JPS60226403A - 亜硫酸塩濃度調整方法 - Google Patents

亜硫酸塩濃度調整方法

Info

Publication number
JPS60226403A
JPS60226403A JP59079668A JP7966884A JPS60226403A JP S60226403 A JPS60226403 A JP S60226403A JP 59079668 A JP59079668 A JP 59079668A JP 7966884 A JP7966884 A JP 7966884A JP S60226403 A JPS60226403 A JP S60226403A
Authority
JP
Japan
Prior art keywords
sulfite
concentration
liquid
air
oxidation catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59079668A
Other languages
English (en)
Inventor
Naoharu Shinoda
篠田 直晴
Atsushi Tatani
多谷 淳
Masakazu Onizuka
鬼塚 雅和
Setsuo Omoto
節男 大本
Susumu Okino
進 沖野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP59079668A priority Critical patent/JPS60226403A/ja
Priority to GB08509916A priority patent/GB2159508A/en
Priority to DE19853514857 priority patent/DE3514857A1/de
Publication of JPS60226403A publication Critical patent/JPS60226403A/ja
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/40Magnesium sulfates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • B01D53/501Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/69Sulfur trioxide; Sulfuric acid
    • C01B17/74Preparation
    • C01B17/76Preparation by contact processes
    • C01B17/775Liquid phase contacting processes or wet catalysis processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/46Sulfates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Treating Waste Gases (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 本発明は0aS03・l/1H20や0a(H8O3)
2やH2SO3やNa2SO3やNaH8OxやMgS
O3やMg(H8O3)zやに2 S OaやK1−l
SO3などの亜硫酸塩や亜硫酸水素塩(以下亜硫酸も含
めて、亜硫酸塩と総称する。)の濃度を管理する方法に
関するもので、例えばSO□を含む排ガスを脱硫処理す
る吸収液(以下懸濁液も含めて、吸収液と総称する。)
に含まれる亜硫酸塩を酸化して硫酸塩とする際に酸化剤
や、酸化触媒の供給量を調整する場合に極めて有効な方
法を提供するものである。
従来、湿式排煙脱硫法では、802を吸収した吸収液は
亜硫酸塩を含むので、これを硫酸塩に酸化する方法とし
て、吸収液中に空気を吹き込む方法が特公昭45−12
005号、同50−17318号、同51−12479
号、特開昭50−159897号、同53−88694
