atoms, which has (1) a content of 3 to 25 m01% of α-olefin having 4 or more carbon atoms, and (2) an intrinsic viscosity of ” is 0.8~l Od/! /9, (
8) s-n-hebutane insoluble matter is 7wt96 or more, (
4) Boiling ether soluble content is 2-20 wt%, (5) s
The chemical shift of the signals based on side chain methyl by 180-NMR of the ether-insoluble fraction was 190-21.
The percentage of signal area in the range of 2 ppm is 8.0-8.
0%, and (6) “O-NM” of the boiling ether soluble content.
The present invention provides a soft propylene random copolymer characterized in that the proportion of signal planes in the range of chemical shifts of 19.0 to 21.2 ppm is 25 to 70% among the signals based on the side chain methyl of a.

以下本発明について詳述する。The present invention will be explained in detail below.

本発明の重合体においC全正合体中の炭素数4以上のα
−オレフィンの含atは3〜25m07すると製造が困
難となるので好ましくない。尚、共重合体中のα−オレ
フィンの含量は物質収支又は18C−NMRによりめた
。またブテン−1の含量についCは更に、赤外分光光度
計を用いて770α−1の特性吸収から常法により定量
し、物質収支の結果を確認した。なお赤外分光光度計に
よる測定は、プロピレン−ブテン−1共重合体についで
、18C!−NAi几による定量値により検量線を作成
し定量した。また、全重合体の極限粘度「η」は0.3
〜lO1好ましくは1.0〜8.0さらに好ましくはi
、o〜5.0dl/9である。0.8 dllf未満で
あると重合体の加工が困難であり、一方LOdl/f/
を越えでも加工が困難となるので好ましくない。ここで
極限粘度はテトラリン185゛Cでオストワルド粘度計
を用いて測定した値である。
α having 4 or more carbon atoms in the C all positive polymer in the polymer of the present invention
- If the olefin content is 3 to 25m07, it becomes difficult to manufacture, so it is not preferable. The content of α-olefin in the copolymer was determined by mass balance or 18C-NMR. Regarding the content of butene-1, C was further determined by a conventional method from the characteristic absorption of 770α-1 using an infrared spectrophotometer, and the results of mass balance were confirmed. In addition, measurements using an infrared spectrophotometer show that 18C! - A calibration curve was created and quantified using the quantitative values obtained using NAi. In addition, the intrinsic viscosity "η" of all the polymers is 0.3
~lO1 preferably 1.0 to 8.0 more preferably i
, o~5.0dl/9. If it is less than 0.8 dllf, it is difficult to process the polymer, while LOdl/f/
It is not preferable to exceed this value because processing becomes difficult. The intrinsic viscosity here is a value measured using an Ostwald viscometer at Tetralin 185°C.

また、全重合体の沸とうn−へブタン不溶分(以下1(
IFと略称する。)は7wt%以上、好ましくは19w
t%以上、さらに好ましくは15wt%以上である。
In addition, the boiling n-hebutane insoluble portion of the entire polymer (hereinafter 1 (
It is abbreviated as IF. ) is 7wt% or more, preferably 19w
It is t% or more, more preferably 15wt% or more.

7wt%未満であるとフィルムにした時に耐ブロッキン
グ性が悪いものしか得られず好ましくない。
If it is less than 7 wt%, only a film with poor blocking resistance will be obtained, which is not preferable.

尚、本発明においてHIFは約IJffXlj[X1f
f程度の細片試料をn−へブタンでクマガワ式抽出器に
よりリフラックス頻度1回75分程度とし6時間抽出を
行い、未抽出弁をめることにより計算でめた。
In the present invention, HIF is approximately IJffXlj[X1f
A sample of about f size was extracted using a Kumagawa type extractor with n-hebutane at a reflux frequency of about 75 minutes once for 6 hours, and the result was determined by calculation by closing the unextracted valve.

また、全重合体の沸とうエーテル可溶分(以下E8Fと
略称する。)は2〜2owtLj15好ましくは4〜1
5wt%である。2wt%未満であると柔軟性が不充分
であり、一方2(1wt515を越えると共重合体の加
工物は表面粘着性があり好ましくない。
In addition, the boiling ether soluble content (hereinafter abbreviated as E8F) of the entire polymer is 2 to 2 owt Lj15, preferably 4 to 1
It is 5wt%. If it is less than 2 wt %, the flexibility will be insufficient, while if it exceeds 2 (1 wt 515), the surface of the copolymer product will become sticky, which is not preferable.

尚、ESPはn−へブタンの代りに エチルエーテルを
使用すること以外はHIPと同様の方法で測定した。可
溶分は溶解部分からエーテルを留出乾固し回収する。沸
とうエーテル不溶分(以下EIPと略称する。)はエー
テルを乾燥除去し回収する。
Note that ESP was measured in the same manner as HIP except that ethyl ether was used instead of n-hebutane. The soluble portion is recovered by distilling the ether from the dissolved portion to dryness. The boiling ether insoluble matter (hereinafter abbreviated as EIP) is recovered by drying and removing the ether.

ESPの重量(Wt)4者%は仕込量とESP又はEI
Pfiによって計算でめる。
ESP weight (Wt) 4% is the amount of preparation and ESP or EI
It can be calculated by Pfi.

さらに本発明において重合体中のEIPの180−NM
fLによる側鎖メチルに基づくシグナルのうちケミカル
シフト19.0〜21.2ppm の範囲のシグナル面
積百分率(以下はA I9〜21/ Aメチルで示す。
Furthermore, in the present invention, 180-NM of EIP in the polymer
Signal area percentage in the chemical shift range of 19.0 to 21.2 ppm among signals based on side chain methyl by fL (hereinafter expressed as AI9 to 21/A methyl).

)は8.0〜80%、好ましくは8.5〜20%、さら
に好ましくは4.0〜18%である。
) is 8.0 to 80%, preferably 8.5 to 20%, more preferably 4.0 to 18%.

80%未満であると柔軟性、透明性が不十分であり、一
方8096を越えると共重合体の透明性の経時変化が大
きくなり好ましくない。
If it is less than 80%, the flexibility and transparency will be insufficient, while if it exceeds 8096, the change in transparency of the copolymer with time will become large, which is not preferable.

さらに本発明において重合体中のESPのlsCNMH
による側鎖メチルに基づくシグナルのうちAI9〜2’
/A メチルは25〜70%、さらに好ましくは40〜
60%である。2596未満であると共重合体の加工物
は表面粘着性があり、 “一方7096を越えると柔軟
性が不充分であり、好ましくない。
Furthermore, in the present invention, lsCNMH of ESP in the polymer
Among the signals based on side chain methyl, AI9-2'
/A methyl is 25-70%, more preferably 40-70%
It is 60%. If it is less than 2,596, the surface of the copolymer product will be sticky; if it exceeds 7,096, the flexibility will be insufficient, which is not preferable.

従来ポリプロピレンホモ重合体についCは+sC−NM
aによってPentadまで帰属されている(A、 Z
ambelli、 etal、 、 Macromol
ecules。
For conventional polypropylene homopolymer, C is +sC-NM
Pentad is attributed by a (A, Z
ambelli, etal, Macromol
ecules.

