JPS60219445A - Egr controller for diesel engine - Google Patents

Egr controller for diesel engine

Info

Publication number
JPS60219445A
JPS60219445A JP59076344A JP7634484A JPS60219445A JP S60219445 A JPS60219445 A JP S60219445A JP 59076344 A JP59076344 A JP 59076344A JP 7634484 A JP7634484 A JP 7634484A JP S60219445 A JPS60219445 A JP S60219445A
Authority
JP
Japan
Prior art keywords
egr
throttle valve
engine
exhaust throttle
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59076344A
Other languages
Japanese (ja)
Inventor
Ken Ando
安藤 謙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP59076344A priority Critical patent/JPS60219445A/en
Publication of JPS60219445A publication Critical patent/JPS60219445A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/04Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits concerning exhaust conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/41Control to generate negative pressure in the intake manifold, e.g. for fuel vapor purging or brake booster
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/0065Specific aspects of external EGR control

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

PURPOSE:To improve the accuracy of EGR control by controlling the opening of an exhaust throttle valve with correspondence to the difference between the target opening determined in accordance with the engine load and the engine rotation and the actual opening. CONSTITUTION:The intake and the exhaust paths 2, 3 of an engine 1 is communicated through EGR path 4. A control circuit 19 will compare the target opening of an exhaust throttle valve 7 determined with correspondence to the signals from a load sensor 14 and a rotation sensor 15 with the actual opening, to provide control signals corresponding with the difference to negative pressure control valves 16, 33. In such a manner, the fluctuation of control opening caused through the fluctuation of the allowance of the exhaust throttle valve can be reduced resulting in improvement of the accuracy of EGR control.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は排気系通路に設けられ排気系通路面積音調節す
ることにより背圧を高めるための排気絞り弁?備えた排
気ガス再循環(EGR)制御装置に係り、具体的には排
気絞υ弁の開度制御に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to an exhaust throttle valve that is provided in an exhaust system passage and is used to increase back pressure by adjusting the area and noise of the exhaust system passage. The present invention relates to an exhaust gas recirculation (EGR) control device, and specifically relates to opening control of an exhaust throttle υ valve.

〔発明の背景〕[Background of the invention]

ディーゼルエンジンにおいては一般に吸排気の差圧が小
さいので、従来のこの種装置にあっては排気系通路に設
けられた排気絞多弁で該通路の有効面積を調節すること
により背圧を高め、エンジンに要求されるEGR量を確
保するようにしている。
In diesel engines, the differential pressure between intake and exhaust is generally small, so conventional devices of this type use exhaust throttle valves installed in the exhaust system passage to adjust the effective area of the passage to increase the back pressure and increase engine pressure. The EGR amount required for this purpose is ensured.

一般的に排気絞り弁の開度制御は、エンジン負荷とエン
ジン回転数に基づいて定められた絞シ弁開度になるよう
に排気絞9弁を駆動するようにしているが、排気絞り弁
の公差のばらつき等に起因する排気絞り弁の制御開度の
ばらつきにより、特に過剰絞り状態においてはEGR量
が不必要に増加することがあシ、黒煙発生量の増加、出
力性能ノ悪化、エンジンの耐久性の低下等の問題が発生
していた。
Generally, the opening degree of the exhaust throttle valve is controlled by driving the nine exhaust throttle valves so that the throttle valve opening degree is determined based on the engine load and engine speed. Due to variations in the control opening of the exhaust throttle valve due to variations in tolerance, etc., the EGR amount may increase unnecessarily, especially in excessive throttle conditions, resulting in an increase in the amount of black smoke generated, deterioration of output performance, and engine damage. Problems such as decreased durability were occurring.

〔発明の目的〕[Purpose of the invention]

本発明の目的は排気絞シ弁の制御開度のばらつきを低減
することによりEGR制御の制御精度の向上を図ること
にある。
An object of the present invention is to improve the control accuracy of EGR control by reducing variations in the control opening degree of the exhaust throttle valve.