号、同57−71819号他に記載ある通り、広く用い
られている。そして酸化促進に触媒などの添加物が併用
される場合も前記引例に記載されている。
これら従来法では、亜硫酸塩の酸化速度を実験的に把握
した上で適宜酸化剤(大半が空気を使用している)や酸
化触媒の供給量を調整し、亜硫酸塩濃度の管理の為に該
当液を少量サンプリングしJIS K 0102VC準
拠した手分析に依って亜硫酸塩濃度をめ、酸化剤が適量
を満たしているかどうかをチェックする方法が採用され
ていた。
従って、当然のことながら、亜硫酸塩を酸化して硫酸塩
となす反応槽の操作を時々刻々変化する連続操作で行う
場合、酸化剤や酸化触媒の供給量を時々刻々調整するた
めに手分析を多く必要とし、人手と時間を要する欠点が
あった。
更に排煙脱硫法で吸収液中の亜硫酸塩1JIsK01.
02に−て分析する場合、鉄イオンの妨害を受ける不具
合もあって、亜硫酸塩の濃度管理上の問題となる場合も
あった。
さて、亜硫酸塩を酸化して硫酸塩となす操作を工業的規
模で行う場合は、通常連続操作で行われる。即ち、反応
槽へ連続的に亜硫酸塩を含む液を供給しつつ他方やはり
酸化剤を連続的に反応槽へ供給し、物質収支に従って、
反応槽から連続的に液を抜き出す操作を採用する。そし
て、反応槽から抜き出される液は、硫酸塩を主体に含み
、若干の亜硫酸塩が混在したものとなる。これは連続操
作の特質であり、生成物として硫酸塩を所望する場合は
亜硫酸塩濃度の管理が重要な課題となる。この管理方法
として前述のJIS K 0102に準拠した手分析デ
ータが重要であるにも拘らず、人手と時間を要し、しか
も、時々刻々変化する負荷条件に対応して、反応槽の酸
化剤供給量を適切に加減することは、実用上、極めて困
難を伴うものであった。従って、従来法では反応槽での
酸化負荷量の増減に拘らず常に過剰の酸化剤を供給し続
け、生成物としての硫酸塩への亜硫酸塩残留濃度を少な
くする方法が採用されていた。
ところが最近では、省資源、省エネルギーの観点から無
駄な酸化剤を供給し続けるのは問題となり、酸化負荷の
急激な変動に対しても酸化剤や酸化触媒の最適な供給f
tk維持し、所望の亜硫酸塩濃度に管理する要求が強い
。しかしながら、手分析で管理するには限界があり、こ
の要求を満足するものではなかった。
本発明はか\る現状に鑑みなされたもので、負荷変動に
対しても常に、迅速に適正量の酸化剤や酸化触媒を無駄
なく供給し亜硫酸塩濃度を所望の値に調整する方法を提
供することを目的としたものであり、亜硫酸塩濃度を連
続的且つ瞬時にオンラインで検出する亜硫酸塩検出器を
開発したことによって、反応槽内液の亜硫酸塩濃度の検
出信号と亜硫酸塩濃度設定値との偏差信号により、反応
槽へ供給する酸化剤又は/及び酸化触媒の供給量を調整
することを特徴とする亜硫酸塩濃度調整方法を提案する
ものである。
なお、亜硫酸塩濃度を調整するには酸化剤の代りに反応
槽へ供給する亜硫酸塩の供給量を調整することによって
も可能であり、酸化剤や酸化触媒と亜硫酸塩の供給量を
同時に調整することによっても出来る。
以下、本発明の方法を湿式石灰石膏法排煙脱硫装置に適
用した場合の実施態様例を第1図により説明する。
なお、ここで本発明は、液中の亜硫酸塩を手分析に依ら
ず連続的且つ瞬時にオンラインで検出する方法を開発し
たことによって成し得たものであるから、亜硫酸塩の1
検出方法を第2図によって具体的に説明する。
第2図は本発明に使用した亜硫酸塩検出器の構成を示す
説明図であり、第2図において、Aは試料液、Bは空気
もしくは窒素、Cは硫酸もしくは塩酸の如き亜硫酸塩を
分解する酸、Dは廃液、EはSO2を含有する抜き出し
ガス、Fは排気、Gは排気、Hはドレンを示す。さらに
1は定量ポンプ、2は加熱器、3は温度調節計、4は温
度検出器、5は酸分解容器であって外気とは遮断された
攪拌式連続酸分解容器である。
6は滞留液、7は攪拌機、8は吹込管、9はシール材、
10はモーター、11は流量指示計、12は微量ポンプ
、13は液封器、14は一電極、15は−調節計、16
は空気、17は流量調節計、18は空気ポンプ、22は
S02分析計、23は亜硫酸塩濃度演算器、24は亜硫
