JPS60224929A - Suction system for supercharged engine - Google Patents

Suction system for supercharged engine

Info

Publication number
JPS60224929A
JPS60224929A JP59082538A JP8253884A JPS60224929A JP S60224929 A JPS60224929 A JP S60224929A JP 59082538 A JP59082538 A JP 59082538A JP 8253884 A JP8253884 A JP 8253884A JP S60224929 A JPS60224929 A JP S60224929A
Authority
JP
Japan
Prior art keywords
passage
valve
supercharging
intake
timing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59082538A
Other languages
Japanese (ja)
Other versions
JPH0517378B2 (en
Inventor
Haruo Okimoto
沖本 晴男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP59082538A priority Critical patent/JPS60224929A/en
Publication of JPS60224929A publication Critical patent/JPS60224929A/en
Publication of JPH0517378B2 publication Critical patent/JPH0517378B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/005Oscillating pipes with charging achieved by arrangement, dimensions or shapes of intakes pipes or chambers; Ram air pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0205Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the charging effect
    • F02B27/0215Oscillating pipe charging, i.e. variable intake pipe length charging
    • F02B27/0221Resonance charging combined with oscillating pipe charging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0226Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the means generating the charging effect
    • F02B27/0247Plenum chambers; Resonance chambers or resonance pipes
    • F02B27/0252Multiple plenum chambers or plenum chambers having inner separation walls, e.g. comprising valves for the same group of cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0226Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the means generating the charging effect
    • F02B27/0289Intake runners having multiple intake valves per cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/08Modifying distribution valve timing for charging purposes
    • F02B29/083Cyclically operated valves disposed upstream of the cylinder intake valve, controlled by external means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/1015Air intakes; Induction systems characterised by the engine type
    • F02M35/10157Supercharged engines
    • F02M35/10163Supercharged engines having air intakes specially adapted to selectively deliver naturally aspirated fluid or supercharged fluid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Characterised By The Charging Evacuation (AREA)

Abstract

PURPOSE:To make improvements in charging efficiency at a high-speed range, by specifying the length of a passage at the downstream of an expansion chamber in a main suction passage in particular, in case of a device installing a timing valve, whose opening or closing timing is advanced in proportion as it changes from a low-speed range to the high-speed one, in the downstream of a supercharger in a supercharging passage. CONSTITUTION:A suction passage is branched off into a main suction passage 12 and a supercharging passage 13 from its midway, while a throttle valve 17 and an expansion chamber 18 both are installed in this main suction passage 12. On the other hand, a vane type supercharger 20, a supercharged air control valve 22 and a timing valve 23 are all installed in the supercharging passage 13. The timing valve 23 is controlled so as to be advanced in proportion as its opening or closing timing changes from a low-speed range to a high-speed one. In the above-mentioned, at the high-speed range that an engine 1 is more than about 4,000 r.p.m., the length of the main suction passage 12 at the more downstream than the expansion chamber 18 is set so as to cause a compressional wave to be added to the vicinity of a main suction port at suction stroke closing time by means of a suction inertial effect. With this constitution, the prefiring of supercharged air at the suction stroke closing time is prevented from occurring, thus charging efficiency is improved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、主吸気通路と、過給機を有する過給通路とを
形成し、過給機下流の過給通路にタイミング弁を14プ
、エンジンの速度に応じ−(タイミング弁の開I11時
期を調整するようにし/j過給Iff (J 1ンジン
の吸気装置に関するものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention forms a main intake passage and a supercharging passage having a supercharger, and a timing valve is installed in the supercharging passage downstream of the supercharger. , the opening timing of the timing valve is adjusted according to the engine speed.

(従来技術) 従来、特公昭5El−51134号公報に示されるよう
に、主吸気通路と、過給機を有りろ過給通路とを形成し
、主吸気通路下流端の1−吸気ポーi−と過給通路下流
端の過給ボー1へとをイれぞれ燃焼室に開口させるとと
もに、吸気行程終期に過給を行うように開閉作動づるタ
イミング弁を過給機下流の過給通路に設【ノだエンジン
の吸気装置が知られている。この吸気装置によると、主
吸気通路からの自然吸気に加えて過給通路から過給気が
燃焼室に供給され、とくに自然吸気を阻害りることなく
過給が行われて充填効率が向上され、エンジンの出力性
能を向上させることがぐきる。
(Prior art) Conventionally, as shown in Japanese Patent Publication No. 5El-51134, a main intake passage and a filter feeding passage with a supercharger are formed, and 1-intake port i- at the downstream end of the main intake passage is formed. The downstream end of the supercharging passage opens into the combustion chamber, and a timing valve that opens and closes to perform supercharging at the end of the intake stroke is installed in the supercharging passage downstream of the supercharger. [Noda engine intake system is known. According to this intake system, supercharged air is supplied to the combustion chamber from the supercharging passage in addition to natural intake from the main intake passage, and supercharging is performed without interfering with natural intake, improving charging efficiency. , it is possible to improve the output performance of the engine.