〔発明の概要〕[Summary of the invention]

本発明はディーゼルエンジンの排気系通路と吸気系通路
と全連通ずるEGR通路に設けられEGR量を調節する
EGR弁と、前記排気系通路におけるEGR取出部より
下流側に設けられ排気系通路面積を調節する排気絞り弁
と、エンジンの運転状態を示す各種センサの検出出力を
取り込み、該検出出力に基づいて前記EGR弁及び排気
絞り弁を駆動するための制御信号を出力する制御回路と
を少くとも有するImGR制御装置において、エンジン
の運転状態がEGR制御領域にある場合には排気絞り弁
の実際の開度と予め記憶されている、エンジン負荷とエ
ンジン回転数に応じて定められた排気絞シ弁の開度とを
比較し、その偏差に応じて排気絞り弁の開度を制御する
ことによシ、排気絞シ弁の製造時の公差等に起因する制
御開度のばらつきを低減させ、結局、EGR制御の制御
精度の向上を図るものである。
The present invention provides an EGR valve that is provided in an EGR passage that fully communicates with the exhaust system passage and intake system passage of a diesel engine to adjust the amount of EGR, and an EGR valve that is provided downstream of an EGR take-out portion in the exhaust system passage and that reduces the area of the exhaust system passage. At least an exhaust throttle valve to be adjusted and a control circuit that receives detection outputs from various sensors indicating the operating state of the engine and outputs control signals for driving the EGR valve and the exhaust throttle valve based on the detection outputs. In the ImGR control device that has the following, when the operating state of the engine is in the EGR control region, the exhaust throttle valve is set according to the actual opening degree of the exhaust throttle valve and the engine load and engine rotation speed, which are stored in advance. By comparing the opening of the exhaust throttle valve with the opening of , which aims to improve the control accuracy of EGR control.

〔発明の実施例〕[Embodiments of the invention]

本発明の実施例を図面に基づいて説明する。第1図には
本発明に係るEGR制御装置の一実施例の構成が示され
ており、同図においてディーゼルエンジンlの吸気系通
路2と排気系通路3との間にはE G R弁5奮介して
EGR通路4が前記通路2.3を連通ずるように形成さ
れている。
Embodiments of the present invention will be described based on the drawings. FIG. 1 shows the configuration of an embodiment of an EGR control device according to the present invention. In the figure, an EGR valve 5 is installed between an intake system passage 2 and an exhaust system passage 3 of a diesel engine 1. An EGR passage 4 is formed so as to communicate with the passage 2.3.

EGR弁5は、EGR通路4の通路面積を増減する弁体
9と、核弁体9と一体的に形成されたロッド20の後端
が固着されたタイヤフラム21と、該ダイヤフラム21
を図上、1方に付勢する圧縮はね22と、バキュームポ
ンプ17で発生した負圧會エンジンの要求するより適切
な負圧に制御する負圧制御弁33と通路23を介して連
通されたダイアフラム室8とからなシ、前記通路23を
介して該ダイアフラム室8内に導入される、負圧制御弁
33で形成された制御負圧に応じて前記排気系通路3か
らEGR通路4を介して吸気系通路2に環流される排気
ガスの再循環量(EGR量)を制御するように構成され
ている。
The EGR valve 5 includes a valve body 9 that increases or decreases the passage area of the EGR passage 4, a tire phragm 21 to which the rear end of a rod 20 integrally formed with the core valve body 9 is fixed, and the diaphragm 21.
As shown in the figure, the compression spring 22 which urges one direction and the negative pressure control valve 33 which controls the negative pressure generated by the vacuum pump 17 to a more appropriate negative pressure required by the engine are communicated via a passage 23. The EGR passage 4 is connected from the exhaust system passage 3 to the diaphragm chamber 8 according to the controlled negative pressure generated by the negative pressure control valve 33, which is introduced into the diaphragm chamber 8 through the passage 23. It is configured to control the recirculation amount (EGR amount) of exhaust gas that is recirculated to the intake system passage 2 through the exhaust gas.