酸塩濃度指示計、25はオーバーフロー管、26は升、
27は除湿器を示し、−X−1と■2は信号を示してい
る。
亜硫酸塩を含有する試料液Aを、定量ポンプ1で採取し
、酸分解容器5内の滞留液6の温度が所定、温度(70
℃以上)となるように加熱器2を経由して昇温した後に
、反応容器5へ供給する。該加熱器2の熱源の制御は滞
留液6の温度を検出器4で検知して、該滞留液6が所定
温度(70℃以上)となるように、温度調節器3がら出
る信号によっている。
酸分解容器5内の滞留液6については、滞留液6中の固
形分が沈降しないように攪拌機7で攪拌すると共に、−
検出器14により滞留液6のpHを検出し、その結果に
応じて一調節計15から出す信号により微量ポンプ12
を制御して、硫酸もしくは塩酸の如き亜硫酸塩を分解す
る酸0を酸分解容器5へ注入し所要−(3以下)となる
ようK11!(制御する。
滞留液6に硫酸もしくは塩酸の如き亜硫酸塩を分解する
酸を注入すると、試料液A中の亜硫酸塩は下記の式(1
)〜(2)のように酸と反応しSo。
を発生する。(亜硫酸塩が0aSO3である場合を式+
11 、 +21に示したが、Oa塩以外も同様である
。)(硫酸添加の場合) OaSO3+H! E30a →0aSO4+H20+
8021 ・・印(1)(塩酸添加の場合) OaSO3+ 2HO1” 0aO1x + Hz O
+802 f −”’(21発生したS02は、キャリ
ヤガスとして流量調節計17で所要流量に調節しである
空気(もしくは窒素)の一部或いは全部を、分配9f2
6の操作により流量指示計11及び吹込み管8を介して
滞留液6中に吹き込み、滞留液6がら80.、空気(も
しくは窒素)及び水分の混合した抜き出しガスEとして
抜気する。
一方、吹き込みに使用した残シの空気(もしくは窒素)
16は、酸分解容器5から出てくる抜出しガスEと合流
し、該合流ガスは後述するso2分析計22用として、
その一部を空気ポンプ18で吸引採取する以外は、排気
Fとして排出する。
次に定量ポンプ1からの試料液Aの供給による滞留液6
量の増加分はオーバーフロー管25から液封器13に排
出し、同液封器13は、酸分解容器5の内圧に打ち勝つ
だけの液深を保つと共に酸分解容器5からのオーバーフ
ロー液中の固形分が沈降しない構造となっており、又同
液封器13に流入するオーバーフロー液の余剰液量は廃
液りとして排出する。上記反応式(1)及び(2)に従
って発生したS02と空気(もしくは窒素)と水分の抜
き取りガスEは前記したように残りの空気(もしくは窒
素)16と合流したのち、その排気Fとして放出するが
、その排気Fの一部は除湿器27で含有する水分をドレ
ンHとして除去したのち空気ポンプ18で吸引し802
分析計22に送り、同So、分析計22でSO,濃度を
測定したのち排気Gとして放出する。802分析計22
からの信号を亜硫酸塩濃度演算器23へ送り、亜硫酸塩
濃度演算器23へはさらに空気(もしくは窒素)流量調
節計17からの流量信号罰並びに定量ポンプ1から試料
液Aの採取流量信号■2が各々入力されており、これら
の入力信号を用いて演算器23は下記の理論演算を行な
い試料液A中の亜硫酸塩濃度を算出し亜硫酸塩濃度指示
計24へ出力する。
(亜硫酸塩濃度の算出) 亜硫酸塩濃度(+nol/l) = 径考例 第2図の装置を使用して、亜硫酸塩として、0aSO3
濃度を測定した。この場合について具体的に数値を用い
て説明する。
第2図の試験装置を下記条件で使用したときの測定結果
を第3図に示す。
試料スラリー中0aSO3濃度: 0.05 、0.1
 、0.2mo1/を試料スラリー供給流量 ’ 0.
12t/amキャリアガス種 :空気、窒素 流量 : 20t/m 設定反応温度 : 70,80℃ 設定反応pi(:3 全空気流量 + 10t/WiR 反応容器容量 :15を 第3図は、水沫でのQ a 8 O3濃度の検出値と、
手分析による分析値の対比を示すグラフであり、横軸に
は手分析による0aSO3濃度、また縦軸には水沫によ
る測定値を示しており、黒塗り丸印は70℃、白丸印は
80℃での結果を三角印で示した測定結果は窒素を用い
た80℃での結果を各々示している。さらにSOWの測
定値と試料液中のCa5Os濃度の手分析値と水沫によ
