JPS60224961A - Egr controller for diesel engine - Google Patents

Egr controller for diesel engine

Info

Publication number
JPS60224961A
JPS60224961A JP59081450A JP8145084A JPS60224961A JP S60224961 A JPS60224961 A JP S60224961A JP 59081450 A JP59081450 A JP 59081450A JP 8145084 A JP8145084 A JP 8145084A JP S60224961 A JPS60224961 A JP S60224961A
Authority
JP
Japan
Prior art keywords
egr
valve
control
engine
negative pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59081450A
Other languages
Japanese (ja)
Inventor
Ken Ando
安藤 謙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP59081450A priority Critical patent/JPS60224961A/en
Publication of JPS60224961A publication Critical patent/JPS60224961A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/005Controlling exhaust gas recirculation [EGR] according to engine operating conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D21/00Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas
    • F02D21/06Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air
    • F02D21/08Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air the other gas being the exhaust gas of engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/52Systems for actuating EGR valves
    • F02M26/55Systems for actuating EGR valves using vacuum actuators
    • F02M26/56Systems for actuating EGR valves using vacuum actuators having pressure modulation valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/41Control to generate negative pressure in the intake manifold, e.g. for fuel vapor purging or brake booster
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/52Systems for actuating EGR valves
    • F02M26/64Systems for actuating EGR valves the EGR valve being operated together with an intake air throttle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

PURPOSE:To control EGR properly under wide load region by performing interpolative operation of EGR valve drive data determined on the basis of the load and the rotation of engine in accordance to the engine operating condition under EGR control region and controlling EGR valve and an exhaust throttle valve. CONSTITUTION:Under operation of engine, a control circuit 19 will decide whether the output TW of a water temperature sensor 13 is higher than a setting level (50 deg.C, for example), and upon decision of YES, the outputs from a rotation sensor 15 and a load sensor 14 are taken in. Then interpolative operation is performed with correspondence to the engine operating condition on the basis of the control negative pressure map of EGR valve 5 prestored in ROM of the control circuit 19 to provide a control signal corresponding with the operation results to a negative pressure control valve 16. Consequently, the negative pressure from a vacuum pump 17 is fed through a negative pressure control valve 16 to respective diaphragm chamber 8, 40 of EGR valve 5 and an exhaust throttle valve 7 to control EGR to be fed through EGR path 4 to an intake system path 2 into correct level.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は排気系通路に設けられ排気系通路面積を調節す
ることにより背圧全高めるための排気絞り弁を備えた排
気ガス再循1(EGR)制御装置に係り、具体的にはE
GR弁及び排気絞り弁の開度制御に関する。
Detailed Description of the Invention [Field of Application of the Invention] The present invention relates to an exhaust gas recirculation system 1 (EGR) equipped with an exhaust throttle valve provided in the exhaust system passage to completely increase back pressure by adjusting the exhaust system passage area. ) Concerning the control device, specifically E
This relates to the opening degree control of the GR valve and the exhaust throttle valve.

〔発明の背景〕[Background of the invention]

ディーゼルエンジンにおいては一般に吸排気の差圧が小
さいので、従来のこの珈装置にあっては排気系通路に設
けられた排気絞り弁で該通路の有効面積全調節すること
により背圧全高め、エンジンに要求されるEGR3li
確保するようにしている。
In a diesel engine, the differential pressure between the intake and exhaust is generally small, so the conventional exhaust system uses an exhaust throttle valve installed in the exhaust system passage to adjust the entire effective area of the passage, thereby increasing the back pressure and reducing the engine pressure. EGR3li required for
I'm trying to secure it.

しかしこの排気絞りは、適切に制御しないと、過剰EG
Rとなり、エンジンの運転状態によっては黒煙発生量の
増加、出力性能の悪化、エンジ/の耐久性の低下等の問
題が発生する。
However, if this exhaust throttle is not properly controlled, excessive EG
Depending on the operating condition of the engine, problems such as an increase in the amount of black smoke generated, a deterioration in output performance, and a decrease in the durability of the engine may occur.

〔発明の目的〕[Purpose of the invention]

本発明の目的はエンジンの広範囲にわたる負荷領域にお
いてEGRi全適切に制御することができるディーゼル
エンジンのEGR制御装置を提供することにある。
An object of the present invention is to provide an EGR control device for a diesel engine that can appropriately control all EGRi over a wide range of engine load ranges.