また排気系通路3のEGR取出部6より下流側には排気
絞り弁装置7が設けられている、排気絞ジ弁装置7は、
ダイアフラム室40全画成するダイアフラム42と、ダ
イアフラム42を図上、上方に付勢する圧縮ばね44と
、ダイアフラム42に一端が固着されるロッド11と、
一端に排気絞シ弁12が固着され他端がロッド11に揺
動可能に取り付けられたロッド30とから構成されてい
る。ダイアフラム室40にはバキュームポンプ17で発
生した負圧が通路45、負圧制御弁16、通路46′f
t介して導入され、排気絞シ弁12は所定の開度に制御
される。
Further, an exhaust throttle valve device 7 is provided downstream of the EGR extraction portion 6 in the exhaust system passage 3.
A diaphragm 42 that completely defines the diaphragm chamber 40, a compression spring 44 that urges the diaphragm 42 upward in the figure, and a rod 11 that is fixed at one end to the diaphragm 42.
The exhaust throttle valve 12 is fixed to one end, and the rod 30 is swingably attached to the rod 11 at the other end. In the diaphragm chamber 40, the negative pressure generated by the vacuum pump 17 passes through a passage 45, a negative pressure control valve 16, and a passage 46'f.
t, and the exhaust throttle valve 12 is controlled to a predetermined opening degree.

また排気絞シ弁12は第2図に示すようにロッド30を
介してポテンショメータ46、ノ(ツテリ45によh構
成される開度センサ18に連結されておシ、開度センサ
18は排気絞り弁12の開度を電気信号に変換し、該電
気信号を制御回路19に出力するように構成されている
Further, as shown in FIG. 2, the exhaust throttle valve 12 is connected via a rod 30 to an opening sensor 18 composed of a potentiometer 46 and a lever 45. It is configured to convert the opening degree of the valve 12 into an electrical signal and output the electrical signal to the control circuit 19.

さらに19Fi制御回路であり、制御回路19はエンジ
ン冷却水温全検出する水温センサ13、エンジンの負荷
状態を検出する角荷センサ14、エンジン回転数全検出
する回転数センサ15、排気絞り弁12の開度を検出す
る開度センサ18の各検出出力を取シ込み、エンジンの
運転状態に応じてEGR通路4ヶ介して吸気系通路2に
導入するEGRガスの流量を制御するための制御信号を
負圧制御弁16.33にそれぞれ出力する。
Furthermore, it is a 19Fi control circuit, and the control circuit 19 includes a water temperature sensor 13 that detects the entire engine cooling water temperature, a square load sensor 14 that detects the engine load condition, a rotation speed sensor 15 that detects the entire engine rotation speed, and an exhaust throttle valve 12 opening. The control signal for controlling the flow rate of EGR gas introduced into the intake system passage 2 via the four EGR passages according to the operating state of the engine is received. They are output to pressure control valves 16 and 33, respectively.

次に第3因に制御回路19の具体的構成を示す。Next, the specific configuration of the control circuit 19 will be described as the third factor.

同図において50A、50B、50Cはそれぞれエンジ
ン冷却水温を検出する水温センサ13、エンジンlの負
荷状態を検出する負荷センサ14、排気絞り弁12の開
度を検出する開度センサ18の各検出出力を所定のレベ
ルまで増幅する)(ツフアアンプであり、60けこれら
のバッファアンプ50A、50B、50Cの各出力を選
択的に取りれたアナログ信号音ディジタル信号に変換す
るためのA/D変換器、64.66は入出力ボート、7
0は一時的にデータ全記憶するためのランダムアクセス
メモリ(RAMと記す。ぼ2は固定データ及びプログラ
ム等を格納するためのリードオンリメモリ(ROMと記
す。)、74はROM72に格納されたプログラムに基
づいて各種の演算処理を行い、入出カポ−トロ6を介し
て負圧制御弁J6.33にそれぞれ制御信号を出力する
CPUである。
In the figure, 50A, 50B, and 50C are the respective detection outputs of a water temperature sensor 13 that detects the engine cooling water temperature, a load sensor 14 that detects the load state of the engine l, and an opening sensor 18 that detects the opening of the exhaust throttle valve 12. to a predetermined level) (an A/D converter for converting the respective outputs of the 60 buffer amplifiers 50A, 50B, and 50C into analog signal tones and digital signals selectively taken); 64.66 is input/output boat, 7
0 is a random access memory (referred to as RAM) for temporarily storing all data; 2 is a read-only memory (referred to as ROM) for storing fixed data and programs, etc.; 74 is a program stored in ROM 72 This CPU performs various arithmetic processing based on the input/output capotro 6 and outputs control signals to the negative pressure control valve J6.33, respectively.