る測定値について試験結果の中よりいくつかの例を表1
にまとめて示す。
表1から明らかなように水沫は、手分析の場合と殆んど
変りない精度で高速で濃度変化する試料に対応し連続的
に測定しうる。
以上、亜硫酸塩が0aSO3である場合の亜硫酸塩検出
方法の一例を具体的に示したが、亜硫酸塩がHzSOz
 、 Na2803 、 NaH8Os 、 MgSO
3,Mg (H8O3)2.に2SO3゜KHSO3,
Ca(H8O3)2も同様に検出が可能であった。
第1図は本発明の方法の実施態様例の例示図である。第
1図においてSO,を含んだ排ガス100が吸収塔本体
101に導かれ、塔内で吸収液と接触してSo、が除去
されて後、浄化ガス102として塔外へ排出される。吸
収塔本体101の下部には吸収液を溜めるタンク103
が設けてあり、攪拌機104で吸収液を攪拌すると共に
、吸収塔循環ポンプ105によって、吸収液を塔頂に送
って塔内に散布し、排ガスと接触させて30.を吸収さ
せる。吸収剤がSo、’i吸収して生成する亜硫酸塩の
一部は気液接触ゾーンで排ガス中の02によって酸化さ
れるので、亜硫酸塩と硫酸塩を含んで−が低くなった酸
性吸収液がタンク103に落下する。タンク103では
SO2吸収剤としての0a003が0aOO3供給ライ
レ106からso2吸収量に見合って供給され、吸収液
を中和すると共に吸収液中の亜硫酸塩を酸化して硫酸塩
とする為、タンク内に設けた空気ノズル107がら空気
を吹き込むか又は、マンガン塩やコバルト塩などの酸化
触媒を含む液を酸化触媒供給ライン108から供給する
。もちろん空気と酸化触媒を併用する場合もある。ボイ
ラ排ガスを処理する場合は、ボイラの負荷変動や使用燃
料中の硫黄成分含有量の変動がある為、排ガス100の
処理量やso2濃度とO2濃度も変動し、結局はタンク
103内の吸収液中の亜硫酸塩の酸化量が変動する様に
なる。
即ち、排ガス100の処理量が多くなったり、so2濃
度が高くなったり、O2濃度が低くなったシすると、空
気ノズル107からの空気量を増やしたり、酸化触媒の
濃度を高めたりすることによって対処し、逆に酸化の負
荷量が減ると、空気量を低減したり酸化触媒の供給を削
減することで対処する訳である。本発明ではタンク10
3内の吸収液中の亜硫酸塩濃度をオンラインで瞬時に検
出すべく、第2図の構成からなる亜硫酸塩検出器109
を設け、その濃度信号を亜硫酸塩調節計110に送る。
亜硫酸塩調節計110では、副生品中の亜硫酸塩濃度許
容値とS02吸収性能に係る亜硫酸塩濃度許容値との関
係に於いて設定した亜硫酸塩濃度設定値と、検出値との
偏差信号を空気流量調節計111及び/又は酸化触媒流
量調節計112に送る。
空気流量調節計111では、空気流量計113からの信
号と亜硫酸塩調節計110からの信号とを受け、パルプ
114の開閉調整を行うことによって空気ノズル107
から吹き込む空気量の調整して所望の亜硫酸塩濃度が維
持出来る最小空気量で運転する。
一方、酸化触媒流量調節計112では、酸化触媒を含有
した液の流量計115からの信号と亜硫酸塩調節計11
0からの信号を受け、パルプ116の開閉調整を行うこ
とによって、酸化触媒の濃度を調整し、所望の亜硫酸塩
濃度が維持出来る最小触媒供給量で運転する。
ここで、酸化触媒と空気は、各々単独で使用する場合が
あるし併用する場合もある。酸化触媒単独で吸収液中の
亜硫酸塩濃度を調整する場合は排ガス中の02に依る酸
化を促進することになるので、入口802濃度が非常に
高く酸化負荷量が多くなる場合には酸化触媒だけでは対
応し切れない場合がある。空気の吹込み単独で吸収液中
の亜硫酸塩濃度を調整する場合は、酸化負荷量が多くな
る場合、空気の大気泡発生を伴う酸化機能の低下が起こ
る場合があってやはり空気吹込み動力費の無駄使いとな
る。従って、酸化触媒と空気を併用する場合が、酸化負
荷の大きな変動に対して最も対応し易い。即ち、本発明
では酸化剤である空気と酸化触媒を各々単独に利用する
か、又は併用するかは、酸化負荷量に応じて選択出来る
ようになっている。このように酸化によって亜硫酸塩濃
度を所望値に調整された吸収液は硫酸塩の石膏粒子を主
