JPS60234380A - Substrate for solar cell - Google Patents

Substrate for solar cell

Info

Publication number
JPS60234380A
JPS60234380A JP59089510A JP8951084A JPS60234380A JP S60234380 A JPS60234380 A JP S60234380A JP 59089510 A JP59089510 A JP 59089510A JP 8951084 A JP8951084 A JP 8951084A JP S60234380 A JPS60234380 A JP S60234380A
Authority
JP
Japan
Prior art keywords
thickness
stainless steel
plating
substrate
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59089510A
Other languages
Japanese (ja)
Inventor
Kazuhiko Fukamachi
一彦 深町
Hiroshi Hida
飛田 寛
Susumu Kawauchi
川内 進
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP59089510A priority Critical patent/JPS60234380A/en
Publication of JPS60234380A publication Critical patent/JPS60234380A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03921Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To obtain the superior adhesion and electrical connectability of amorphous Si by a method wherein a coated layer of Au, Ag, Pd, Rh, Pt or In, each having a specified thickness, or an alloy of one and the other one of these metals is provided on a stainless steel substrate. CONSTITUTION:An alkaline degreasing and an electrolytic degreasing, and moreover, a pretreatment needed for electroplating, such as an activating treatment according to acid, are performed on a stainless steel substrate with its surface being adjusted in the desired surface configuration by cold rolling, machine polishing or electrolytic composite polishing and so forth. After that, Au, Ag, Pd, Rh, Pt or In, or an alloy of one and the other one of these metals is electroplated in the thickness of 0.05mum or less. When the thickness is thicker more than 0.05mum, the eutectoid of impurities of hydrogen, an additive, salts, water and so forth generates and the sound formation of a layer of amorphous Si is impaired. When the thickness is the plating thickness of 0.05mum or less, the accumulation of the impurities is small, the release of gas at the time of the temperature rise of the substrate is also small, as the layer itself is remarkably thin, and no defect generates. The plating thickness in practical use is desirably 0.005 mum-0.01mum.

Description

【発明の詳細な説明】 「目的」 この発明は、太陽電池、特にアモルファスシリコン型の
太陽電池用基板に関する。
DETAILED DESCRIPTION OF THE INVENTION OBJECT This invention relates to a solar cell, particularly a substrate for an amorphous silicon type solar cell.

「従来の技術」 アモルファスシリコン(以下a−131と記載する)太
陽電池は基板上に厚さ1μm程度のa−8iを被覆して
太陽電池に構成するため、その基板は電池の性能とコス
トの両面に大きな影響を4見る。
``Prior art'' Amorphous silicon (hereinafter referred to as A-131) solar cells are constructed by coating A-8I with a thickness of about 1 μm on a substrate, so the substrate is a material that reduces the performance and cost of the cell. I see a big impact on both sides.

そこで太陽電池の基板材料の要件として(1) 物理的
、化学的に安定で耐食性2強度。
Therefore, the requirements for solar cell substrate materials are (1) Physically and chemically stable, corrosion resistant 2 strength.

耐熱性、耐久性などに優れている。It has excellent heat resistance and durability.

(2) a−8iとの密着性がよく、電気的忙低抵抗接
触(オーム性抵抗を示し接触抵抗を示さない)が得られ
ること。
(2) It has good adhesion with a-8i and provides low electrical resistance contact (exhibits ohmic resistance and no contact resistance).

(3) 優れた性能のa−8i膜を得るのに必要な基板
表面を有している8 (4) 実用化が容易でしかも低コスト化が図れる。
(3) It has a substrate surface necessary to obtain an a-8i film with excellent performance.8 (4) It is easy to put into practical use and can be made at low cost.

などがあげられる。etc. can be mentioned.

一般に太陽電池用基板材料として金属基板(ステンレス
、アルマイト等)、ガラス基板。
Metal substrates (stainless steel, alumite, etc.) and glass substrates are generally used as substrate materials for solar cells.