更に2811−Iエンジン回転数全検出する回転数千ン
サ15の検出出力を波形整形する整形回路、56は各部
の同期を取るためのクロックパルスを出力するクロック
パルス発振器である。
Further, 2811-I is a shaping circuit that shapes the detected output of the rotation number sensor 15 for detecting the total number of engine rotations, and 56 is a clock pulse oscillator that outputs clock pulses for synchronizing each part.

次に第4図に制御回路19により寮行されるプログラム
の内容を示す。同図において、プログラムが起動される
と、ステップ7oで水温センサJ3の検出出力TWが取
り込まれ、次のステップ72でエンジン冷却水温TWが
TW≧に、であるt・否かの判定が行われ、エンジン冷
却水温TWが設定値Ko (例えば50’C)〆以上で
あると判燈された場合にはステップ74に移行する。ス
テップ74では回転数千ンサ15よジエンジン回転数R
Eの取り込みが行われ、更にステップ76で負荷センサ
14の検出出力Lの取り込みが行われる。
Next, FIG. 4 shows the contents of the program executed by the control circuit 19 in the dormitory. In the figure, when the program is started, the detection output TW of the water temperature sensor J3 is fetched in step 7o, and in the next step 72, it is determined whether the engine cooling water temperature TW is TW≧t. If it is determined that the engine coolant temperature TW is equal to or higher than the set value Ko (for example, 50'C), the process moves to step 74. In step 74, the number of revolutions is 15,000, and the engine revolution number R is
E is taken in, and furthermore, in step 76, the detection output L of the load sensor 14 is taken in.

そしてステップ78では第5図に示すようなROM72
に予め記憶されている排気絞シ弁12の開度マツプに基
づいて目標開度θMの補間計算が行われる。ここで第5
図に示す開度マツプはエンジン負荷りとエンジ゛ン回転
数REにより定められた排気絞シ弁12の目標開度をパ
ーセント表示で示しており、同図において0チは排気絞
り弁12が全開状態であることを示し、100%は全閉
状態であることを示している。この開度マツプではEG
R弁全開時に排気絞シ弁を絞るようにしている。
Then, in step 78, the ROM 72 as shown in FIG.
An interpolation calculation of the target opening degree θM is performed based on the opening degree map of the exhaust throttle valve 12 stored in advance. Here the fifth
The opening degree map shown in the figure shows the target opening degree of the exhaust throttle valve 12 determined by the engine load and engine speed RE as a percentage. 100% indicates a fully closed state. In this opening map, EG
The exhaust throttle valve is throttled when the R valve is fully open.

更にステップ8oでは開度センサ18の検出出力θの取
り込みが行われ、次のステップ80で目標開度θMとツ
ー際の開度θとの比較判定がなされる。ステップ82で
θM≧θであると判定された場合にはステップ84で排
気絞り弁12’に目標開度θMに近づくように絞り込む
ための制御信号が制御回路19より負圧制御弁16に出
力され、排気絞9弁装e7におけるダイアフラム室40
にはよす箭い負圧がバキュームポンプ17よシ通路45
、負圧制御弁16、通路46を一介して供給される。
Further, in step 8o, the detection output θ of the opening sensor 18 is taken in, and in the next step 80, a comparison is made between the target opening θM and the closest opening θ. If it is determined in step 82 that θM≧θ, a control signal is output from the control circuit 19 to the negative pressure control valve 16 in order to throttle the exhaust throttle valve 12' so that it approaches the target opening θM. , diaphragm chamber 40 in exhaust throttle 9 valve arrangement e7
Negative pressure is transferred from the vacuum pump 17 to the passage 45.
, the negative pressure control valve 16, and the passage 46.