体にした懸濁液となるので、物質収支に依ってポンプ1
17を介して吸収液抜出しライン118から遠心分離器
119へ送られ、ここで副生石膏120が回収される。
濾過液はライン121から排液処理又は、再循環使用さ
れる。
第1図には、Oa O03を吸収剤として石膏を副生ず
る湿式石灰石膏法排煙脱硫装置に本発明の亜硫酸塩濃度
調整方法を適用した場合を具体的に説明したが、NaO
H’p Na2SO4を吸収剤としてNa2303 、
 NaH8O3の亜硫酸塩とNa2SO4f硫酸塩とし
て排出するソーダ法や、マグネシウム化合物やカリウム
化合物を各々単独又は併用する排煙脱硫方法に同様に本
発明が利用出来る。要するに、第2図に示した亜硫酸塩
検出器にて酸と反応してSC+を放散する化合物は上記
化合物に限定されず適宜応用可能である。
以上詳細に説明したように従来は、人手と時間の要する
JIS K 0102に準拠した手分析を行うことによ
って、亜硫酸塩濃度を検出していた為、時々刻々変化す
る負荷条件に対応して、空気や酸化触媒の供給量を最適
値、即ち最も経済的な量に加減することは実際不可能に
近く、従って、湿式石灰石膏法排煙脱硫装置のように、
副生品として純度の高い石膏を回収する場合では亜硫酸
塩濃度が高くならない様に、過剰の空気や酸化触媒を供
給することで対処して来ておシ、これは省エネ、省資源
の観点から望ましくないものであるが、本発明の方法に
よれば、変動の激しい負荷条件にも瞬時に対応して、無
駄なく最適量の酸化剤(空気等)や酸化触媒を供給して
亜硫酸塩濃度を所望の値に調整することができ、極めて
経済的であるという特有の効果を奏する。
以下実施例により、本発明について更に詳細に説明する
実施例1 使用した装置を第1図に示す。
石炭焚きボイラから排出される排ガスの4,000rr
lWhを電気集じん器の出口から分取し、吸収塔本体1
01に導入した。排ガス100は8022,000四。
ダスト50(IW1wyr/N 、 HOIlooPF
 、 HF30−を平均組成として有していた。吸収剤
である0aOO3は石灰岩を325メツシユ以下に粉砕
した粉末を使用し、水に懸濁して、2mol/lの0a
OO3スラリーとしてライン106からタンク103へ
供給した。吸収液を溜めるタンク103は2,00(1
+s+の直径を有し、液深を2,000 INとし、吸
収液量が約6,000 tとなる様に液面をコントロー
ルした。吸収塔循環ポンプ105で、60ff1′/ 
hの吸収液を吸収塔101の塔頂からスプレーし、塔内
にはグリッドを充填して、排ガスを洗浄した。S02.
ダスト、Hoe、HFは、そのほとんどが吸収液に捕集
され浄化ガス102には、平均組成としてS02が50
泗、ダストが60m97m’N、 Hoe、 、 HF
は共KIIF以下含まれていた。So。
を吸収して亜硫酸塩が出来、酸性になった吸収液がタン
ク103へ流下して来るので、吸収液が中性になる様に
ライン106から0aQO3をアルカリとして供給した
。吸収液は第2図の構成からなる亜硫酸塩検出器109
へ毎分0.121で連続サンプリングされ、亜硫酸塩濃
度が直ちに指示された。空気ノズル107からの空気と
酸化触媒供給ライン108からの酸化触媒を共に一切供
給しない状態では亜硫酸塩検出器109の指示値は、0
aSOsとして0.3〜Q、5mol/lの範囲で変動
しており、平均Q、4mol/lであった。0aSO3
濃度が変動したのは、排ガス100に含まれるSO2濃
度と02濃度の変動に依るものであった。亜硫酸塩とし
て0aSO3を含む吸収液は、So、吸収量との物質収
支に従ってポンプ117から抜き出した。次に亜硫酸塩
調節計110に於いて亜硫酸塩濃度設定値を0.05m
oi/zとし、偏差信号を空気流量調節計111に送っ
て、空気流量計113、パルプ114、空気ノズル10
7を介して、吸収液に空気を吹き込んだ。定常状態に於
いて、空気流量は80m”N/hであり、吸収液中の亜
硫酸塩濃度は設定値に維持出来た。#次、亜硫酸塩濃度
設定値を0.1mol/l、 0.2mol/7にして
、各々連続運転試験を実施したが、定常状態に於いて、
吸収液中の亜硫酸塩濃度は各々0.047mo1/l。