セラミック基板及び高分子基板(ポリイミド等)などが
考えられるが、上記のような性能が必要とされることか
ら、ステンレスが多く使用される傾向にある。
Ceramic substrates and polymer substrates (polyimide, etc.) are conceivable, but since the above-mentioned performance is required, stainless steel tends to be used more often.

ステンレスは耐食性の極めて高い金属材料であシ、これ
は特殊な不働態化皮膜が表面に存在するためであること
は良く知られている。ステンレスの表面に形成されてい
る不働態化皮膜は単純な金属酸化物ではなく、クロムと
鉄の合金によってできたガラスの性質に近い非晶質の皮
膜であシ、シかもこの皮膜は50X〜50Aという極め
て薄い特殊な皮膜である8この皮膜がステンレス独特の
防錆効果をもたらすのであるが、その反面a−Eli太
陽電池には有害でおる。
Stainless steel is a metal material with extremely high corrosion resistance, and it is well known that this is due to the presence of a special passivation film on its surface. The passivation film formed on the surface of stainless steel is not a simple metal oxide, but an amorphous film made of an alloy of chromium and iron that has properties similar to glass. This film, which is an extremely thin special film of 50A, provides a rust prevention effect unique to stainless steel, but on the other hand, it is harmful to a-Eli solar cells.

すなわち、この不働態化皮膜は、酸液によって除去して
も水中或いは空気中で再びステンレス表面に形成される
ため、不働態化皮膜が残っているステンレス表面にa−
8iを形成することになる。その結果、ステンレスとa
−8iの間に集中抵抗及び境界抵抗による電力損失が生
じ、甚しい場合には密着不良となる。
That is, even if this passivation film is removed with an acid solution, it will be re-formed on the stainless steel surface in water or in the air, so the a-
8i will be formed. As a result, stainless steel and a
-8i, power loss occurs due to concentrated resistance and boundary resistance, and in severe cases, poor adhesion occurs.

と 以上のことから、従来好木されてきたステンレス基板も
a−8iとの電気的な接続性の点で必ずしも満足のいく
ものではなかった。
From the above, the stainless steel substrates that have been used in the past have not always been satisfactory in terms of electrical connectivity with the A-8I.

「構 成」 本発明゛は2以上のようなステンレス基板の欠点を克服
すべく模索研究の結果なされたものであり、厚さ0.0
5.um以下のAu、Ag、Pd、Rh、Pt、In又
はこれらの合金の被覆層を備えたステンレス製太陽電池
用基板を提供する。
"Structure" The present invention was made as a result of exploratory research to overcome the two or more drawbacks of stainless steel substrates, and has a thickness of 0.0.
5. Provided is a stainless steel solar cell substrate having a coating layer of Au, Ag, Pd, Rh, Pt, In, or an alloy thereof having a thickness of 100 um or less.

このような被覆層を備えたステンレス基板の太陽電池へ
の適用を考えるに、一般に電気めっき等によ多形成され
た金属層には水素、添加剤。
When considering the application of a stainless steel substrate with such a coating layer to a solar cell, hydrogen and additives are generally added to the metal layer formed by electroplating or the like.

塩類、水あるいはめつき液中の懸濁物等が共析するので
、熱がかかるとこの共析物がめつき層から放散しようと
する。
Salts, water, or suspended matter in the plating solution eutectoid, and when heat is applied, this eutectoid tends to diffuse from the plating layer.

ところがa−8iの形成時には基板が250℃〜650
℃に昇温し雰囲気も低圧々ので、前記のような共析物か
らのガスの放出が起り、それに伴ってめっき膜のふくれ
や微小孔が生じ必然的にa−8i層の性能に悪影響を与
えると考えるのが普通である。
However, when forming a-8i, the temperature of the substrate was 250°C to 650°C.
As the temperature rises to ℃ and the atmosphere is at low pressure, gas is released from the eutectoid as described above, which causes blistering and micropores in the plating film, which inevitably has a negative impact on the performance of the a-8i layer. It is common to think of it as giving.