一方、ステソゲ82で0M〈θであると判定さむた場合
にはステップ86で排気絞!l1升12を目標開度θM
に近つくように開くべく、制御回路19より負圧制御弁
16に制御信号が出力され、該制御弁16によりダイア
フラム室40に供給される負圧は低1する。
On the other hand, if the stethoscope 82 fails to determine that 0M〈θ, the exhaust is throttled in step 86! 1 12 is the target opening θM
A control signal is output from the control circuit 19 to the negative pressure control valve 16 in order to open it closer to , and the negative pressure supplied to the diaphragm chamber 40 by the control valve 16 becomes low.

更にステップ72でエンジン冷却水温がTW〈KOと判
定された場合には、すなわちエンジンの運転状態がEG
R制御領域にないと判定された場合にはステップ88に
移行し、ステップ88で制御回路19より負圧制御弁1
6にバキュームポンプ17−6=ら排気絞シ弁装置7に
おけるダイアフラム室40への負圧の供給を断つための
制御信号が出力され、この結果排気絞υ弁12は全開状
態となシ、このプログラムの実行を終rする。
Further, if it is determined in step 72 that the engine cooling water temperature is TW<KO, that is, the engine operating state is EG.
If it is determined that it is not in the R control region, the process moves to step 88, and in step 88, the control circuit 19 controls the negative pressure control valve 1.
6, a control signal is output from the vacuum pump 17-6 to cut off the supply of negative pressure to the diaphragm chamber 40 in the exhaust throttle valve device 7, and as a result, the exhaust throttle valve 12 is fully open. Terminate execution of the program.

次に第6図に本実施例におけるEGR制御特性を示す。Next, FIG. 6 shows EGR control characteristics in this embodiment.

同図において点線Aで示すように従来装置では軽負荷領
域においてEGR量を一定に制御していたが、本発明に
係る実施例では実線Bで示すように軽負荷領域において
EGR量を多量に必要とする領域Qでは排気絞り弁12
會軽負荷であるほどより絞9込むようにし、EGRiの
増量を図っている。第7図は排気絞り弁工2の作動特性
を示しており、本実施例では排気絞り弁12は絞υ弁制
御負圧が15011IHyで全開とな9.300m H
fで全開状態となるように作動するものとする。
In the figure, as shown by the dotted line A, the conventional device controls the amount of EGR to be constant in the light load region, but in the embodiment according to the present invention, a large amount of EGR is required in the light load region, as shown by the solid line B. In the region Q where
The lighter the load, the more the engine is reduced, and the amount of EGRi is increased. FIG. 7 shows the operating characteristics of the exhaust throttle valve 2. In this embodiment, the exhaust throttle valve 12 is fully opened when the throttle valve control negative pressure is 15011IHy, and the exhaust throttle valve 12 is fully open at 9.300mH.
It is assumed that it operates so that it is fully open at f.

以上に説明したように本実施例ではディーゼルエンジン
の排気系通路と吸気系通路と全連通ずるEGR通路に設
けられたBGR量を調節するEGR弁と、前記排気系通
路におけるEGR取出部よシ下流側に設けられ排気糸通
路面積を調節する排気絞り弁と、エンジンの運転状態を
示す各種センサの検出出力盆取り込み、該検出出力に基
づいて前記EGR弁及び排気絞9弁を駆動するための制
御信号全出力する制御回路とt少なくとも有するEGR
制御装置において、エンジンの運転状態がEGR制御領
域にある場合には排気絞り弁の実際の開度と予め記憶さ
れている、エンジン負荷とエンジン回転数に応じて定め
ら扛た排気絞り弁の開度とを比較し、その偏差VC(5
して排気絞り升の開度全制御するように構成したので、
排気絞り弁の公差等のばらつきに起因する制御開度のば
らつきを低減でき、ひいてはFJGR制両の制御制度の
向上が図れる。
As explained above, in this embodiment, an EGR valve for adjusting the amount of BGR is provided in the EGR passage which communicates completely with the exhaust system passage and the intake system passage of the diesel engine, and a An exhaust throttle valve provided on the side to adjust the exhaust line passage area, and a detection output tray of various sensors indicating the operating state of the engine are taken in, and control is performed to drive the EGR valve and the nine exhaust throttle valves based on the detection output. EGR having a control circuit that outputs all signals and at least t
In the control device, when the operating state of the engine is in the EGR control region, the actual opening of the exhaust throttle valve and the opening of the exhaust throttle valve determined in accordance with the engine load and engine speed, which are stored in advance, are controlled. and the deviation VC(5
Since the configuration is configured to fully control the opening of the exhaust throttle,
It is possible to reduce variations in the control opening degree due to variations in tolerances of exhaust throttle valves, etc., and as a result, it is possible to improve the control accuracy of the FJGR system.