またこの種の吸気装置において、各!11ンジン転数域
で効率よく過給を行うため、例えば過給ボートが過給用
吸気弁によって開閉されるようにしておくとともに、過
給通路に設各プられた前記りイミング弁の開閉時期をエ
ンジンが高速になるにしたがって進角させるようにした
ものも提案されている。つまりこの装置は、過給ボート
が閉じる前にタイミング弁が開かれ、過給ボートが閉じ
てからタイミング弁が閉じられるようにし、過給ボート
とタイミング弁とがともに間かれているラップ期間に過
給気が燃焼室に供給されるようにしている。そして、吸
気流速が遅い低速時にt、tタイミング弁の開閉時期を
ある程度遅らゼることにより主吸気通路への吹返しを防
止し、また高速時には吸気流速が高くなって低速時より
も吹返しが生じにくくなり、かつ短時間で多聞の過給気
を燃焼室に供給することが難しいので、上記タイミング
弁の開閉時期を進角させることによって上記ラップ期間
を大きくするようにしている。この場合、高速時に過給
気供給効率を高めるためにはできるだけ上記ラップ期間
を増大させるようにタイミング弁開閉時期の進角量を大
きくすることが望ましいが、高速時でも過給時期が進み
すぎると主吸気通路への吹返しが生じる。従って、主吸
気通路への吹返しが生じない範囲でタイミング弁の開閉
時期を進角させる必要がある。
Also, in this type of intake device, each! In order to efficiently perform supercharging in the 11 engine speed range, for example, the supercharging boat is opened and closed by the supercharging intake valve, and the timing of opening and closing of each timing valve installed in the supercharging passage is adjusted. It has also been proposed to advance the angle as the engine speed increases. In other words, this device ensures that the timing valve is opened before the supercharging boat is closed, and the timing valve is closed after the supercharging boat is closed, and that the timing valve is closed during the lap period in which the supercharging boat and the timing valve are both closed. Supply air is supplied to the combustion chamber. At low speeds, when the intake flow rate is slow, the opening and closing timings of the t and t timing valves are delayed to a certain extent to prevent blowback into the main intake passage, and at high speeds, the intake flow rate becomes higher than at low speeds. Since this makes it difficult to supply a large amount of supercharged air to the combustion chamber in a short period of time, the wrap period is increased by advancing the opening/closing timing of the timing valve. In this case, in order to increase the supercharging air supply efficiency at high speeds, it is desirable to increase the amount of advance of the timing valve opening/closing timing so as to increase the above-mentioned wrap period as much as possible, but even at high speeds, if the supercharging timing advances too much, Blowing back into the main intake passage occurs. Therefore, it is necessary to advance the opening/closing timing of the timing valve within a range that does not cause the air to blow back into the main intake passage.

(発明の目的) 本発明はこのような事情に鑑み、]ンジンの高速域で、
従来と比べてタイミング弁Cの進角量をより大キくシて
も主吸気通路への吹返しを防止Jることができ、高速時
の充填効率を高めて出力を向上することのできる過給機
付エンジンの吸気装行を提供するものである。
(Object of the invention) In view of the above circumstances, the present invention has been developed to
It is possible to prevent air from flowing back into the main intake passage even if the advance angle of the timing valve C is increased compared to the conventional system, and it is possible to increase filling efficiency at high speeds and improve output. It provides air intake for a powered engine.