しかしながら1本発明においてはこのような常識を打破
し、0.05μm以下の被覆層を設けることによシ、共
析物からのガスの放出を押えて欠陥の発生を抑制し、し
かもステンレス表面の不動体化皮膜による電気的接続の
障害を防止することができる優れた基板を見出した。
However, in the present invention, we break through this common sense and provide a coating layer with a thickness of 0.05 μm or less, thereby suppressing the release of gas from the eutectoid and suppressing the occurrence of defects. We have discovered an excellent substrate that can prevent failure of electrical connections due to a passivation film.

ステンレス鋼板には、各種のものが製造販売されてお9
9オーステナイト系、フェライト系。
There are 9 different types of stainless steel plates manufactured and sold.
9 Austenitic, ferritic.

マルテンサイト系、析出硬化系に分類されている。現在
a−Eli太陽電池用ステンレス基板には。
It is classified into martensitic type and precipitation hardening type. Currently, stainless steel substrates for a-Eli solar cells are used.

オーステナイト系の5US304が比較的一般に用いら
れているが、目的と用途によりフェライト系、マルテン
サイト系、析出硬化系ステンレス鋼板から選択して、太
陽電池用基板として使用できる。
Although austenitic 5US304 is relatively commonly used, it can be selected from ferritic, martensitic, and precipitation hardened stainless steel sheets depending on the purpose and application and used as a solar cell substrate.

基板用のステンレス鋼は表面粗さが小さくかつ均一でお
ること、さらにビットやスクラッチなどの微細欠陥が極
力少ないことが必要ゴあるため、冷間圧延2機械研摩あ
るいは電解複合研摩等によシ表面を調整して使用する。
Stainless steel for substrates must have a small and uniform surface roughness, and must have as few microscopic defects as bits and scratches as possible. Adjust and use.

こうして所望の表面性状に調整されたステンレス鋼にア
ルカリ脱脂、電解脱脂、さらに酸による活性化処理等の
電気めっきに必要々前処理を行う。ステンレス鋼への電
気めっきの前処理については公知でおり1本発明におい
ては特に制限されない。
The stainless steel thus adjusted to have the desired surface properties is subjected to necessary pretreatments for electroplating, such as alkaline degreasing, electrolytic degreasing, and activation treatment with acid. Pretreatment for electroplating stainless steel is well known and is not particularly limited in the present invention.

この後、ステンレス鋼はAu、Ag 、Pd、Rh、P
t、In又はこれらの合金を005μm以下の厚さに電
気めっきする8 Q、05μmよりも厚いと水素、添加剤、塩類。
After this, the stainless steel is Au, Ag, Pd, Rh, P
Electroplating T, In or their alloys to a thickness of 0.05 μm or less. 8 Q. If thicker than 0.5 μm, hydrogen, additives, salts.

水等の不純物の共析が起り健全なa−8iの形成が阻害
される。
Co-deposition of impurities such as water occurs and formation of healthy a-8i is inhibited.

0.05μm以下のめつき厚であると不純物の蓄積も少
なく2層自体著しく薄いため基板の昇温時にガスの放出
が少なく、欠陥が発生しない。
When the plating thickness is 0.05 .mu.m or less, there is little accumulation of impurities and the two layers themselves are extremely thin, so less gas is released when the substrate is heated, and no defects occur.

実用上のめつき厚として好ましくはfl、005μm〜
0.01μmである。これ以下であると皮膜が著しく不
均一で多孔質であるため不働態膜に覆われる部分が多く
なり太陽電池用基板としての効果を発揮しない。
Practical plating thickness is preferably fl, 005 μm ~
It is 0.01 μm. If it is less than this, the film will be extremely non-uniform and porous, so that a large portion will be covered with the passive film and will not be effective as a solar cell substrate.

めっき条件に特に制限がなく、いずれも公知のめつき浴
を用いて実施できる。
There are no particular restrictions on the plating conditions, and any known plating bath can be used.

例えば、Au及びAgけシアン浴、中性浴。For example, Au and Ag cyanide baths, neutral baths.