8 (5) 、 678 (1975))が、プロピレ
ン系共重合体の1110−NMRによるミクロ高次立体
規則性構造は充分解明されCいない。プロピレン系共重
合体の立体規則性(tacticity、 cotac
ticity)についCは通常モノマー連鎖triad
、 tetradなどで解析されている。(A、 Bu
nn 、 eta、j 、。
8 (5), 678 (1975)), but the micro-high order stereoregular structure of propylene copolymers by 1110-NMR has not been fully elucidated. Stereoregularity (tacticity, cotac) of propylene-based copolymers
ticity), C is usually a monomer chain triad
, is analyzed using tetrad, etc. (A, Bu
nn, eta, j,.

PolymOr、17.548(1976))ケミカル
・シフト19.0〜21.2ppmの範囲のシグナルは
主にプロピレンモノマー単位の(mr)と(rr〕に帰
属されるシグナルである。これらのシグナルは立体規則
性の乱れ性を意味しCいる。側鎖メチルに基づくシグナ
ルのうちケミカルシフト19.0〜21.2ppmの範
囲のシグナル面積百分率が大きいほどプロピレンモノマ
ー単位の立体規則性が低い。〔mr〕および〔rr〕の
分率はそれぞれプロピレンモノマー単位が上E(7)よ
うにメソ(m)およびラセ’i、 (r)結合した連鎖
の中心にあるプロピレンモノマー単位の分率である。従
来知られでいるプロピレン系(共)重合体のEIPのA
 19〜21/Aメチルの値は8.096未満であり、
高立体規則性、高結晶性で、柔軟性に乏しい。一方、本
発明によるプロピレン系共重合体のEIPのAI9〜2
7A′チ″の値は8,0〜80%であり、適度の低立体
規則性、低結晶性を有しており、この範囲において柔軟
性、透明性1こ優れ、透明性の経時変化の少ない重合体
となる。
PolymOr, 17.548 (1976)) The signals in the chemical shift range of 19.0 to 21.2 ppm are mainly attributed to (mr) and (rr) of the propylene monomer unit.These signals are due to steric C means disordered regularity.The larger the area percentage of signals in the chemical shift range of 19.0 to 21.2 ppm among the signals based on side chain methyl, the lower the stereoregularity of the propylene monomer unit. [mr] The fractions of [rr] and [rr] are the fractions of the propylene monomer units in the center of the chain in which the propylene monomer units are meso (m) and race'i (r), respectively, as in E(7) above. A of EIP of propylene-based (co)polymer
The value of 19-21/A methyl is less than 8.096,
High stereoregularity, high crystallinity, and poor flexibility. On the other hand, the EIP of the propylene copolymer according to the present invention has an AI of 9 to 2.
The value of 7A'chi'' is 8.0 to 80%, and it has moderately low stereoregularity and low crystallinity, and in this range, it has excellent flexibility and transparency, and the change in transparency over time. It becomes less polymer.

従来のプロピレン系(共)重合体はEIFの結晶性が高
いので、柔軟性をもたせるために、低結晶性重合体又は
低分子量重合体を多量に添加する方法が提案されでいる
が表面粘着性のある加工物しかできない。一方、本発明
のプロピレンランダム共重合体はEIPの結晶性が低い
ので、柔軟性をもたせるのに多量の低結晶性重合体や低
分子量重合体を添加する必要がなく、たとえ〔η〕が0
.5以上の低結晶性重合体を多量に添加しでも表面粘着
性のない、より柔軟な加工物ができる。
Conventional propylene-based (co)polymers have high EIF crystallinity, so a method of adding a large amount of low crystallinity polymer or low molecular weight polymer has been proposed to give flexibility, but surface tackiness Only processed products with certain characteristics can be produced. On the other hand, since the propylene random copolymer of the present invention has low EIP crystallinity, it is not necessary to add a large amount of low crystallinity polymer or low molecular weight polymer to provide flexibility, and even if [η] is 0
.. Even if a large amount of a low crystallinity polymer of 5 or more is added, a more flexible processed product without surface tackiness can be obtained.

本発明の共重合体においてコモノマーとしでは炭素数4
以上のα−オレフィンであり、これを単独または混合し
て共重合させる。炭素数4以上のα−オレフィンとして
はブテン−1,3−メチルブテン−1,ペンテン−1、
ヘキセン−1,4−メチルペンテン−1等が挙げられる
In the copolymer of the present invention, the comonomer has 4 carbon atoms.
The above α-olefins are copolymerized singly or in combination. α-olefins having 4 or more carbon atoms include butene-1,3-methylbutene-1, pentene-1,
Examples include hexene-1,4-methylpentene-1.

共重合体の柔軟性をもたせる効果と後述する気相重合中
で液化しにくい点から、ブテン−1およびヘキセン−1
が好ましい。この中でも特にブテン−1が好ましい。
Butene-1 and hexene-1
is preferred. Among these, butene-1 is particularly preferred.

以下本発明の重合体の製造についC述べる。The production of the polymer of the present invention will be described below.

重合触媒としでは(a)示差熱分析で680°C〜75
0°Cの範囲に融点を示す塩化マグネシウムを含有する
チタン含有・固体触媒成分と(B)有機アルミニウム化
合物成分および(0)電子供与体からなる触媒系が好ま
しい。
As a polymerization catalyst (a) 680°C to 75°C by differential thermal analysis
A catalyst system consisting of a titanium-containing solid catalyst component containing magnesium chloride having a melting point in the range of 0° C., (B) an organoaluminum compound component, and (0) an electron donor is preferred.

具体的には例えば特公昭55−28561号、同58−
46129号、同58−46180号、同58−462
02号公報に記載の触媒が使用できる。
Specifically, for example, Japanese Patent Publication No. 55-28561, No. 58-
No. 46129, No. 58-46180, No. 58-462
The catalyst described in Japanese Patent No. 02 can be used.

触媒系としCは、例えば、(1)四塩化ケイ素とエーテ
ル性有機マグネシウム化合物を反応して得られるマグネ
シウム化合物を不活性炭化水素溶媒で洗浄し、必要なら
乾燥し、ついで炭化水素もしくはハロゲン化炭化水素溶
媒、好ましくはクロルベンゼン中でアリールオキシハロ
ゲン化チタンもしくは四塩化チタンを反応させで不活性
炭化水素溶媒で洗浄しC?11られる固体触媒成分、(
2)トリエチルアルミニウム、トリイソブチルアルミニ
ウム等の有機アルミニウム化合物成分及び(3)安息香
酸メチル、安息香酸Sl’!(ニーブチル、p−アニス
酸メチル、p−アニス酸エチル、オルトギ酸エチル、オ
ルトギ酸メチル、メタクリル酸メチル等のカルボン酸エ
ステルまたはε−カプロラクトン等のラクトン類、メチ
ルトリメトキシシラン、)、ニルトリメトキシシラン、
メチルトリエトキシシラン、エチルトリエトキシシラン
、フェニルトリエトキシシラン、シフ、ニルジメトキシ
シラン、ケイ酸エチル等のゲイ累化合物に代表される電
子供与体(第3成分)からなる触媒が好適に使用できる
The catalyst system C is, for example, (1) a magnesium compound obtained by reacting silicon tetrachloride with an ethereal organomagnesium compound, washed with an inert hydrocarbon solvent, dried if necessary, and then treated with a hydrocarbon or halogenated carbonate. A titanium aryloxyhalide or titanium tetrachloride is reacted in a hydrogen solvent, preferably chlorobenzene, and washed with an inert hydrocarbon solvent. 11 solid catalyst component, (
2) Organoaluminum compound components such as triethylaluminum and triisobutylaluminum, and (3) methyl benzoate and benzoic acid Sl'! (Carboxylic acid esters such as nibutyl, methyl p-anisate, ethyl p-anisate, ethyl orthoformate, methyl orthoformate, methyl methacrylate, or lactones such as ε-caprolactone, methyltrimethoxysilane,), nyltrimethoxy silane,
A catalyst consisting of an electron donor (third component) typified by a gay compound such as methyltriethoxysilane, ethyltriethoxysilane, phenyltriethoxysilane, Schiff, nyldimethoxysilane, and ethyl silicate can be suitably used.