0.093mol/l、 0.194mol/lの検出
値指示であった。本発明による亜硫酸塩濃度管理を手分
析データと対比して診考例の表1に示しだ。更に亜硫酸
塩濃度設定値k O,0005mol/lとして運転し
た所、空気流量が250m”N7hに於いて定常状態と
なり(吸収液を手分析した所0.001mol/を以下
であった。)高純度の副生石膏120が回収出来た。
実施例2 実施例1に於いて、亜硫酸塩調節計110からの信号を
空気流量調節計111に送っていたものを今度は酸化触
媒流量調節計112へ切り換え、吸収液への空気吹込み
は停止した?ガス100に含まれるSO!は1,200
Fであり、酸化触媒を加えないで約18時間運転した。
この時の吸収液中の亜硫酸塩濃度を示す亜硫酸塩検出器
109の指示値の記録を第4図の(A)領域に示す。吸
収液中の亜硫酸塩濃度は約0.03mol/lで定常状
態に達した。
次に酸化触媒として2Qwt%Mn5Oa水溶液をライ
ン108からタンクに供給を開始すると同時に、亜硫酸
塩調節計110の亜硫酸塩濃度設定値を0.001mo
l/lに設定して運転した。この時の吸収液中の亜硫酸
塩濃度の記録を第4図の(B)領域に示す。
いずれも所望の亜硫酸塩濃度設定値でMnSO4水溶液
の供給量をコントロールして、亜硫酸塩濃度管理が可能
であった。本発明では、この様に従来の手分析精度から
見ると、微量濃度に位置付けされる濃度範囲でもコント
ロール出来る著しい効果かめる。
実施例3 実施例2に続いて、今度はMnSO4水溶液の供給と共
に空気ノズル107がら空気を吹き込む方法を併用した
場合の実施例を示す。この実施例に於いては、排ガス1
00 K含まれるF30xFi、3.000Fである。
亜硫酸塩調節計110の亜硫酸塩濃度設定値を0.03
mol/l、 OD1msl/l、 0.0005mo
l/lとした時の亜硫酸塩検出器109の指示値の記録
を、第4図(0) l (DJ 、 (E)の各領域に
各々示した。(0) 、 (D) 、 (E)の各領域
に於いて吸収液中のMn濃度と空気ノズル107からの
空気吹込み量の相関があり、Mn濃度が高くなる様にラ
イン108からの20wt%MnSO4水溶液の供給量
を増せば、それに対応して空気流量は低減した。亜硫酸
塩調節計110からの信号を空気流量調節計111及び
酸化触媒流量調節計112へ同時に送る方法は、馳濃度
の応答が遅い為、空気流量調節計111に主として信号
を送る方がコントロール性が良く、亜硫酸塩濃度調整が
容易となる。更に空気吹込みに要する送風動力費は、酸
化触媒を併用すると大幅に低減できる利点のあることが
確認出来た0
【図面の簡単な説明】
第1図は本発明の実施態様例の例示図、第2図は本発明
に使用した亜硫酸塩検出器の構成を示す説明図、第3図
は第2図の亜硫酸塩検出器と による測定値★手分析値との相関図、第4図は本発明の
効果を示す経過時間に伴う亜硫酸塩濃度の推移を示すグ
ラフである。 2・・・加熱器、5・・・酸分解容器、17・・・流量
調節計、22・・So2分析計、23・・・亜硫酸塩濃
度演算器、24・・・亜硫酸塩濃度指示計、27・・除
湿器、100・・排ガス、101・・・吸収塔本体、1
05・・・吸収塔循環ポンプ、109・・・亜硫酸塩検
出器、110・・亜硫酸塩調節計、111・・空気流量
調節計、112・・・酸化触媒流量調節計、119・・
・遠心分離器、120・・・副生石膏 第3図 ミドづ)析r;祷b Ca 303Xl’J rrno
ノ//70及収愈中14硫酸塩濃度(mol/1)第1
頁の続き [相]Int、CI、4 識別記号 庁内整置@発 明
 者 沖 野 進 広島市西区循広島研究所ト 、音新町4丁目6番n号 三菱重工業株式会社手続補正
吉(自発) 昭和59年 7 月(、c Fl 事件の表示 昭和59年 特 許 願第 079668 号発明の名
称 亜硫酸塩濃度調整方法 補正をする名 事件との関係 特許出願人 (1所 東京都1代田区丸の内1−目5番IIj名 称
(620)三菱重工業株式会社 代 理 人 1 明細書の第11頁第5行の「全空気流量」を1吹込
みキャリアガヌ流量」と補正する。 2 第2図の試料液Aの採増流量信号の黄を未配のよう
に■2と補正する。