酸性浴等、Paは塩化パラジウム浴等、Rhはりん酸ロ
ジウム浴、硫酸ロジウム浴等、ptは塩化白金浴等、I
nは硫醍浴、シアン浴、ホウフッ化浴等を用いてめっき
を行う。
Acidic bath etc., Pa is palladium chloride bath etc., Rh is rhodium phosphate bath, rhodium sulfate bath etc., pt is platinum chloride bath etc.
Plating is performed using a sulfur bath, a cyanide bath, a borofluoride bath, or the like.

必要めっき厚が極めて薄いため、無光沢浴でもa−8i
形成に支障をきたす程に表面が荒れることはない、また
光沢剤を添加しても共析による害もない。
Since the required plating thickness is extremely thin, even a matte bath can achieve a-8i.
The surface will not become rough enough to interfere with formation, and even if a brightening agent is added, there will be no harm caused by eutectoid.

尚、ステンレス鋼にめっきする場合は、密着性を向上さ
せるためN1等のストライクめっきを予め施すこともで
きる。このようなN1等のストライクめっきも本発明に
包含されている。
When plating stainless steel, strike plating such as N1 may be applied in advance to improve adhesion. Strike plating such as N1 is also included in the present invention.

ただし、Ni等のストライクめっきを施す場合も前述の
理由により、その上のAu 、A[!; 、 P(1、
Rh 。
However, when applying strike plating such as Ni, Au, A [! ; , P(1,
Rh.

pt、工n又はこれらの合金めっきとの合計の厚みが0
.05μm以下になるようにする。
The total thickness of PT, N or these alloy plating is 0
.. The thickness should be 0.05 μm or less.

「効 果」 本発明のステンレス鋼上にAu、Ag、Pd、Rh、P
t。
"Effect" Au, Ag, Pd, Rh, P on the stainless steel of the present invention.
t.

In又はこれらの合金めっきを施した太陽電池用基板は
表面が貴金属によって被覆されていることにより、a−
Eliとの接着性及び電気的接続性が従来のステンレス
基板よりもはるかに優れており、a−8i太陽電池の変
換効率を向上させることができる。
Solar cell substrates plated with In or their alloys have a-
Adhesion and electrical connectivity with Eli are far superior to conventional stainless steel substrates, and the conversion efficiency of A-8I solar cells can be improved.

また、貴金属めっき品ではあるがその厚みが0.05μ
m以下であるので、実用的めっきの生産コストは数ミク
ロンの厚みのNi、Ou等のめっきと同程度であり、極
めて経済的にa−9i太陽電池の性能を向上させること
ができる。
Also, although it is a precious metal plated product, its thickness is 0.05 μm.
m or less, the production cost of practical plating is comparable to plating of Ni, Ou, etc. with a thickness of several microns, and the performance of the a-9i solar cell can be improved extremely economically.