〔発明の概要〕[Summary of the invention]

本発明は、ディーゼルエンジンの排気系通路と吸気系通
路とを連通ずるEGR通路に設けられEGRffik調
節するEGR弁と、前記排気系通路におけるEGR取出
部よジ下流側に設けられ排気系通路面積を調節する排気
絞り弁装置と會有するEGR制御装置において、エンジ
ンの運転状態がEGR制御領域にある場合には制御回路
により予め記憶されている、エンジン負荷とエンジン回
転数に応じて定められたEGR弁の駆動データをエンジ
ンの運転状態に応じて補間演算し、該補間演算により得
られた駆動データに基づいて駆動装置により同一の駆動
信号で前記EGR弁及び排気絞り弁荀駆動することによ
シ、エンジンの広範囲にわたる負荷領域においてEGR
童を適切に制御するものである。
The present invention provides an EGR valve that is installed in an EGR passage that communicates an exhaust system passage and an intake system passage of a diesel engine and adjusts the EGRffik, and an EGR valve that is installed downstream of an EGR takeout part in the exhaust system passage and that controls the area of the exhaust system passage. In the EGR control device which is connected to the exhaust throttle valve device to be adjusted, when the operating state of the engine is in the EGR control region, the EGR valve is set according to the engine load and engine speed, which is stored in advance in the control circuit. Interpolation calculation is performed on the drive data according to the operating state of the engine, and based on the drive data obtained by the interpolation calculation, the EGR valve and the exhaust throttle valve are driven by the same drive signal by the drive device, EGR over a wide range of engine loads
This is to appropriately control children.

〔発明の実施例〕[Embodiments of the invention]

本発明の実施例を図面に基づいて説明する。第11¥1
には本発明に係るEGR制御装置の一実施例の構成が示
されており、同図においてディーゼルエンジン1の吸気
系通路2と排気系通路3との間にはEGR弁51に介し
てEGR通路4が前記通路2.3を連通するように形成
されている8EGR弁5は、EGR通路4の通路面積を
増減する弁体9と、該弁体9と一体的に形成されたロッ
ド21の後端が固着きれたダイアフラム23と、該ダイ
アフラム23會図上、下方に付勢する圧縮はね22と、
バキュームポンプ17で発生した負圧會エンジンのをす
るより適切な負圧に制御する負圧制御弁16と通路18
を介して連通されたダイアフラム室とからなり、前記通
路18に介して該ダイアフラム室8内に導入される、負
圧制御弁16で形成された制御負圧に応じて前記排気系
通路3からEGR通路4を介して吸気系通路2に環流さ
れる排気ガスの再循環量(EGRfi)’を制御するよ
うに構成されている。
Embodiments of the present invention will be described based on the drawings. No. 11 ¥1
1 shows the configuration of an embodiment of an EGR control device according to the present invention. In the figure, an EGR passage is connected between an intake system passage 2 and an exhaust system passage 3 of a diesel engine 1 via an EGR valve 51. The EGR valve 5 includes a valve body 9 that increases or decreases the passage area of the EGR passage 4, and a rear rod 21 that is integrally formed with the valve body 9. A diaphragm 23 whose end is completely fixed, a compression spring 22 that urges the diaphragm 23 downward in the diagram,
Negative pressure control valve 16 and passage 18 that control the negative pressure generated by the vacuum pump 17 to a more appropriate negative pressure in the engine
EGR is introduced from the exhaust system passage 3 into the diaphragm chamber 8 through the passage 18 in accordance with the control negative pressure generated by the negative pressure control valve 16. It is configured to control the recirculation amount (EGRfi)' of exhaust gas that is recirculated to the intake system passage 2 via the passage 4.