上記触媒の重合系での固体触媒濃度、有機アルミニウム
化合物濃度はそれぞれo、 t −too。
The solid catalyst concentration and organoaluminum compound concentration in the polymerization system of the above catalyst are o and t-too, respectively.

kg / l、0.05〜5010m0I/A’(7)
範囲テ適宜調節できる。また第8成分の使用量は有機ア
ルミニウム化合物[モル当り0.01〜0.8モルの範
囲で目的とする本発明の重合体が得られるよう調節する
。触媒の調製条件、上記成分の種類によって得られる重
合体の構造等は変化するが特に第8成分の種類、使用な
により重合体の極限粘度、立体規則性、分子量分布等を
変えることができるのでこれらを考慮し得られる重合体
が本発明の条件を満たすように調節しC行う。また重合
体の極限粘度調節のため水素を使用しでもよい。重合様
式は気相重合が好ましい。重合条件は温度30〜80°
C1圧力、常圧〜40に9/dGの範囲で選ぶのが工業
的にみ【好ましい。
kg/l, 0.05-5010m0I/A' (7)
The range can be adjusted as appropriate. The amount of the eighth component to be used is adjusted within the range of 0.01 to 0.8 mol per mol of the organoaluminum compound so that the desired polymer of the present invention can be obtained. The structure of the polymer obtained varies depending on the preparation conditions of the catalyst and the types of the above-mentioned components, but in particular the type of the eighth component and its use, especially the intrinsic viscosity, stereoregularity, molecular weight distribution, etc. of the polymer can be changed. Taking these into consideration, the polymer is adjusted so that it satisfies the conditions of the present invention. Hydrogen may also be used to adjust the intrinsic viscosity of the polymer. The preferred polymerization mode is gas phase polymerization. Polymerization conditions are temperature 30-80°
From an industrial standpoint, it is preferable to select the C1 pressure in the range of normal pressure to 9/dG.

重合温度が30°C未満では重合活性が不充分であり、
気相共重合中をこコモノマーの凝縮が起こりやすいので
好ましくない。s o ’c以上であると共重合体粉末
が軟化しで凝集し、固まり状の共重合体が生成し、工業
的に気相共重合することが困難となる。
When the polymerization temperature is less than 30°C, the polymerization activity is insufficient,
This is not preferred because condensation of the comonomer tends to occur during gas phase copolymerization. If it is more than s o 'c, the copolymer powder will soften and coagulate, producing a lump-like copolymer, making it difficult to carry out industrial gas phase copolymerization.

また重合圧力は常圧未満であると重合速度が遅くなり、
一方401q/ci(Jを超えると装置が高価になり不
経済である。
In addition, if the polymerization pressure is less than normal pressure, the polymerization rate will be slow;
On the other hand, if it exceeds 401q/ci (J), the equipment becomes expensive and uneconomical.

また溶液重合、塊状重合の場合は本発明の重合体を得る
には特定の条件で一部のポリマーを抽出除去したり特殊
な方法が必要でありさらに良好な粒子性状のポリマーを
得るのが困難であり、工業的ではない。
In addition, in the case of solution polymerization and bulk polymerization, obtaining the polymer of the present invention requires extraction and removal of a part of the polymer under specific conditions or a special method, and it is difficult to obtain a polymer with good particle properties. and is not industrial.

本発明重合体を気相重合により製造した場合、一部ポリ
マーの抽出等を行う必要もなく、軟質ポリマーにも拘ら
ず、かさ相変の高い、すぐれた粒子性状の軟質プロピレ
ンランダム共重合体が得られる。
When the polymer of the present invention is produced by gas phase polymerization, there is no need to perform extraction of a part of the polymer, and even though it is a soft polymer, a soft propylene random copolymer with high bulk phase change and excellent particle properties can be produced. can get.

流動性のよい粒子状重合体を得ることはパウダー移送、
乾燥、および造粒時のハンドリングが容易となり、工業
的製造においでメリットが大きい。また、流動性の優れ
た粒子状の重合体と各種の添加剤、着色剤の混合が容易
となり、無機フィラーも高充填に配合することもでき品
質の安定した重合体を製造することができる。
Powder transfer is the key to obtaining particulate polymers with good fluidity.
It facilitates handling during drying and granulation, which is of great benefit in industrial manufacturing. In addition, it is easy to mix the particulate polymer with excellent fluidity and various additives and colorants, and it is also possible to incorporate a high amount of inorganic filler, making it possible to produce a polymer with stable quality.

本発明の重合体は上記の理由からかさ密度が0.2’l
fl/m1以上であるものが好ましい。尚、かさ密度は
JIS−に6721に準拠しでめた値である。
For the above reasons, the polymer of the present invention has a bulk density of 0.2'l.
Preferably, it is fl/m1 or more. Incidentally, the bulk density is a value determined in accordance with JIS-6721.

本発明の重合体は上記の重合体が本発明の範囲に入れば
そのままで、また得られた重合体をヘプタン、キシレン
等の溶媒で一部の重合体を適当な温度条件で抽出するこ
とにより本発明の重合体を得ることも可能である。
The polymer of the present invention can be prepared as is if the above-mentioned polymer falls within the scope of the present invention, or by extracting a part of the polymer with a solvent such as heptane or xylene under appropriate temperature conditions. It is also possible to obtain polymers according to the invention.

本発明の重合体は前記したように表面粘着性のない軟質
材料であり、フィルムに加工した時に低温ヒートシール
性と透明性に優れ、しかも耐ブロッキング性に優れる以
外にさらに、それ自体の透明性が優れるばかりでなく、
延伸加工を行なっでも優れた透明性を示し、又熱成形性
が優れるなど数々の特徴を有し、また加工性も良好であ
るので種々の用途、例えば各種フィルム、ヒートシール
性ポリプロピレン積層フィルのシーラント、シュリンク
・フィルム、各種改質材、ヤーン、テープ、発泡体、ブ
ロー成型物、シート、射出成型品、真空成型品の製造に
好適に使用される。
As mentioned above, the polymer of the present invention is a soft material with no surface tackiness, and when processed into a film, it has excellent low-temperature heat sealability and transparency, and has excellent anti-blocking properties. Not only is it excellent;
It has many features such as excellent transparency even after stretching, excellent thermoformability, and good processability, so it can be used in a variety of applications, such as sealants for various films and heat-sealable polypropylene laminated films. , shrink films, various modifiers, yarns, tapes, foams, blow molded products, sheets, injection molded products, and vacuum molded products.

また本発明の目的を損わない範囲で酸化安定剤、光安定
剤、滑剤、アンチブロッキング剤、帯電防止剤、染顔料
、充填剤等の添加剤、着色剤、さらには従来のホモ、ラ
ンダム(エチレン−プロピレン又はエチレンーブロピレ
ンーブテ興り ン等の二元又は三元共重合体)ブロック等のポリプロピ
レン等のポリオレフィンおよび異種ポリマー等を混合し
Cもよい。
In addition, additives such as oxidation stabilizers, light stabilizers, lubricants, anti-blocking agents, antistatic agents, dyes and pigments, fillers, colorants, and conventional homo, random ( C may also be a mixture of polyolefins such as polypropylene (binary or tertiary copolymers such as ethylene-propylene or ethylene-propylene-butene copolymer) blocks, and different polymers.