「実施例」 (110,1,tの5US304機械研摩材(Rmax
α07μl?l)をアルカリ脱脂、電解脱脂、酸による
活性化処理を施しだ後、以下に示すめっき浴及びめっき
条件によりAu、Ag、Pd、Rh、Pt、Inの各め
っきを施した、 [Auめつき〕 浴組成 金シアンカリ 59/l スルフアミンニツケル 59/L り エ ン 酸 90 f/l クエン酸ナトリウム 90 f/l めつき条件 pH3,5 浴 温 50℃ 陰極電流密度 2A/dffII CAgめつき〕 浴組成 シアン化銀 36y/l シアノ化カリウム 60 y/を 炭酸カリウム 45t/l めつき条件 浴 温 30℃ 陰極電流密度 I A/dn/ Cpaめっき〕 浴 組 成 塩化第一パラジウム 37t/を第二りん
酸ナトリウム 100f/を 第二り人厳アンモニウム 20f/を 安息香酸 25r/l めつき条件 温 度 50℃ 陰極電流密度 0.2A/di 〔Rhめっき〕 浴 組 成 りん酸ロジウム 4?/lリ ん 酸 (
、Qf/l めっき条件 温 度 45℃ 陰極電流密度 3A/dm’ [ptめつき] 浴組成 塩化白金酸 4y/l りん酸アンモニウム 209/l りん酸ナトリウム 100f/7 めつき条件 pH6,9 温 度 80℃ 陰極電流密度 I A/drr? 〔工nめつき〕 浴 組 成 硫酸インジウム 60f/L硫酸ナトリウ
ム 1(1//− めつき条件 pH2,0〜2.7 温 度 30℃ 陰極電流密度 2A/di 次に各めっきを施したステンレス鋼基板に■TO/n1
p/基板セルを形成してショート特性及び変換効率を測
定した。
“Example” (5US304 mechanical abrasive of 110,1,t (Rmax
α07μl? 1) was subjected to alkaline degreasing, electrolytic degreasing, and acid activation treatment, and then each plating of Au, Ag, Pd, Rh, Pt, and In was applied using the plating bath and plating conditions shown below. ] Bath composition Gold cyankaline 59/l Sulfamine nickel 59/L Rienoic acid 90 f/l Sodium citrate 90 f/l Plating conditions pH 3,5 Bath temperature 50°C Cathode current density 2 A/dffII CAg plating] Bath composition Silver cyanide 36 y/l Potassium cyanide 60 y/l and potassium carbonate 45 t/l Plating conditions Bath temperature 30°C Cathode current density I A/dn/Cpa plating] Bath composition Palladium chloride 37 t/l Sodium phosphate 100f/20% ammonium 20f/benzoic acid 25r/l Plating conditions Temperature 50℃ Cathode current density 0.2A/di [Rh plating] Bath composition Rhodium phosphate 4? /l phosphoric acid (
, Qf/l Plating conditions Temperature 45℃ Cathode current density 3A/dm' [PT plating] Bath composition Chloroplatinic acid 4y/l Ammonium phosphate 209/l Sodium phosphate 100f/7 Plating conditions pH 6,9 Temperature 80℃ Cathode current density I A/drr? [Engineering plating] Bath composition Indium sulfate 60 f/L Sodium sulfate 1 (1//-) Plating conditions pH 2.0 to 2.7 Temperature 30°C Cathode current density 2 A/di Next, each plated stainless steel ■TO/n1 on steel substrate
A p/substrate cell was formed and short characteristics and conversion efficiency were measured.

第1表にみる通り1本発明の太陽電池基板のショー)%
性を示すセルの割合はいずれもステンレスの従来品およ
び従来の厚みのめっき材よりも少なく、また変換効率も
いずれも勝っている。
As shown in Table 1, 1)% of the solar cell substrate of the present invention
The percentage of cells showing properties is lower than that of conventional stainless steel products and plating materials of conventional thickness, and the conversion efficiency is also superior in both cases.

なお、ショート特性を示すセルの割合及び変換効率は比
較材(ステンレス)を1.00とした本発明基板の比を
示す(本発明材/従来材)。
The percentage of cells exhibiting short-circuit characteristics and the conversion efficiency are the ratio of the substrate of the present invention (inventive material/conventional material), with the comparison material (stainless steel) being 1.00.

第1表 昭和59年11月22日 特許庁長官 志賀 学 殿 1、事件の表示 昭和59年特許願第 89510 号 2 発明の名称 太陽電池用基板 3 補正をする者 事件との関係 特許出願人 住 所 東京都港区虎ノ門二丁目10番1号名 称 日
本鉱業株式会社 代表者 笠 原 幸 雄 4代理人 〒105 電話582−2111 住 所 東京都港区虎ノ門二丁目10番1号2補正の内
容 (リ 特許請求の範囲を別紙の通シに改めます。
Table 1: November 22, 1980 Manabu Shiga, Commissioner of the Patent Office 1. Indication of the case 1989 Patent Application No. 89510 2. Name of the invention Solar cell substrate 3. Person making the amendment Relationship to the case Patent applicant residence Address: 2-10-1 Toranomon, Minato-ku, Tokyo Name: Japan Mining Co., Ltd. Representative: Yukio Kasahara 4 Agent: 105 Telephone: 582-2111 Address: 2-10-1 Toranomon, Minato-ku, Tokyo Contents of the 2nd Amendment (The scope of the patent claims will be revised to the attached document.