Claims (1)

    【特許請求の範囲】
  1. 亜硫酸塩を含有する液又は懸濁液の亜硫酸塩を酸化する
    方法において、該液の亜硫酸塩濃度を検出した信号と、
    亜硫酸塩濃度設定値との偏差信号により該液中の亜硫酸
    塩を酸化するだめの酸化剤又は/及び酸化触媒の供給量
    を調整することを特徴とする亜硫酸塩濃度調整方法。
JP59079668A 1984-04-20 1984-04-20 亜硫酸塩濃度調整方法 Pending JPS60226403A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP59079668A JPS60226403A (ja) 1984-04-20 1984-04-20 亜硫酸塩濃度調整方法
GB08509916A GB2159508A (en) 1984-04-20 1985-04-18 Method for regulating concentration of sulfite
DE19853514857 DE3514857A1 (de) 1984-04-20 1985-04-22 Verfahren zum regeln einer sulfitkonzentration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59079668A JPS60226403A (ja) 1984-04-20 1984-04-20 亜硫酸塩濃度調整方法

Publications (1)

Publication Number Publication Date
JPS60226403A true JPS60226403A (ja) 1985-11-11

Family

ID=13696552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59079668A Pending JPS60226403A (ja) 1984-04-20 1984-04-20 亜硫酸塩濃度調整方法

Country Status (3)

Country Link
JP (1) JPS60226403A (ja)
DE (1) DE3514857A1 (ja)
GB (1) GB2159508A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62225227A (ja) * 1986-03-27 1987-10-03 Babcock Hitachi Kk 湿式排煙脱硫装置の運転制御法
US6029100A (en) * 1996-06-28 2000-02-22 Mitsubishi Jukogyo Kabushiki Kaisha Method for controlling oxidation in flue gas desulfurization
JP2013237044A (ja) * 2012-05-11 2013-11-28 Alstom Technology Ltd 煙道ガス脱硫性能改善のための酸化制御
JP2014531315A (ja) * 2011-10-07 2014-11-27 アルストム テクノロジー リミテッドALSTOM Technology Ltd 燃焼排ガス海水清浄器からの排水の処理制御方法およびシステム
WO2018151877A1 (en) 2017-02-15 2018-08-23 General Electric Company Oxidation control for improved flue gas desulfurization performance

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3603511A1 (de) * 1986-02-05 1987-08-06 Standard Elektrik Lorenz Ag Verfahren und vorrichtung zur entfernung von staub- und gasfoermigen schadstoffen aus abgasen, insbesondere abgasen bei der lichtwellenleiter-vorformherstellung
DE3610364A1 (de) * 1986-03-27 1987-10-01 Kernforschungsz Karlsruhe Verfahren zum verringern des no(pfeil abwaerts)x(pfeil abwaerts)-gehaltes in gasen, bei welchem dem gaststrom kontinuierlich nh(pfeil abwaerts)3(pfeil abwaerts) zugesetzt wird
DE4335867A1 (de) * 1993-10-21 1995-05-04 Hans Dr Remstedt Verfahren zur gleichzeitigen Entfernung von Schwefeloxiden und Stickoxiden aus Verbrennungsabgasen in einer Ammoniakwäsche
TW276189B (ja) * 1994-11-08 1996-05-21 Gen Electric Environment
KR20010014637A (ko) * 1999-03-31 2001-02-26 로버트 제이. 에드워즈 감소된 산화공기 흐름을 이용하여 습식집진기에서 수은을제어하는 방법
EP2578292B1 (en) * 2011-10-07 2018-12-26 General Electric Technology GmbH A method of controlling a wet scrubber useful for removing sulphur dioxide from a process gas
US9321025B2 (en) 2012-05-11 2016-04-26 Alstom Technology Ltd Oxidation control for improved flue gas desulfurization performance
US9630864B2 (en) 2015-06-17 2017-04-25 General Electric Technology Gmbh Seawater plant with inclined aeration and mixed auto recovery