(発明の構成) 本発明は、主吸気通路と、過給機を右する過給通路とを
形成し、吸気行程終期に過給を行うように開閉作動する
タイミング弁を1記過給機下流の過給通路に設ける一方
、該タイミング弁の開閉時期をエンジンが低速域から高
速域になるにしたがって進角するようにしたエンジンに
おいて、主吸気通路に形成した拡大室の下流の主吸気通
路の長さもしくは上記主吸気通路を含む気筒間の連通路
の長さの少なくともいずれかを、高速域で吸気行程終期
の気筒の主吸気通路開口部付近に圧縮波が送られるよう
に設定したものである。つまり、タイミング弁の開閉時
期が進角づる高速域では、上記圧縮波により、主吸気通
路に過給気が吹返゛すことを防止づるようにしたもので
ある。
(Structure of the Invention) The present invention forms a main intake passage and a supercharging passage to the right of the supercharger, and a timing valve that opens and closes to perform supercharging at the end of the intake stroke is provided downstream of the supercharger. In an engine in which the timing valve is provided in the supercharging passage and the opening/closing timing of the timing valve is advanced as the engine moves from a low speed range to a high speed range, the length of the main intake passage downstream of the enlarged chamber formed in the main intake passage. or the length of the communication passage between the cylinders including the main intake passage is set so that a compression wave is sent to the vicinity of the main intake passage opening of the cylinder at the end of the intake stroke in the high-speed range. . In other words, in a high speed range where the opening/closing timing of the timing valve is advanced, the compression wave prevents the supercharged air from blowing back into the main intake passage.

(実施例) 第1図は本発明の第1実施例を示している。この図にお
いて、1はエンジンの気筒であって、その内部にはピス
トン2が収容され、このピストン2のF方に燃焼室3が
形成されている。この燃焼室3には主吸気ボート4、過
給ボート5および排気ボート6が開口し、これらのボー
ト4〜6に主吸気弁7、過給用吸気弁8および排気弁9
がそれぞれ装備されている。
(Embodiment) FIG. 1 shows a first embodiment of the present invention. In this figure, reference numeral 1 denotes a cylinder of an engine. A piston 2 is housed inside the cylinder 1, and a combustion chamber 3 is formed on the F side of the piston 2. A main intake boat 4, a supercharging boat 5, and an exhaust boat 6 are opened in the combustion chamber 3, and these boats 4 to 6 are connected to a main intake valve 7, a supercharging intake valve 8, and an exhaust valve 9.
are each equipped with.

11は吸気通路であって、その途中からは主吸気通路1
2と過給通路13とが互いに分岐しており、主吸気通路
12は主吸気ボート4に連通し、過給通路13は過給ボ
ート5に連通している。この主吸気通路12と過給通路
13との分岐箇所より上流の吸気通路11には、エアク
リーナ14およびエアフローメータ15が配設され、■
アフローメータ15により検出され!、:吸入空気吊1
°りじ、主吸気通路12′8に具備された燃料噴射弁(
図示せず)からの燃料噴l7J471.が制御されるよ
うに4rっている。
11 is an intake passage, and from the middle there is a main intake passage 1.
2 and a supercharging passage 13 are branched from each other, the main intake passage 12 communicates with the main intake boat 4, and the supercharging passage 13 communicates with the supercharging boat 5. An air cleaner 14 and an air flow meter 15 are disposed in the intake passage 11 upstream from the branch point between the main intake passage 12 and the supercharging passage 13.
Detected by aflow meter 15! , :Intake air suspension 1
The fuel injection valve installed in the main intake passage 12'8 (
(not shown) fuel injection l7J471. 4R is set so that it is controlled.

上ン主吸気通路12には、アクセル操作によって開閉作
動されるスロワ1−ル弁17が設けられるとともに、こ
のスロットル弁17より下流に拡大室(サージタンク)
18が形成されている。また過給通路13には過給機2
0が設けられCd3す、この過給機20は、例えばエン
ジンの出力軸21により駆動されるベーンタイプの土ア
ポンブがらなっている。この過給機20は、常時エンジ
ンの出力軸21に連動して作動するようにしてもよいが
、クラッチ機構を介して出力軸21に接続1Jることに
より、過給の必要がない低角向時にt=1 +7 Jl
させるようにしておいてもよい。
The upper main intake passage 12 is provided with a throttle valve 17 that is opened and closed by accelerator operation, and an expansion chamber (surge tank) downstream of the throttle valve 17.
18 are formed. In addition, the supercharger 2 is located in the supercharging passage 13.
The supercharger 20 includes, for example, a vane type earth pump driven by the output shaft 21 of the engine. This supercharger 20 may be operated in conjunction with the output shaft 21 of the engine at all times, but by being connected to the output shaft 21 via a clutch mechanism, it is possible to operate the supercharger 20 at low angles where supercharging is not necessary. Sometimes t=1 +7 Jl
You may also leave it as such.