(2) 明細書第4頁第2行、第6頁第3行、第7頁1
4行及び18行、第8頁第13行の「In」を削除しま
す。
(2) Specification page 4, line 2, page 6, line 3, page 7, line 1
Delete "In" on lines 4 and 18, page 8, line 13.

(3) 明細書第7頁第2行〜第5行の「、Inは硫酸
浴、シアン浴、ホウフッ化浴等」を削除します。
(3) Delete "In means sulfuric acid bath, cyanide bath, borofluoride bath, etc." from lines 2 to 5 on page 7 of the specification.

(4) 明細書第10頁の第8行〜第13行を全て削除
します。
(4) Delete all lines 8 to 13 on page 10 of the statement.

(5) 明細書第11頁の第1表を次頁のごとく補正し
ます。
(5) Table 1 on page 11 of the specification is amended as shown on the next page.

(以下余白) 第1表 別紙 特許請求の範囲 (11厚さ0.05μm以下のAu 、Ag 、 Pd
 + Rh 、 Pt又はこれらの合金の被覆層を備え
たステンレス製太陽電池用基板 (2) ステンレスに予めN1等のストライクめっき層
を施した特許請求の範囲第1項記載の太陽電池用基板。
(Margin below) Table 1 Appendix Claims (11 Au, Ag, Pd with a thickness of 0.05 μm or less
+ Stainless steel solar cell substrate (2) comprising a coating layer of Rh, Pt, or an alloy thereof The solar cell substrate according to claim 1, wherein a strike plating layer of N1 or the like is applied to stainless steel in advance.

Claims (2)

【特許請求の範囲】[Claims] (1) 厚さ0.05μm以下のAu、Ag、Pd、R
h、Pt、In又はこれらの合金の被覆層を備えたステ
ンレス製太陽電池用基板。
(1) Au, Ag, Pd, R with a thickness of 0.05 μm or less
A stainless steel solar cell substrate comprising a coating layer of h, Pt, In, or an alloy thereof.
(2) ステンレスに予めN1等のストライクめっき層
を施した特許請求の範囲第1項記載の太陽電池用基板。
(2) The solar cell substrate according to claim 1, wherein the stainless steel is coated with a strike plating layer of N1 or the like in advance.
JP59089510A 1984-05-07 1984-05-07 Substrate for solar cell Pending JPS60234380A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59089510A JPS60234380A (en) 1984-05-07 1984-05-07 Substrate for solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59089510A JPS60234380A (en) 1984-05-07 1984-05-07 Substrate for solar cell

Publications (1)

Publication Number Publication Date
JPS60234380A true JPS60234380A (en) 1985-11-21

Family

ID=13972778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59089510A Pending JPS60234380A (en) 1984-05-07 1984-05-07 Substrate for solar cell

Country Status (1)