筐た排気糸通路3のEGR取出部6より下流側には排気
絞り弁装置7が設けられている。排気絞り弁装ft7は
、ダイアフラム室40を画成するダイアフラム42と、
夕”イアフラム42を口上、上方に付勢する圧縮ばね4
4と、ダイアフラム42に一端が固着されるロッド11
と、一端に排気絞り弁12が固着され他端がロッド11
に揺動可能に増り付けられたロッド30とから構成され
ている。ダイアフラム室40にはバキュームポンプ17
で発生した負圧が負圧制御弁16.通路18.20會介
して導入され、排気絞り弁12は所定の開度に制御され
る。このようにEGR弁5及び排気絞p弁12は負圧制
御弁16’(r介して供給される同一負圧により連動制
御される。゛ さらに19V′1制御回路でちゃ、制御回路19はエン
ジン冷却水温を検出する水温センサ13、エンジンの負
荷状9に検出する負荷センサ14.エンジン回転数を検
出する回転数センサ15の各検出出力を取り込み、エン
ジンの運転状態に応じてEGR通路4全介して吸気系通
路2に導入するEGRガスの流量を制御するための制御
信号を負圧制御弁16に出力する。
An exhaust throttle valve device 7 is provided on the downstream side of the EGR take-out portion 6 of the exhaust thread passage 3 . The exhaust throttle valve device ft7 includes a diaphragm 42 defining a diaphragm chamber 40,
A compression spring 4 that biases the iaphragm 42 upwardly
4, and a rod 11 whose one end is fixed to the diaphragm 42.
The exhaust throttle valve 12 is fixed to one end, and the rod 11 is fixed to the other end.
It is composed of a rod 30 which is swingably attached to the rod 30. A vacuum pump 17 is installed in the diaphragm chamber 40.
The negative pressure generated in the negative pressure control valve 16. The exhaust gas is introduced through passages 18 and 20, and the exhaust throttle valve 12 is controlled to a predetermined opening degree. In this way, the EGR valve 5 and the exhaust throttle p valve 12 are controlled in conjunction with the same negative pressure supplied through the negative pressure control valve 16' (r. The detection outputs of the water temperature sensor 13 that detects the cooling water temperature, the load sensor 14 that detects the engine load state 9, and the rotation speed sensor 15 that detects the engine speed are taken in, and the EGR passage 4 is connected to the entire EGR passage 4 according to the operating state of the engine. A control signal for controlling the flow rate of EGR gas introduced into the intake system passage 2 is output to the negative pressure control valve 16.

次に第2図に制御回路19の具体的構成金示す。Next, FIG. 2 shows the specific configuration of the control circuit 19.

同図において50A、50Bはそれぞnエンジン冷却水
温を検出する水温センサ13、エンジン1の負荷状[−
検出する負荷センサ14の各検出出力を所定のレベルま
で増幅するバッファアンプであり、60はこれらのバッ
ファアンプ50A、50Bの各出力を選択的に取り込む
ためのマルチプレクサ(MX)である。
In the figure, 50A and 50B are a water temperature sensor 13 that detects the engine cooling water temperature, and a load state of the engine 1 [-
It is a buffer amplifier that amplifies each detection output of the load sensor 14 to a predetermined level, and 60 is a multiplexer (MX) for selectively taking in each output of these buffer amplifiers 50A and 50B.

寸た62はマルチプレクサ60により選択されたアナロ
グ信号をディジタル信号に変換するためのA / D変
換器、64は入出力ボート、66は出力ボート、70は
一時的にデータを記憶するためのランダムアクセスメモ
リ(RAMと記す。)、72は固定データ及びプログラ
ム等全格納するためのリードオンリメモリ(ROMと記
す。)、74はROM72に格納されたプログラムに基
づいて各種の演算処理を行い、出力ポートロ6を介して
負圧制御弁16に制御信号を出力するCPUである。
62 is an A/D converter for converting the analog signal selected by the multiplexer 60 into a digital signal, 64 is an input/output port, 66 is an output port, and 70 is a random access port for temporarily storing data. A memory (referred to as RAM), 72 is a read-only memory (referred to as ROM) for storing all fixed data and programs, and 74 performs various arithmetic processing based on the programs stored in the ROM 72 and output port load. This is a CPU that outputs a control signal to the negative pressure control valve 16 via 6.

更に28はエンジン回転数を検出する回転数センサ15
の検出出力を波形整形する整形回路、56は各部の同期
を取るためのクロックパルスを出力するクロックパルス
発振器である。
Furthermore, 28 is a rotation speed sensor 15 that detects the engine rotation speed.
56 is a clock pulse oscillator that outputs a clock pulse for synchronizing each part.