以本発明を実施例で具体的に説明するが本発明はこれら
に限定されるものではない。
EXAMPLES The present invention will be specifically explained below with reference to Examples, but the present invention is not limited thereto.

実施例1 CB) 担体の合成 攪拌機、滴下ロートおよび温度計を備えた51ガラス製
フラスコを減圧乾燥、窒素置換後、n−ブチルマグネシ
ウムクロリド(n−B uMgcA )のn−ブチルエ
ーテル溶液3 l (n−BuMgClとして6モル含
有)入れ、窒素下で攪拌しながら四塩化ケイ素0.71
(6モル)を80°Cで1時間かけC滴下し自沈を生成
させた。滴下終了後80°Cで1時間、60°Cで1時
間攪拌し、グラスフィルターで生成した白色固体を分離
しn−ヘキサンで充分洗浄後白色固体760fを得た。
Example 1 CB) Synthesis of carrier A 51 glass flask equipped with a stirrer, a dropping funnel, and a thermometer was dried under reduced pressure and replaced with nitrogen, and then 3 liters of a solution of n-butylmagnesium chloride (n-BuMgcA) in n-butyl ether was added (n - Containing 6 mol as BuMgCl), add 0.71 mol of silicon tetrachloride while stirring under nitrogen.
(6 mol) was added dropwise at 80°C over 1 hour to cause scuttling. After completion of the dropwise addition, the mixture was stirred at 80°C for 1 hour and at 60°C for 1 hour, and the white solid produced was separated using a glass filter and thoroughly washed with n-hexane to obtain 760f of white solid.

(b) 固体触媒成分の合成 攪拌機、冷却器、温度計を備えた51ガラス製フラスコ
を減圧乾燥、窒素置換後(a)で得られた担体800f
を入れ、次に四塩化チタン1.51とクロルベンゼン1
.5#を入れ、180°Cで8時間攪拌した。反応終了
後クロルベンゼンおよびn−ヘキサンで充分洗浄し、減
圧乾燥し固体触媒成分275fを得た。この固体触媒成
分11当す52■のチタン原子が担持されていた。この
固体触媒成分&分析装置によって708°CにMgCJ
bの融点を示した。
(b) Synthesis of solid catalyst component A 51 glass flask equipped with a stirrer, a cooler, and a thermometer was dried under reduced pressure and replaced with nitrogen, followed by the carrier 800f obtained in (a).
and then 1.51 of titanium tetrachloride and 1 of chlorobenzene.
.. 5# was added and stirred at 180°C for 8 hours. After the reaction was completed, it was thoroughly washed with chlorobenzene and n-hexane and dried under reduced pressure to obtain solid catalyst component 275f. 52 .mu. of titanium atoms per 11 of this solid catalyst component were supported. MgCJ at 708°C by this solid catalyst component & analyzer
The melting point of b.

(C) プロピレン−ブテン−1の気相共重合触媒投入
器を備えた電磁攪拌機付の内容積601オートクレーブ
に粒径500〜710μmの球状ポリエチレンパウダー
1、00 kgを加え、70 ’02時間減圧乾燥後、
プロピレンを加え常圧にし、水素を0.12Nl添加し
、触媒投入器にn−ペンタン100g+7.)ジイソブ
チルアルミニウム100E9 ミリモル、(b)の固体触媒成分1.65yを加え、プ
ロピレン圧力で触媒をオートクレーブに加え重合を開始
し、プロピレンを補給しつつ、ブテン−1を50fづつ
10分間隔で添加し全圧力5峙/l−111G,温度6
5°Cで2時間共重合した。重合終了後生成した重合物
とシードポリマーの混合物1.66kgを得た。この場
合の触媒活性は200fプロピレン共重合体/f固体/
hrであった。
(C) Gas-phase copolymerization of propylene-butene-1. 1,00 kg of spherical polyethylene powder with a particle size of 500 to 710 μm was added to a 601-volume autoclave equipped with an electromagnetic stirrer equipped with a catalyst injector and dried under reduced pressure for 70'02 hours. rear,
Add propylene to normal pressure, add 0.12Nl of hydrogen, and add 100g of n-pentane + 7.0ml of n-pentane to the catalyst injector. ) Add 9 mmol of diisobutylaluminum and 1.65 y of the solid catalyst component (b), add the catalyst to the autoclave under propylene pressure to start polymerization, and add 50 f of butene-1 at 10 minute intervals while replenishing propylene. Total pressure 5 units/l-111G, temperature 6
Copolymerization was carried out at 5°C for 2 hours. After the polymerization was completed, 1.66 kg of a mixture of the produced polymer and the seed polymer was obtained. In this case, the catalyst activity is 200f propylene copolymer/f solid/
It was hr.

(d) 軟質プロピレン共重合体の物性評価(C)で得
られた混合物をフルイを使用して生成した重合物とシー
ドポリマーに分離した。得られたプロピレン共重合体は
赤外吸収スペクトルによりポリエチレンのないことを確
認した。プロピレン共重合体のかさ密度は0.f371
!/mlであった。得られたプロピレン共重合体の構造
および物性評価結果を第1表に示す。
(d) Evaluation of physical properties of soft propylene copolymer The mixture obtained in (C) was separated into the produced polymer and the seed polymer using a sieve. It was confirmed by infrared absorption spectrum that the obtained propylene copolymer was free of polyethylene. The bulk density of the propylene copolymer is 0. f371
! /ml. Table 1 shows the structure and physical property evaluation results of the obtained propylene copolymer.

(θ) ラミネート加工と延伸処理 (d)で得られた共重合体を、下記の条件で、あらかじ
めシート成形されたホモポリプロピレンの500μ厚み
のシートにラミネート加工した。
(θ) Lamination processing and stretching The copolymer obtained in (d) was laminated onto a 500 μm thick sheet of homopolypropylene that had been previously formed into a sheet under the following conditions.

ラミ加工装置:田辺40ffOラミネータ温 度: 2
90℃ ダ イ:巾700ff、リップ間隔0.5屑冨 吐出量:200f/分 ラミ速度:9.Om/分 ラミ厚み:50μ 次に、ラミネート加工された積層シートがら90角の試
料を採取して、以下の条件で2軸延伸フイルムを得た。
Lamination processing equipment: Tanabe 40ffO laminator Temperature: 2
90°C Die: Width 700ff, lip spacing 0.5 Waste volume discharge: 200f/min Lamination speed: 9. Om/min Lamination thickness: 50μ Next, a 90 square sample was taken from the laminated sheet to obtain a biaxially stretched film under the following conditions.

延伸機:東洋精機製卓上2軸延伸機 温 度: 150℃ 予熱時間:8分 延伸倍率:Mn2倍、TD5倍 延伸速度:5m/分 上記で得た約22μの積層延伸フィルムの物性を第1表
に示す。この積層延伸フィルムは極めてヒートシール温
度が低いのにもがかわらず、透明性、耐ブロッキング性
、耐スクラッチ性の良好なものであった。
Stretching machine: Tabletop biaxial stretching machine manufactured by Toyo Seiki Temperature: 150°C Preheating time: 8 minutes Stretching ratio: 2 times Mn, 5 times TD Stretching speed: 5 m/min The physical properties of the laminated stretched film of about 22μ obtained above were Shown in the table. Although this laminated stretched film had an extremely low heat sealing temperature, it had good transparency, blocking resistance, and scratch resistance.