〔発明の効果〕〔Effect of the invention〕

本発明によれはEGR制御の制御精度の向上が図れる。 According to the present invention, the control accuracy of EGR control can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るE、GR制御装置の一実施例の構
成を示す説明図、第2図は排気絞p弁12の具体的構成
を示す説明図、第3図は制御回路19の具体的構成を示
すブロック図、第4図は制御回路19により実行さnる
プログラムの内容を示すフローチャート、第5図はRO
M 72に記憶されている排気絞p弁12の開度マツプ
を示す図、第6図は本発明の実施例におけるEGR制御
特性を従来例との比較によって示した図、第7図は排ネ
絞り弁12の作動特性を示す図である。 ■・・エンジン、2・・・吸気系通路、3・・・排気系
通路、4・・・EGR通路、5・・・EGR弁、13・
・・水温上ンサ、14・・負荷センサ、15・・・回転
数センサ、16.33・・・負圧制御弁、19・・ml
J 4回路。 代理人 鵜 沼 辰 之 (ほか1名) 第 5 図 筆 6 図 第 7 図
FIG. 1 is an explanatory diagram showing the configuration of an embodiment of the E/GR control device according to the present invention, FIG. 2 is an explanatory diagram showing the specific configuration of the exhaust throttle p-valve 12, and FIG. A block diagram showing a specific configuration, FIG. 4 is a flowchart showing the contents of a program executed by the control circuit 19, and FIG.
FIG. 6 is a diagram showing the opening degree map of the exhaust throttle p-valve 12 stored in M72, FIG. 6 is a diagram showing the EGR control characteristics in the embodiment of the present invention in comparison with the conventional example, and FIG. 3 is a diagram showing operating characteristics of the throttle valve 12. FIG. ■... Engine, 2... Intake system passage, 3... Exhaust system passage, 4... EGR passage, 5... EGR valve, 13...
...Water temperature sensor, 14...Load sensor, 15...Rotation speed sensor, 16.33...Negative pressure control valve, 19...ml
J 4 circuit. Agent Tatsuyuki Unuma (and 1 other person) No. 5 Drawing 6 Fig. 7

Claims (1)