次に第3図に制御回路19により実行されるブロクラム
の内容を示す。同図において、ブロクラムが起動される
と、ステップlOOで水温センサ13の検出出力TWが
取り込まn、次のステップ102でエンジン冷却水温T
WがTW≧に、であるか否かの判定が行われ、エンジン
冷却水温TWが設定値Ko (例えば50℃)以上であ
ると判定された場合にはステップ104に移行する。ス
テップ104では回転数センサ15よりエンジン回転数
REの取り込みが行われ、更にステップ106で負荷セ
ンサ14の検出出力しの取り込みが行われる。そしてス
テップ108では第4図に示すようなROM72に予め
記憶されているEGR弁5の制御負圧マツプに基づいて
制御回路19でエンジンの運転状態に応じて補間演算が
なされ、制御回路19よりその演算結果に応じた制御信
号が負圧制御弁16に出力される。この結果、次のステ
ップ110でバキュームポンプ17から負圧制御弁16
を介してEGR弁5のダイアフラム室8及び排気絞り弁
7のダイアフラム室40に画定の負圧が供給され、EG
R通路4會介して排気系通路3より吸気系通路2に送ら
れるEC;Rliが適切な値となるように制御される。
Next, FIG. 3 shows the contents of the block diagram executed by the control circuit 19. In the figure, when the brochure is started, the detection output TW of the water temperature sensor 13 is taken in at step lOO, and the engine cooling water temperature T is taken in at the next step 102.
It is determined whether W is TW≧, and if it is determined that the engine cooling water temperature TW is equal to or higher than the set value Ko (for example, 50° C.), the process moves to step 104. In step 104, the engine rotational speed RE is taken in from the rotational speed sensor 15, and further in step 106, the detected output of the load sensor 14 is taken in. Then, in step 108, the control circuit 19 performs an interpolation calculation according to the operating state of the engine based on the control negative pressure map of the EGR valve 5 stored in advance in the ROM 72 as shown in FIG. A control signal according to the calculation result is output to the negative pressure control valve 16. As a result, in the next step 110, the vacuum pump 17 to the negative pressure control valve 16
A defined negative pressure is supplied to the diaphragm chamber 8 of the EGR valve 5 and the diaphragm chamber 40 of the exhaust throttle valve 7 through the
EC; Rli sent from the exhaust system passage 3 to the intake system passage 2 via the R passage 4 is controlled to an appropriate value.

ここで第4図に示すEGR弁5の制御負圧マッグはエン
ジン負荷りとエンジン回転数REにより定められたEG
R弁5の制御負圧マッグしている。
Here, the control negative pressure mag of the EGR valve 5 shown in FIG.
The control negative pressure of R valve 5 is magnified.

本実施例では飼えば上8ピマツプにおいてEGR弁5は
一150fiHPで全閉状態から開き始め、−300顛
HPで全開状態となる。一方、排気絞り弁7は第5図に
示す作vJJJ特性から明らかなように供給負圧が一1
50關H1で全開状態から閉じ始め一300fiHPで
全閉状態となる。
In this embodiment, the EGR valve 5 starts to open from the fully closed state at -150 fi HP and becomes fully open at -300 fi HP in the upper 8 pi map. On the other hand, as is clear from the operation vJJJ characteristics shown in FIG. 5, the exhaust throttle valve 7
It starts to close from the fully open state at 50 degrees H1, and becomes fully closed at -300fiHP.

更にステップ102でエンジン冷却水温がTW<Ko 
と判定された場合には、すなわちエンジンの運転状態が
EGR制御領域にないと判定された場合にはステップ1
12に移行し、ステップ112で制御回路19より負圧
制御弁16にバキュームポンプ17がらEGR弁5にお
けるダイアフラム室8及び排気絞り弁装置7におけるダ
イアフラム室40への負圧の供給全所つための制御信号
が出力され、この結果EGR弁5Vi全開状態に、壕だ
排気絞り弁12は全閉状態となり、このプログラムの実
行を終了する3、 本実施例ではEGR弁と排気絞り弁とを同一のt!i制
御負圧で連動制御するように構成したので、本来EGR
?I−増量したい軽負荷領域では排気絞り弁も多くして
背圧を高め、EGRi全確保し、さらに中負荷、高負荷
になるに従い、排気絞り−it少なくすることができ、
結局、エンジンの広範囲にわたる負荷領域において、E
GR量全適切に制御することができる。
Furthermore, in step 102, the engine cooling water temperature becomes TW<Ko.
If it is determined that the operating state of the engine is not in the EGR control region, step 1
In step 112, the control circuit 19 supplies the negative pressure control valve 16 from the vacuum pump 17 to the diaphragm chamber 8 in the EGR valve 5 and the diaphragm chamber 40 in the exhaust throttle valve device 7. A control signal is output, and as a result, the EGR valve 5Vi is fully opened and the trench exhaust throttle valve 12 is fully closed, ending the execution of this program. 3. In this embodiment, the EGR valve and exhaust throttle valve are the same. T! Since it is configured to perform interlock control using i-controlled negative pressure, originally EGR
? I-In the light load range where you want to increase the amount, you can increase the number of exhaust throttle valves to increase back pressure and ensure the full EGRi, and as the load becomes medium or high, you can reduce the exhaust throttle.
After all, over a wide range of engine loads, E
The entire amount of GR can be appropriately controlled.