実施例2 実施例1のプロピレン−ブテン−■の気相共重合におい
てp−アニス酸エチルの代りにフェニルトリエトキシシ
ラン8oミリモルを添加すること以外は実施例1と同様
に重合を行ない、生成した重合物とシードポリマーの混
合物1.92 kgを得た。仁の場合の触媒活性は28
0Fプロピレン共重合体/1固体/hrであった。
Example 2 Polymerization was carried out in the same manner as in Example 1 except that 80 mmol of phenyltriethoxysilane was added in place of ethyl p-anisate in the gas phase copolymerization of propylene-butene-■. 1.92 kg of a mixture of polymer and seed polymer was obtained. The catalytic activity in the case of Jin is 28
0F propylene copolymer/1 solid/hr.

また、プロピレン共重合体のかさ密度は0.40 t 
/1gtであった。評価結果を第1表に示す。
In addition, the bulk density of the propylene copolymer is 0.40 t
/1gt. The evaluation results are shown in Table 1.

実施例8 (a) 担体の電子供与体処理 攪拌機、滴下ロートを備えたllのフラスコをアルゴン
置換した後、実施例1 (a)で合成した固体生成物5
0fを仕込み、n−へブタン500 dを加えてスラリ
ー化した。
Example 8 (a) Electron donor treatment of carrier After purging a 1 liter flask equipped with a stirrer and a dropping funnel with argon, the solid product 5 synthesized in Example 1 (a)
Of was charged, and 500 d of n-hebutane was added to form a slurry.

続いて攪拌下、滴下ロートより、安息香酸エチルaT、
5mlを80分で滴下し、80°Cで1時間反応を行な
った。反応終了後、分離洗浄を行ない減圧乾燥して電子
供与体で処理された担体45Nを得た。
Then, while stirring, from the dropping funnel, ethyl benzoate aT,
5 ml was added dropwise over 80 minutes, and the reaction was carried out at 80°C for 1 hour. After the reaction was completed, the carrier was separated and washed and dried under reduced pressure to obtain a carrier 45N treated with an electron donor.

(b) 固体触媒成分の合成 攪拌機を備えた5 00 mlのフラスコをアルゴン置
換した後、上記(a)で得た電子供与体で処理された担
体259を仕込み、四塩化チタン75slとクロルベン
ゼン75 ml ’を加えてスラリー化し、180°C
で1時間攪拌下反応を行なった。反応終了後、上澄液を
抜き出し、洗浄液中Iこ四塩化チタンが認められなくな
るまでクロルベンゼン及びn−へブタンによる洗浄を繰
り返し、減圧乾燥して固体触媒成分25fを得た。この
固析装置によっC709°Cにpyrgcl、の融点を
示した。
(b) Synthesis of solid catalyst component After purging a 500 ml flask equipped with a stirrer with argon, the carrier 259 treated with the electron donor obtained in (a) above was charged, and 75 sl of titanium tetrachloride and 75 ml of chlorobenzene were added. ml' to make a slurry and heat at 180°C.
The reaction was carried out under stirring for 1 hour. After completion of the reaction, the supernatant liquid was taken out, washed with chlorobenzene and n-hebutane repeatedly until no titanium tetrachloride was observed in the washing liquid, and dried under reduced pressure to obtain solid catalyst component 25f. This solidification device showed the melting point of pyrgcl to be 709°C.

(C) プロピレン−ブテン−1の気相共重合と軟質プ
ロピレン共重合体の物性評価 実施例1のプロピレン−ブテン−1の気相重合においC
P−アニス酸エチルの代りにジフェニルジメトキシシラ
ンIOEリモルを添加すること以外は実施例1と同様に
上記(1〕)の固体触媒成分を使用し【重合を行ない、
生成した重合物とシードポリマーの混合物2.71 k
gを得た。この場合の触媒活性は520fプロピレン共
重合体/f固体/hrであっrこ。まrこ、プロピレン
共重合体のかさ密度は0.889 / yxlであった
(C) Evaluation of gas phase copolymerization of propylene-butene-1 and physical properties of soft propylene copolymer In gas phase polymerization of propylene-butene-1 in Example 1, C
Polymerization was carried out using the solid catalyst component (1) above in the same manner as in Example 1, except that diphenyldimethoxysilane IOE rimole was added instead of ethyl P-anisate.
Mixture of produced polymer and seed polymer 2.71 k
I got g. The catalyst activity in this case was 520 f propylene copolymer/f solids/hr. The bulk density of the propylene copolymer was 0.889/yxl.

評価結果を第1表に示す。The evaluation results are shown in Table 1.

比較例1 CB) 還元固体の製造 攪拌機、滴下ロートおよび温度計を備えた800m1ガ
ラス製フラスコを減圧乾燥、窒素置換後、n−ヘキサン
60ゴ、四塩化チタン15有1を入れ、5℃lこ冷却す
る。ジエチルアルミニウムクロリドのn−ヘキサン溶液
(8g Of/(1−06)62g/を4時間かけT:
5°Cで滴下した。滴下後80分間5°Cで攪拌し、6
5°Cで1時間攪拌した。濾過により固体(以下還元固
体という)を回収し、n−ヘキサンで十分洗浄し、乾燥
した。
Comparative Example 1 CB) Production of reduced solid An 800 ml glass flask equipped with a stirrer, a dropping funnel, and a thermometer was dried under reduced pressure and purged with nitrogen, then 60 g of n-hexane and 15 g of titanium tetrachloride were added, and the flask was heated at 5°C. Cooling. N-hexane solution of diethylaluminium chloride (8g Of/(1-06) 62g/ over 4 hours T:
It was added dropwise at 5°C. After dropping, stir at 5°C for 80 minutes,
Stirred at 5°C for 1 hour. A solid (hereinafter referred to as reduced solid) was collected by filtration, thoroughly washed with n-hexane, and dried.

Φ)還元固体の錯化剤による処理 上記(8)の還元固体の入った8 00 mlガラス製
フラスコにn−ヘキサン1.70 mlとジイソアミル
エーテル26 wrlを順次攪拌下で添加し、35°C
で1時間攪拌した。濾過により得られた処理固体をn−
ヘキサンで十分洗浄し、乾燥した。
Φ) Treatment of the reduced solid with a complexing agent 1.70 ml of n-hexane and 26 wrl of diisoamyl ether were sequentially added to the 800 ml glass flask containing the reduced solid from (8) above under stirring, and the mixture was heated at 35°C. C
The mixture was stirred for 1 hour. The treated solid obtained by filtration was
It was thoroughly washed with hexane and dried.

(C) 処理固体のTiclイとの反応上記(b)の処
理固体の入ったフラスコに四塩化チタンのn−ヘキサン
溶液(TiCg、含Jl: 40 vo196) 85
g+/を添加し、 65°C触媒成分249を得た。
(C) Reaction of the treated solid with TiCl In the flask containing the treated solid of (b) above, a solution of titanium tetrachloride in n-hexane (TiCg, containing Jl: 40 vo196) 85
g+/ was added to obtain 65°C catalyst component 249.

X線回折により得られた固体触媒成分はδ型三塩チタン
の結晶構造を有しでいた。
The solid catalyst component obtained by X-ray diffraction had a δ-type trisalt titanium crystal structure.