【特許請求の範囲】[Claims] (1) ディーゼルエンジンの吸気系通路と排気系通路
とを連通ずるEGR通路と、該EGR通路に設けられE
GR量を調節するEGR弁と、前記排気系通路における
EGR取出部より下流側に設けられ排気系通路面積を調
節する排気絞り弁と、エンジンの運転状Dk示す各種セ
ンサの検出出力を取り込み、該検出出力に基づいて的記
EGR弁及び排気絞り弁を駆動するための制御信号を出
力する制御回路とを少くとも有し、前記各種センサは排
気絞り弁の開度を検出する開度センサを含み、前記制御
回路はエンジンの運転状態がEGR制御領域にある場合
には、開度センサによジ検出される排気絞り弁の実−の
開度と予め記憶されているエンジン負荷とエンジン回転
数に応じて定められた排気絞多弁の目標開度とを比較し
、その偏差に応じて排気絞多弁の開度−全制御するため
の制御信号を出力することを特徴とするディーゼルエン
ジンのEGR制御装置。
(1) An EGR passage that communicates the intake system passage and exhaust system passage of a diesel engine, and an EGR passage provided in the EGR passage.
An EGR valve that adjusts the amount of GR, an exhaust throttle valve that is provided downstream of the EGR take-out part in the exhaust system passage and that adjusts the area of the exhaust system passage, and detection outputs of various sensors that indicate the operating state Dk of the engine are taken in. and a control circuit that outputs a control signal for driving the EGR valve and the exhaust throttle valve based on the detected output, and the various sensors include an opening sensor that detects the opening of the exhaust throttle valve. When the operating state of the engine is in the EGR control region, the control circuit controls the actual opening of the exhaust throttle valve detected by the opening sensor and the pre-stored engine load and engine speed. An EGR control device for a diesel engine, characterized in that the EGR control device for a diesel engine is characterized in that it compares the opening degree of a multiple exhaust throttle valve determined according to the target opening degree and outputs a control signal for fully controlling the opening degree of the multiple exhaust throttle valve according to the deviation. .
JP59076344A 1984-04-16 1984-04-16 Egr controller for diesel engine Pending JPS60219445A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59076344A JPS60219445A (en) 1984-04-16 1984-04-16 Egr controller for diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59076344A JPS60219445A (en) 1984-04-16 1984-04-16 Egr controller for diesel engine

Publications (1)

Publication Number Publication Date
JPS60219445A true JPS60219445A (en) 1985-11-02

Family

ID=13602740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59076344A Pending JPS60219445A (en) 1984-04-16 1984-04-16 Egr controller for diesel engine

Country Status (1)

Country Link
JP (1) JPS60219445A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0281358A2 (en) * 1987-03-02 1988-09-07 Yamaha Motor Co., Ltd. Control system for controlling DC motor which controls operation condition of internal combustion engine
EP0445848A2 (en) * 1987-03-02 1991-09-11 Yamaha Motor Co., Ltd. Control system for controlling DC control motor which controls operation condition of internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0281358A2 (en) * 1987-03-02 1988-09-07 Yamaha Motor Co., Ltd. Control system for controlling DC motor which controls operation condition of internal combustion engine
EP0445848A2 (en) * 1987-03-02 1991-09-11 Yamaha Motor Co., Ltd. Control system for controlling DC control motor which controls operation condition of internal combustion engine

Similar Documents

Publication Publication Date Title
US4636957A (en) Method for controlling operating state of an internal combustion engine with an overshoot preventing function
US4450825A (en) EGR Control system for diesel engine
JP3546703B2 (en) Actuator control device for internal combustion engine
JPH0481557A (en) Exhaust reflex controller for internal combustion engine
JPH08232771A (en) Exhaust gas recirculation device
JPS60219445A (en) Egr controller for diesel engine
JPH01100316A (en) Intake-air device of internal combustion engine
US5052357A (en) Intake air mount control system for internal combustion engines
JPH06288303A (en) Self-diagnosis device for exhaust gas circulating device of internal combustion engine
JP3005718B2 (en) Exhaust gas recirculation control system for diesel engine
JPS60222551A (en) Egr controlling device for diesel engine
JP3478092B2 (en) Engine control device with idle intake pressure learning function
JPS60224961A (en) Egr controller for diesel engine
JPH08210195A (en) Exhaust rotary flow control device of diesel engine
JP3622506B2 (en) EGR control device for internal combustion engine
JPH08218946A (en) Exhaust gas recirculation controller for diesel engine
JPS60198348A (en) Engine controller
JPH0718389B2 (en) Exhaust gas recirculation control device for internal combustion engine
JPH06323200A (en) Exhaust gas recirculation control device for diesel engine
JPS62147026A (en) Supercharger control device for internal combustion engine
JPH0713503B2 (en) Exhaust gas recirculation control device for internal combustion engine
JPS6321727Y2 (en)
JPS60219444A (en) Egr controller for diesel engine
JPS6138341B2 (en)
JPH0648116Y2 (en) Internal combustion engine intake system