〔発明の効果〕〔Effect of the invention〕

本発明では、ディーゼルエンジンの排気系通路と吸気系
通路とを連通ずるEGR通路に設けられEGR量を調節
するEGR弁と、前記排気系通路におけるEGR取出部
より下流側に設けられ排気系通路面積全調節する排気絞
り弁装置と會有するEGR制御装置において、エンジン
の運転状態がEGR制御領域にある場合には、制御回路
より予め記憶さ扛ている、エンジン負荷とエンジン回転
数により定められたEGR弁の駆動データ會エンジンの
運転状態に応じて補間演算し、該補間演算により得られ
た駆動テークに基づいて駆動装置により同一の駆動信号
で前記EGR弁及び排気絞り弁を駆動するように構成し
たので、エンジンの広範囲にわたる負荷領域においてE
GRJLkA切に制御することができる。
In the present invention, an EGR valve is provided in an EGR passage that communicates an exhaust system passage and an intake system passage of a diesel engine to adjust the amount of EGR, and an EGR valve is provided downstream of an EGR take-out part in the exhaust system passage and has an exhaust system passage area. In an EGR control device that is connected to an exhaust throttle valve device that fully adjusts the exhaust gas, when the engine operating state is in the EGR control region, the EGR control device performs EGR control determined by the engine load and engine speed that are stored in advance from the control circuit. Valve drive data is interpolated according to the operating state of the engine, and based on the drive take obtained by the interpolation, the EGR valve and the exhaust throttle valve are driven by the same drive signal by the drive device. Therefore, E over a wide range of engine loads.
GRJLkA can be controlled precisely.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係るEGR制御装置の一実施例の構成
?示す故明図、第2図は制御回路19の具体的構成を示
すブロック図、第3図は制御回路19により実行される
フロフラノ・の内容金示すフローチャート、第4図はR
OMにbC憶されているEGR弁5の制御負圧マツプを
示す図、第5図σ排気絞シ弁12の作動特性を示す図で
ある。 l・・・エンジン、2・・吸気系通路、3・・排気糸通
路、4・・・EGR通路、5・・・EGR弁、13・・
・水温上ンサ、14・・負荷センサ、15・・・回転数
セッサ、16・・・負圧制御升、】9・・・制御回路、
70・・・RAM、72 ・ROM、74−・・CP 
U。 代理人 鵜 沼 辰 之 (ほか1名) il1図
FIG. 1 shows the configuration of an embodiment of the EGR control device according to the present invention. FIG. 2 is a block diagram showing the specific configuration of the control circuit 19, FIG. 3 is a flowchart showing the contents of the flofurano executed by the control circuit 19, and FIG. 4 is a block diagram showing the specific configuration of the control circuit 19.
FIG. 5 is a diagram showing a control negative pressure map of the EGR valve 5 stored in the OM, and a diagram showing the operating characteristics of the σ exhaust throttle valve 12. l...Engine, 2...Intake system passage, 3...Exhaust line passage, 4...EGR passage, 5...EGR valve, 13...
・Water temperature sensor, 14... Load sensor, 15... Rotation speed sensor, 16... Negative pressure control cell, ]9... Control circuit,
70...RAM, 72 ・ROM, 74-...CP
U. Agent Tatsuyuki Unuma (and 1 other person) Figure il1

Claims (1)