@) プロピレン−ブテン−1の気相共重合と軟質プロ
ピレン共重合体の物性評価 実施例1のプロピレン−ブテン−1の気相共重合におい
て、水素を3NIl添加し、p−アニス酸エチルを添加
せずに、トリイソブチルアルミニウムの代りにトリエチ
ルアルミニウム10ミリモルとジエチルアルミニウムク
ロリド90ミリモルを添加し、ブテン−1を80fづつ
10分間隔で添加すること以外は実施例Iと同様に上記
(C)の固体触媒成分を使用しC重合を行ない、生成し
た重合物とシードポリマーの混合物1、46 ktiを
得た。この場合の触媒活性は1401プロピレン共重合
体/f固体/hrであった。
@) Gas-phase copolymerization of propylene-butene-1 and physical property evaluation of soft propylene copolymer In the gas-phase copolymerization of propylene-butene-1 in Example 1, 3 NIl of hydrogen was added and ethyl p-anisate was added. The same procedure as in Example I was repeated except that 10 mmol of triethylaluminum and 90 mmol of diethylaluminium chloride were added instead of triisobutylaluminum, and 80f of butene-1 was added at 10 minute intervals. C polymerization was carried out using a solid catalyst component, and a mixture of the produced polymer and a seed polymer was obtained in the amount of 1.46 kti. The catalyst activity in this case was 1401 propylene copolymer/f solids/hr.

また、プロピレン共重合体のかさ密度は0.89f/*
tであった。
In addition, the bulk density of the propylene copolymer is 0.89f/*
It was t.

評価結果を第1表に示す。The evaluation results are shown in Table 1.

比較例2 (&) マグネシウム担持触媒によるプロピレンーブテ
ンートバルク共重合 触媒投入器を備えた菫磁攪拌機付の内容横104オート
クレーブを70’C,2時間減圧乾燥後、液化プロピレ
ンL50に9と液化ブテン−1t、ookgとトリエチ
ルアルミニウム25ミリモルを加え、触媒投入器にn−
ヘキサン100 ml トリエチルアルミニウム5ミリ
モル、実施例1の固体触媒成分40ダを加え、温度70
 ”C、圧力的24に9/14Gで1時間共重合しrこ
。ブタノールLOs+tを添加し、未反応モノマーをパ
ージ後、プロピレン共重合体290fを得た。
Comparative Example 2 (&) After drying under reduced pressure at 70'C for 2 hours in a horizontal 104 autoclave equipped with a violet magnetic stirrer and equipped with a catalyst charging device for propylene-butentate bulk copolymerization using a magnesium-supported catalyst, liquefied propylene L50 was mixed with 9. Add 1 t of liquefied butene, ookg and 25 mmol of triethylaluminum, and add n-
Add 100 ml of hexane, 5 mmol of triethylaluminum, and 40 da of the solid catalyst component of Example 1, and heat to 70 ml of hexane.
Copolymerization was carried out at 9/14G for 1 hour at a pressure of 24C. Butanol LOs+t was added and after purging unreacted monomers, a propylene copolymer 290f was obtained.

得られるプロピレン共重合体は全体が塊状となり、未反
応モノマーパージの際攪拌機が停止した。この場合の触
媒活性は7200fプロピレン共重合体/V固体/hr
 であった。
The resulting propylene copolymer was entirely lumpy, and the stirrer was stopped during purging of unreacted monomers. The catalyst activity in this case is 7200f propylene copolymer/V solids/hr
Met.

評価結果を第1表に示す。The evaluation results are shown in Table 1.

ml ヒートシール温度 フィルムのラミネート面どうしをヒートシーラーを用い
て所定の温度で2 kg / dGの荷重をかけ2秒間
圧着しC得た巾25jElの試料を剥離速度200WI
/分、剥離角度180゜で剥離を行なって得た剥離抵抗
力が3001/25闘のときの温度をヒートシール温度
とした。
ml Heat sealing temperature The laminated surfaces of the film were pressed together using a heat sealer at a predetermined temperature for 2 seconds under a load of 2 kg/dG, and a sample with a width of 25 JEL was peeled off at a peeling speed of 200 WI.
The heat-sealing temperature was defined as the temperature at which the peeling resistance obtained by peeling at a peel angle of 180° was 3001/25 mm.

*2 ブロッキング 500 y/l 2cdの荷重下で60°C,a時間処
理してブロッキングさせた試片をせん断剥離する時の最
大荷重(kg)をめ、kq/12d単位で表示する。
*2 Blocking: Calculate the maximum load (kg) when shearing and peeling a blocked specimen by treating it at 60°C for a hour under a load of 500 y/l 2 cd, and express it in units of kq/12 d.

*8 曲げ弾性率: JIS−に6758(K720B
)に準拠 *4 ベイズ: A8TM−D1003に準拠*5 1
20°Cでも剥離抵抗力が30(1/25n以下であっ
た。
*8 Flexural modulus: JIS-6758 (K720B
) Based on *4 Bayesian: Based on A8TM-D1003 *5 1
Even at 20°C, the peel resistance was 30 (1/25n or less).

実施例4 (a) 三塩化チタン含有固体生成物の合成攪拌機、滴
下ロートを備えた1 00 ytlのフラスコをアルゴ
ン置換したのち、トルエン4(ls+J、ジエチルアル
ミニウムクロライド1.7 ml (18,6mmo/
)とn−ブチルエーテル4.6 ml (27,2mm
on)を仕込み、この溶液を一1O°Cに保持した。次
に四塩化チタン8.0 ml (27,2mmol) 
とトルエン6 mlを滴下ロートに仕込んだ。
Example 4 (a) Synthesis of solid product containing titanium trichloride A 100 ytl flask equipped with a stirrer and a dropping funnel was purged with argon, and then toluene 4 (ls+J, 1.7 ml (18.6 mmo/
) and n-butyl ether 4.6 ml (27.2 mm
on) and the solution was maintained at -10°C. Next, titanium tetrachloride 8.0 ml (27.2 mmol)
and 6 ml of toluene were charged into the dropping funnel.

ジエチルアルミニウムクロライドとジ−ロープチルエー
テルの混合溶液に四塩化チタン溶液を徐々に添加した。
A titanium tetrachloride solution was gradually added to a mixed solution of diethylaluminum chloride and di-rope tyl ether.

添加終了後、さらに室温で30分間反応を継続して、液
状の三塩化チタンのエーテル錯体溶液を調製した。次に
、この溶液中に実施例1(a)で調製した担体7yを添
加し、室温で30分間、too’cで1時間加熱、析出
処理を行なった。分離、洗浄を行ない減圧乾燥しで三塩
化チタン含有固体生成物10Fを得た。
After the addition was completed, the reaction was further continued for 30 minutes at room temperature to prepare a liquid titanium trichloride ether complex solution. Next, the carrier 7y prepared in Example 1(a) was added to this solution, and a precipitation treatment was performed by heating at room temperature for 30 minutes and at too'c for 1 hour. Separation, washing, and drying under reduced pressure yielded titanium trichloride-containing solid product 10F.

この三塩化チタン含有固体生成物11当り12011f
のチタン原子が含有されCいrコ。
12011f per 11 of this titanium trichloride-containing solid product
Contains titanium atoms of Cr.