Country Link
JP (1) JPS60234380A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009055055A (en) * 2002-12-27 2009-03-12 Kyushu Hitachi Maxell Ltd Method of manufacturing semiconductor device
JP2013042187A (en) * 2012-11-29 2013-02-28 Hitachi Maxell Ltd Semiconductor device
JP2013058816A (en) * 2012-12-28 2013-03-28 Hitachi Maxell Ltd Intermediate component for semiconductor device and manufacturing method of the same
JP2013168686A (en) * 2013-06-03 2013-08-29 Hitachi Maxell Ltd Semiconductor device and semiconductor device manufacturing method
JP2015233166A (en) * 2015-10-01 2015-12-24 日立マクセル株式会社 Semiconductor device and semiconductor device manufacturing method
JP2017005261A (en) * 2016-08-22 2017-01-05 日立マクセル株式会社 Semiconductor device and semiconductor device manufacturing method
JP2017118131A (en) * 2017-02-13 2017-06-29 日立マクセル株式会社 Intermediate component for semiconductor device and manufacturing method of the same, and semiconductor device and manufacturing method of the same
JP2017195414A (en) * 2017-07-20 2017-10-26 日立マクセル株式会社 Semiconductor device and semiconductor device manufacturing method
JP2018029214A (en) * 2017-11-24 2018-02-22 マクセルホールディングス株式会社 Semiconductor device and semiconductor device manufacturing method
JP2018160707A (en) * 2018-07-23 2018-10-11 マクセルホールディングス株式会社 Semiconductor device and semiconductor device manufacturing method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009055055A (en) * 2002-12-27 2009-03-12 Kyushu Hitachi Maxell Ltd Method of manufacturing semiconductor device
JP2011216921A (en) * 2002-12-27 2011-10-27 Kyushu Hitachi Maxell Ltd Semiconductor device and method of manufacturing the same
JP2013042187A (en) * 2012-11-29 2013-02-28 Hitachi Maxell Ltd Semiconductor device
JP2013058816A (en) * 2012-12-28 2013-03-28 Hitachi Maxell Ltd Intermediate component for semiconductor device and manufacturing method of the same
JP2013168686A (en) * 2013-06-03 2013-08-29 Hitachi Maxell Ltd Semiconductor device and semiconductor device manufacturing method
JP2015233166A (en) * 2015-10-01 2015-12-24 日立マクセル株式会社 Semiconductor device and semiconductor device manufacturing method
JP2017005261A (en) * 2016-08-22 2017-01-05 日立マクセル株式会社 Semiconductor device and semiconductor device manufacturing method
JP2017118131A (en) * 2017-02-13 2017-06-29 日立マクセル株式会社 Intermediate component for semiconductor device and manufacturing method of the same, and semiconductor device and manufacturing method of the same
JP2017195414A (en) * 2017-07-20 2017-10-26 日立マクセル株式会社 Semiconductor device and semiconductor device manufacturing method
JP2018029214A (en) * 2017-11-24 2018-02-22 マクセルホールディングス株式会社 Semiconductor device and semiconductor device manufacturing method
JP2018160707A (en) * 2018-07-23 2018-10-11 マクセルホールディングス株式会社 Semiconductor device and semiconductor device manufacturing method

Similar Documents

Publication Publication Date Title
CN100577889C (en) A kind of thin belt continuous casting crystal roller surface electroplating method and electroplate liquid thereof
JPS60234380A (en) Substrate for solar cell
CN101710620A (en) Proton exchange membrane fuel cell stainless steel bipolar plate and modification method thereof
CN112376098B (en) Method for electroplating molybdenum-copper alloy surface
CN113122845A (en) Preparation method of aluminum alloy metal plated part
JPH0277585A (en) Palladium/nickel alloy layer as intermediate between metal base material having no or almost no corrosion resistance
CN107190288B (en) Preparation method of HEDP copper-plated pore-free thin layer
JP2009099548A (en) Silver-clad composite material for movable contact and its manufacturing method
US3503799A (en) Method of preparing an electrode coated with a platinum metal
JP2004134276A (en) Material for solid polymer type fuel cell, and its manufacturing method
US4167459A (en) Electroplating with Ni-Cu alloy
JP2002075393A (en) Separator for fuel cell and its manufacturing method
JPS6123789A (en) Method for plating stainless steel with noble metal
JP3092929B2 (en) Ni, Cu coated stainless steel sheet and method for producing the same
JP4040008B2 (en) Metal separator for fuel cell and manufacturing method thereof
JP4558823B2 (en) Silver-coated composite material for movable contact and method for producing the same
JPS61204393A (en) Production of nickel coated stainless steel strip
CN212293784U (en) Plating layer structure of steel part palladium-plated steel
CN111334753B (en) Method for plating rhodium on surface of steel strip
CN212925173U (en) Plating layer structure of palladium-plated steel of zinc alloy die casting
JPS6218771A (en) Material plate for solar cell base
JP2005206904A (en) METHOD OF PRODUCING Ni-W ALLOY FILM
CN112760686B (en) Cathode electrolysis activating solution, preparation method and application thereof
CN212925174U (en) Coating structure for plating rose gold on zinc alloy die casting
JPS63282293A (en) Electroplating method for stainless steel sheet with zn, ni, or cu