【特許請求の範囲】[Claims] (1) ディーゼルエンジンの排気系通路と吸気系通路
とを連通ずるEGR通路と、該EGR通路に設けられE
GR景全調節するEGR弁と、前記排気系通路における
EGR取出部より下流側に設けられ排気系通路面積を調
節する排気絞り弁装置と、EGR弁及び排気絞り弁装置
を同一の駆動信号で駆動する駆動装置と、エンジンの運
転状態を示す各池センサの検出出力を増り込み、エンジ
ンの運転状態がEGR制御領域にある場合には、前記検
出出力に基づいて予め記憶されている、エンジン負荷と
エンジン回転数により定められたEGR弁の駆動データ
を補間演算し、前記駆動装置が該補間演算により得られ
た駆動データに基づいて駆動信号を出力させるための制
御信号を駆動装置に出力する制御回路とから構成される
ことを特徴とするディーゼルエンジンのEGR制御装置
(1) An EGR passage that communicates the exhaust system passage and intake system passage of a diesel engine, and an EGR passage provided in the EGR passage.
An EGR valve that adjusts the GR scenery, an exhaust throttle valve device that is provided downstream of the EGR take-out portion in the exhaust system passage and that adjusts the area of the exhaust system passage, and the EGR valve and the exhaust throttle valve device are driven by the same drive signal. The detection output of each sensor indicating the operating state of the engine is increased, and when the operating state of the engine is in the EGR control region, the engine load is increased, which is stored in advance based on the detected output. and a control signal for interpolating EGR valve drive data determined by the engine speed and outputting a control signal to the drive device for causing the drive device to output a drive signal based on the drive data obtained by the interpolation. An EGR control device for a diesel engine, comprising a circuit.
JP59081450A 1984-04-23 1984-04-23 Egr controller for diesel engine Pending JPS60224961A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59081450A JPS60224961A (en) 1984-04-23 1984-04-23 Egr controller for diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59081450A JPS60224961A (en) 1984-04-23 1984-04-23 Egr controller for diesel engine

Publications (1)

Publication Number Publication Date
JPS60224961A true JPS60224961A (en) 1985-11-09

Family

ID=13746736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59081450A Pending JPS60224961A (en) 1984-04-23 1984-04-23 Egr controller for diesel engine

Country Status (1)

Country Link
JP (1) JPS60224961A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62178765A (en) * 1986-01-31 1987-08-05 Hino Motors Ltd Exhaust gas dioxidating device for engine
JPS63173839A (en) * 1987-01-12 1988-07-18 Nippon Denso Co Ltd Exhaust gas recirculation control device
US6945235B1 (en) * 2003-08-28 2005-09-20 Volvo Lastvagner Ab Pulse reflecting method and arrangement in an exhaust gas recirculation system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62178765A (en) * 1986-01-31 1987-08-05 Hino Motors Ltd Exhaust gas dioxidating device for engine
JPS63173839A (en) * 1987-01-12 1988-07-18 Nippon Denso Co Ltd Exhaust gas recirculation control device
US6945235B1 (en) * 2003-08-28 2005-09-20 Volvo Lastvagner Ab Pulse reflecting method and arrangement in an exhaust gas recirculation system

Similar Documents

Publication Publication Date Title
US4636957A (en) Method for controlling operating state of an internal combustion engine with an overshoot preventing function
JPS6335819B2 (en)
JP2005054588A (en) Control device of internal combustion engine
JP2001214813A (en) Supercharged engine with egr device
JP2583361B2 (en) Exhaust recirculation system for a turbocharged diesel engine
JPS60224961A (en) Egr controller for diesel engine
JPH10238414A (en) Control device for egr
JPS60219445A (en) Egr controller for diesel engine
JP4020117B2 (en) Exhaust gas recirculation control device for diesel engine
JP3214336B2 (en) EGR control device for internal combustion engine
JPS60222551A (en) Egr controlling device for diesel engine
JPS5898631A (en) Fuel controlling device of engine
JPS6312829A (en) Turbocharger
JPH0861074A (en) Supercharging pressure controlling method
JPS64590B2 (en)
JPS63179172A (en) Exhaust gas recirculation device for engine
JPH0641744B2 (en) Exhaust gas recirculation control device for internal combustion engine
JPS6138341B2 (en)
JPH1037753A (en) Supercharging pressure control device of engine
JPH0385362A (en) Exhaust gas circulation controller of diesel engine
JP2721025B2 (en) Control method of exhaust gas recirculation control device
JP2836291B2 (en) Diesel engine with supercharger
JPS6130139B2 (en)
JPH07103830B2 (en) Exhaust gas recirculation control device for diesel engine
JPH07286562A (en) Intake air temperature and egr control device of internal combustion engine