(b) 担体付触媒の合成 攪拌機を備えた1 00 mlのフラスコをアルゴン置
換しrこのち、上記(&)で合成した三塩化チタン含有
固体生成物10Fと四塩化チタン50 mlをフラスコ
に仕込み、100°Cで1時間反応を行なった。
(b) Synthesis of supported catalyst A 100 ml flask equipped with a stirrer was replaced with argon, and then the titanium trichloride-containing solid product 10F synthesized in (&) above and 50 ml of titanium tetrachloride were charged into the flask. , the reaction was carried out at 100°C for 1 hour.

反応終了後、n−へブタンで洗浄し、洗液をこ四塩化チ
タンが認められなくなるまで洗浄をくり返した。減圧乾
燥して担体付触媒8fを得た。この固体触媒成分If当
り135Wのチタン原子が担持されでいた。
After the reaction was completed, the reaction mixture was washed with n-hebutane, and washing was repeated until titanium tetrachloride was no longer detected in the washing solution. It was dried under reduced pressure to obtain a supported catalyst 8f. 135 W of titanium atoms were supported per solid catalyst component If.

っr 709 ’CにMgCToの融点を示した。The melting point of MgCTo is shown at 709'C.

(C) プロピレン−ブテン−1の気相共重合と軟質プ
ロピレン共重合体の物性評価実施例1のプロピレン−ブ
テン−1の気相共重合においで水素を添加しないことp
−アニヌ酸エチルの代りにジフェニルジメトキシシラン
lOtリモルを添加することと、ブテン−1を20yづ
つ10分間隔で添加すること以外は実施例1と同様に上
記(b)の固体触媒成分を使用して重合を行ない、生成
した重合物とシードポリマーの混合物2.81像を得た
。この場合の触媒活性は550fプロピレン共重合体/
f固体/hrであった。また、プロピレン共重合体のか
さ密度は0.849/耐であった。
(C) Gas-phase copolymerization of propylene-butene-1 and physical property evaluation of soft propylene copolymer Do not add hydrogen in the gas-phase copolymerization of propylene-butene-1 in Example 1 p
- The solid catalyst component (b) above was used in the same manner as in Example 1, except that 10 mol of diphenyldimethoxysilane was added instead of ethyl aninuate, and 20y of butene-1 was added at 10 minute intervals. Polymerization was carried out using the same method, and 2.81 images of a mixture of the produced polymer and the seed polymer were obtained. In this case, the catalyst activity is 550f propylene copolymer/
f solids/hr. Moreover, the bulk density of the propylene copolymer was 0.849/proof.

軟質プロピレンランダム共重合体のブテン−1含量は5
 mo1515、〔η〕は8.1 dl/ f。
The butene-1 content of the soft propylene random copolymer is 5
mo1515, [η] is 8.1 dl/f.

HIPは85 wt%、ESFは7wt%、HIPの(
A l9−2yAメチル)は4.2515、ESFの(
Al1−217ムメチル)は47%であり、この重合体
シ実施例5 (a) 担体の合成 実施例1(a)の担体の合成において四塩化ゲイ素の代
りにジエチルアルミニウムクロ’) F(Dヘキサンf
lJ液1.511 (EtzAeC#としC6m0e含
有)とすること、以外は実施例1 (a)と同様にして
白色固体820fを得た。
HIP was 85 wt%, ESF was 7 wt%, HIP (
A 19-2yA methyl) is 4.2515, ESF's (
In the synthesis of the support of Example 1(a), diethylaluminum chloro') F(D hexane f
A white solid 820f was obtained in the same manner as in Example 1 (a), except that 1J liquid 1.511 (contains EtzAeC# and C6m0e) was used.

(b) 電子供与体の処理 攪拌機、滴下ロートを備えた2 00 wlのガラス製
フラスコを窒素置換した後、上記(1k)で合成した固
体生成物lOyを仕込みn−へブタン100 mlを加
えCスラリー化しtコ。続いて、陳拌下、滴下ロートよ
り安息香酸エチル7、5 mlを15分で滴下し30゛
Cで1時間反応を行なった。反応終了後分離洗浄を行な
い減圧乾燥しC担体lOgを得た。
(b) Treatment of electron donor After purging a 200 wl glass flask equipped with a stirrer and a dropping funnel with nitrogen, the solid product lOy synthesized in (1k) above was charged, 100 ml of n-hebutane was added, and the mixture was heated with C. Make it into slurry. Subsequently, while stirring, 7.5 ml of ethyl benzoate was added dropwise from the dropping funnel over 15 minutes, and the reaction was carried out at 30°C for 1 hour. After the reaction was completed, the product was separated and washed and dried under reduced pressure to obtain lOg of C carrier.

(C) 四塩化チタンの担持 攪拌機を備えた10(Ig/のフラスコを窒素で置換し
た後、上記(b)で得た電子供与体処理担体5ダを仕込
み、四塩化チタン30yrlを加えでスラリー化し、1
00″Cで1時間攪拌下反応を行なった。反応終了後、
上澄液を除去し、洗浄液中に四塩化チタンが認められな
くなるまでn−へブタンによる洗浄を繰り返し、減圧乾
燥しC固体触媒5fを得た。この固体触媒成分ly当す
40にMg(4の融点を示した。
(C) After purging a 10 (Ig/ml) flask equipped with a titanium tetrachloride support stirrer with nitrogen, 5 da of the electron donor-treated carrier obtained in (b) above was charged, and 30 yr of titanium tetrachloride was added to make a slurry. 1
The reaction was carried out at 00"C for 1 hour with stirring. After the reaction was completed,
The supernatant liquid was removed, and washing with n-hebutane was repeated until titanium tetrachloride was no longer observed in the washing liquid, followed by drying under reduced pressure to obtain C solid catalyst 5f. This solid catalyst component had a melting point of 40 to 40 Mg (4).

(d) プロピレン・ヘキセン−1の気相共重合実施例
1 (C)において水素を添加せずにブテン−1の代り
に、ヘキセン−1を301づつ10分間隔で添加するこ
と以外は実施例1(C)と同様にしC共重合した。重合
終了後生成した重合物とシー ドポリマーの混合物1.
46&9を得た。この場合の触媒活性は140f/プロ
ピレン共重合体/f固体/hrであった。
(d) Gas phase copolymerization of propylene/hexene-1 Example 1 Example except that in (C), 301 portions of hexene-1 were added at 10 minute intervals in place of butene-1 without adding hydrogen. C copolymerization was carried out in the same manner as 1(C). Mixture of polymerized product and seed polymer produced after completion of polymerization 1.
I got 46&9. The catalyst activity in this case was 140 f/propylene copolymer/f solids/hr.

(e) 軟質プロピレン共重合体の物性評価(d)で得
られた混合物をフルイを使用して生成した重合物とシー
ドポリマーに分離した。得られたプロピレン共重合体は
赤外吸収スペクトルによりポリエチレンのないことを確
認した。プロピレン共重合体のかさ密度は0.82f/
gtであった。得られたプロピレン共重合体の構造およ
び物性評価は下記の通りであった。
(e) Evaluation of physical properties of soft propylene copolymer The mixture obtained in (d) was separated into the produced polymer and the seed polymer using a sieve. It was confirmed by infrared absorption spectrum that the obtained propylene copolymer was free of polyethylene. The bulk density of propylene copolymer is 0.82f/
It was gt. The structure and physical properties of the obtained propylene copolymer were as follows.