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2144787A1 (de) * 1971-09-08 1973-03-15 Wallace & Tiernan Gmbh Vorrichtung zum beseitigen gasfoermiger luftverunreinigungen
SE399966B (sv) * 1973-10-17 1978-03-06 Mo Och Domsjoe Ab Sett att reglera mengden kemiska emnen i inom cellulosaindustrin och beslektade industrier forekommande vetskor
US4031912A (en) * 1976-06-04 1977-06-28 Gaf Corporation Reactants addition and concentration control system
DE2648538C2 (de) * 1976-10-27 1978-12-21 Fernsteuergeraete Kurt Oelsch Kg, 1000 Berlin Verfahren zur automatisch geregelten Konstanthaltung der Zusammensetzung von Bädern und Vorrichtung zur Durchfährung des Verfahrens
DE2847591C2 (de) * 1978-11-02 1982-12-23 Stadtwerke Düsseldorf AG, 4000 Düsseldorf Verfahren sowie Vorrichtung zur Neutralisation saurer Schadstoffe in Rauchgasen von Feuerungsanlagen mit Abwärmenutzung
JPS58172230A (ja) * 1982-04-01 1983-10-11 Mitsubishi Heavy Ind Ltd 排脱石膏回収方法
JPS59150339A (ja) * 1983-02-17 1984-08-28 Mitsubishi Heavy Ind Ltd 液中の炭酸塩濃度及び亜硫酸塩濃度の連続測定方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62225227A (ja) * 1986-03-27 1987-10-03 Babcock Hitachi Kk 湿式排煙脱硫装置の運転制御法
US6029100A (en) * 1996-06-28 2000-02-22 Mitsubishi Jukogyo Kabushiki Kaisha Method for controlling oxidation in flue gas desulfurization
JP2014531315A (ja) * 2011-10-07 2014-11-27 アルストム テクノロジー リミテッドALSTOM Technology Ltd 燃焼排ガス海水清浄器からの排水の処理制御方法およびシステム
JP2013237044A (ja) * 2012-05-11 2013-11-28 Alstom Technology Ltd 煙道ガス脱硫性能改善のための酸化制御
WO2018151877A1 (en) 2017-02-15 2018-08-23 General Electric Company Oxidation control for improved flue gas desulfurization performance
KR20190130558A (ko) * 2017-02-15 2019-11-22 제너럴 일렉트릭 캄파니 개선된 연도 가스 탈황 성능을 위한 산화 제어
JP2020508855A (ja) * 2017-02-15 2020-03-26 ゼネラル・エレクトリック・カンパニイ 改善された煙道ガス脱硫実行のための酸化制御
EP3582881A4 (en) * 2017-02-15 2020-12-23 General Electric Company OXIDATION CONTROL FOR IMPROVED FLUE GAS DESULFURATION PERFORMANCE

Also Published As

Publication number Publication date
GB8509916D0 (en) 1985-05-30
GB2159508A (en) 1985-12-04
DE3514857A1 (de) 1985-10-24

Similar Documents

Publication Publication Date Title
US5362458A (en) Process for the simultaneous absorption of sulfur oxides and production of ammonium sulfate
JP6556833B2 (ja) 湿式排煙脱硫方法と装置
USRE31236E (en) Method of removing sulfur dioxide from combustion exhaust gas
JPS60226403A (ja) 亜硫酸塩濃度調整方法
CN107427766B (zh) 湿式排烟脱硫装置及湿式排烟脱硫装置的运转方法
Lancia et al. Uncatalyzed heterogeneous oxidation of calcium bisulfite
US6010664A (en) Oxidation detection for sulfite/sulfate systems
SE444389B (sv) Forfaringssett for absorption av svaveloxider ur rokgaser
JP3573950B2 (ja) 排ガスの脱硫方法
US4696805A (en) Method for desulfurizing exhaust gas
WO1996014137A1 (en) Forced oxidation system for a flue gas scrubbing apparatus
JPS59150339A (ja) 液中の炭酸塩濃度及び亜硫酸塩濃度の連続測定方法
GB2159507A (en) Method for regulating concentration of carbonate
SE450627B (sv) Forfarande och anleggning for vat-torr rening av rokgaser
GB2174083A (en) Method of treating exhaust gases
US5928413A (en) Flue gas treating system and process
Recelj et al. Equilibrium and mass transfer in the Ca2+–SO2–H2O system for the analysis of the flue gas desulphurization process
CA1115494A (en) Process for the removal of sulfur oxides from exhaust gases using slurry of red mud containing calcium ion
JPS62225227A (ja) 湿式排煙脱硫装置の運転制御法
JPH06210126A (ja) 排ガスの処理方法およびその装置
Thomas et al. Designing wet scrubbers for SO2 absorption into fairly concentrated sulfuric acid solutions containing hydrogen peroxide
JPH1157395A (ja) 排煙処理方法及び排煙処理装置
JPS60222139A (ja) 炭酸塩濃度調整方法
JPH0275322A (ja) 湿式脱硫装置の運転方法
JPS62204828A (ja) 湿式排煙脱硫装置の酸化空気制御方法