ヘキセン含量: 7 mo1%、 (77:) : 1
.95dll fHIP:55% 、ESrニア% EIPの(Al1−21 /Aメチル):5.2%。
Hexene content: 7 mo1%, (77:): 1
.. 95dll fHIP: 55%, ESrnear% EIP (Al1-21/A methyl): 5.2%.

EBPの(A l9−21/Aメチル)=48%曲げ弾
性率を測定したところ8100 kV/dであった。シ
ートは透明性が良かった。
The (Al9-21/A methyl)=48% flexural modulus of EBP was measured and found to be 8100 kV/d. The sheet had good transparency.

実施例6 実施例1のプロピレン−ブテン−1の気相共重合におい
C水素を添加せずにブテン−1の代りにブテン−1とヘ
キセン−1の重量比1/1の混合物209づつ10分間
隔で添加すること以外は実施例1と同様に重合を行ない
、生成した重合物とシードポリマーの混合物2.15 
kgを得た。この場合の触媒活性は350yプロピレン
共重合体/g固体/hrであった。また、プロピレン共
重合体のかさ密度は0.3’19/mlであった。得ら
れたプロピレン共重合体の構造および物性評価は下記の
通りであった。
Example 6 In the gas phase copolymerization of propylene-butene-1 in Example 1, a mixture of butene-1 and hexene-1 at a weight ratio of 1/1 was used in place of butene-1 without adding C hydrogen for 10 minutes each. Polymerization was carried out in the same manner as in Example 1 except for adding at intervals, and a mixture of the produced polymer and seed polymer 2.15
I got kg. The catalyst activity in this case was 350y propylene copolymer/g solids/hr. Moreover, the bulk density of the propylene copolymer was 0.3'19/ml. The structure and physical properties of the obtained propylene copolymer were as follows.

ブテン−1含量:4mo196. ヘキセン−1含凰:
2mo196、 (η):2.75d?/f 。
Butene-1 content: 4mo196. Contains hexene-1:
2mo196, (η): 2.75d? /f.

HIP :5Qwj% p EBP : 6wt!Qf
EIPの(へ19−21/Aメチル):5.1% 。
HIP: 5Qwj% p EBP: 6wt! Qf
EIP (19-21/A methyl): 5.1%.

EaFの(A 19−21/Aメチル):4696曲げ
弾性率を測定したところ4500&g/dであった。シ
ートは透明性が良好であった。
The (A 19-21/A methyl):4696 flexural modulus of EaF was measured and found to be 4500&g/d. The sheet had good transparency.

Claims (1)

【特許請求の範囲】 プロピレンと炭素数4以上のα−オレフィンのランダム
共重合体であって、 (1ン 炭素数4以上のα−オレフィンの含量が8〜2
5moI1%、 (2)極限粘度「η」が0.8〜l Odl/9の)沸
とうn−へブタン不溶分が7 wt%以上(4) l!
IIとうエーテル可溶分が2−20Wt96(5) 沸
とうエーテル不溶分の180−NMRによる側鎖メチル
に基づくシグナルのうちケミカルシフト19.0〜21
.2 ppmの範囲のシグナル面積の百分率が3.0〜
8096、および(6)沸とうエーテル可溶分の180
−NMRによる側鎖メチルに基づくシグナルのうちケミ
カルシフト19.0〜21.2 ppmの範囲のシグナ
ル面積百分率が25〜70y)であることを特徴とする
軟質プロピレンランダム共重合体。
[Scope of Claims] A random copolymer of propylene and an α-olefin having 4 or more carbon atoms, wherein the content of α-olefin having 4 or more carbon atoms is 8 to 2
5 moI 1%, (2) Intrinsic viscosity "η" is 0.8 to 1 Odl/9) Boiling n-hebutane insoluble content is 7 wt% or more (4) 1!
II, the ether-soluble fraction is 2-20Wt96 (5), and the chemical shift of the signal based on side chain methyl by 180-NMR of the boiling ether-insoluble fraction is 19.0-21.
.. The percentage of signal area in the range of 2 ppm is from 3.0 to
8096, and (6) boiling ether soluble fraction 180
- A soft propylene random copolymer characterized in that the area percentage of signals in the chemical shift range of 19.0 to 21.2 ppm among signals based on side chain methyl by NMR is 25 to 70y).
JP9164584A 1984-05-07 1984-05-07 Flexible propylene random copolymer Pending JPS60235812A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9164584A JPS60235812A (en) 1984-05-07 1984-05-07 Flexible propylene random copolymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9164584A JPS60235812A (en) 1984-05-07 1984-05-07 Flexible propylene random copolymer

Publications (1)

Publication Number Publication Date
JPS60235812A true JPS60235812A (en) 1985-11-22

Family

ID=14032254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9164584A Pending JPS60235812A (en) 1984-05-07 1984-05-07 Flexible propylene random copolymer

Country Status (1)

Country Link
JP (1) JPS60235812A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006002778A1 (en) * 2004-06-25 2006-01-12 Basell Poliolefine Italia S.R.L. PIPE SYSTEMS MADE FROM RANDOM COPOLYMERS OF PROPYLENE AND α-OLEFINS
KR101167876B1 (en) 2004-06-25 2012-07-23 바셀 폴리올레핀 이탈리아 에스.알.엘 PIPE SYSTEMS MADE FROM RANDOM COPOLYMERS OF PROPYLENE AND a-OLEFINS

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006002778A1 (en) * 2004-06-25 2006-01-12 Basell Poliolefine Italia S.R.L. PIPE SYSTEMS MADE FROM RANDOM COPOLYMERS OF PROPYLENE AND α-OLEFINS
US8017206B2 (en) 2004-06-25 2011-09-13 Basell Poliolefine Italia S.R.L. Pipe systems made from random copolymers of propylene and α-olefins
KR101167876B1 (en) 2004-06-25 2012-07-23 바셀 폴리올레핀 이탈리아 에스.알.엘 PIPE SYSTEMS MADE FROM RANDOM COPOLYMERS OF PROPYLENE AND a-OLEFINS

Similar Documents

Publication Publication Date Title
KR910008846B1 (en) Laminated poly propylene film
EP0126640B1 (en) Polypropylene composite stretched films
JPS60139731A (en) Crystalline polypropylene composition
JPH0433619B2 (en)
EP0679686B1 (en) Polypropylene composition for laminated and oriented film and laminated and oriented film thereof
EP0719829B1 (en) Polypropylene composition and laminated and oriented film therefrom
US4433110A (en) Process for producing propylene block copolymers
US6117946A (en) Propylene block copolymer
JP3228106B2 (en) Polypropylene composition for laminated stretched film and laminated stretched film
JPH07371B2 (en) Polypropylene laminated film
US6106938A (en) Polypropylene composition and laminated and oriented film therefrom
JPH0673132A (en) Polypropylene random copolymer and film therefrom
JP3175526B2 (en) Polypropylene composition for laminated stretched film and laminated stretched film
JPS61213244A (en) Packaging film
JPS60235812A (en) Flexible propylene random copolymer
JP2923026B2 (en) Butene-1 copolymer and resin composition containing the same
JPH0527546B2 (en)
JP3141705B2 (en) Propylene random copolymer composition
JP2533321B2 (en) Polypropylene laminated film
JP3235055B2 (en) Multilayer film of propylene-based random copolymer
US4291140A (en) Novel propylene copolymers
JP2010053341A (en) Polypropylene based resin composition, and film comprising it
JPH0481507B2 (en)
JPH01272612A (en) Production of propylene copolymer composition
JP2010053342A (en) Polypropylene based resin composition, and film comprising it