上記過給機20より下流の過給通路13には、エンジン
の負荷に応じて過給mを]ント11−ルづる過給気コン
ト0−ル弁22が設りられ、さらにこの過給気コントロ
ール弁22よリート流にロータリパルプからなるタイミ
ング弁23が設【ノられている。また上記過給通路13
に対し、過給!6120と過給気コントロール弁22と
の間の部分の余剰の過給気を過給機20の上流側にリリ
ーフするリリーフ通路24が形成され、このリリーフ通
路24の途中には、チェック弁タイプのリリーフ弁25
が設けられている。
A supercharging air control valve 22 is installed in the supercharging passage 13 downstream of the supercharger 20, and controls the supercharging m according to the engine load. A timing valve 23 made of rotary pulp is provided in the leet flow from the control valve 22. In addition, the supercharging passage 13
On the other hand, supercharging! 6120 and the supercharge air control valve 22 is formed to relieve excess supercharge air to the upstream side of the supercharger 20, and a check valve type is provided in the middle of the relief passage 24. relief valve 25
is provided.

上記タイミング弁23は、エンジンが高速になるにした
がって進角するように、タイミング可変機構を介してエ
ンジンの出力軸21に連結されている。このタイミング
可変機構は従来から秒々捉案されているため、図示およ
び詳しい説明は省略するが、例えば回転に伴う遠心力を
利用し、遠心力の変化に応じてタイミング弁23の位相
が変えられるような構造となっている。
The timing valve 23 is connected to the output shaft 21 of the engine via a variable timing mechanism so as to advance as the engine speeds up. Since this variable timing mechanism has been proposed in the past, illustrations and detailed explanations will be omitted since it has been proposed in the past, but for example, centrifugal force accompanying rotation is used to change the phase of the timing valve 23 in response to changes in centrifugal force. It has a structure like this.

第2図は横軸をクランク角として、前記主吸気弁7、過
給用吸気弁8およびタイミング弁23の開閉時期の関係
を表わしている。主吸気弁7はこの図にl1lAで示す
ように、TDC(上死点)の直前から開き始めてBDC
(下死点)の直後に閉じられるようになっている。また
過給用吸気弁8は線BC示づJ、うに、J吸気弁7より
b開弁時期および閉弁時期が多少近れるようにしである
。これに対してタイミング弁23は、エンジンの低速域
では破線CΩで示リタイミングで開11され、高速域で
1よ実線Chで示づタイミングぐ開閉されるようにしで
ある。つまりこのタイミング弁23は、吸気行程の終期
において少なくとも過給用吸気弁8が閉じられる前に間
かれ、過給用吸気弁8の開弁時期以後に閉じられるよう
になっていて、このタイミング弁23と過給用吸気弁8
の開弁ラップ範囲に相当する期間だけ過給気が燃焼室に
供給されるようにしである。そしてエンジンの低速域で
はタイミング弁23の開閉時期が遅らされて上記開弁ラ
ップ範囲が小さくなり、高速域ではタイミング弁23の
開閉時期が進角されることにより1記開弁ラツプ範囲が
大きくなるようにしている。
FIG. 2 shows the relationship between the opening and closing timings of the main intake valve 7, the supercharging intake valve 8, and the timing valve 23, with the horizontal axis representing the crank angle. As shown by l1lA in this figure, the main intake valve 7 starts opening just before TDC (top dead center) and reaches BDC.
(bottom dead center). Further, the supercharging intake valve 8 is arranged so that its opening timing and closing timing are somewhat closer to each other than the J intake valve 7, as indicated by the line BC. On the other hand, the timing valve 23 is opened and closed at the timing indicated by the broken line CΩ in the low speed range of the engine, and is opened and closed at the timing indicated by the solid line Ch in the high speed range. In other words, this timing valve 23 is opened at least before the supercharging intake valve 8 is closed at the end of the intake stroke, and is closed after the opening timing of the supercharging intake valve 8. 23 and supercharging intake valve 8
The supercharged air is supplied to the combustion chamber only for a period corresponding to the valve opening lap range. In the low speed range of the engine, the opening/closing timing of the timing valve 23 is delayed and the above-mentioned valve opening lap range becomes smaller, and in the high speed range, the opening/closing timing of the timing valve 23 is advanced, thereby increasing the above-mentioned valve opening lap range. I'm trying to make it happen.

このようにした場合、タイミング弁23の開弁期間は主
吸気弁7の開弁期間とも一部うツブし、タイミング弁2
3を進角させるほど、主吸気弁7の開弁期間とのラップ
範囲も大きくなる。
In this case, the opening period of the timing valve 23 partially overlaps with the opening period of the main intake valve 7, and the timing valve 23 is partially overlapped with the opening period of the main intake valve 7.
3 is advanced, the overlap range with the valve opening period of the main intake valve 7 also becomes larger.

このような構造において、エンジンの高速域ではいわゆ
る吸気慣性効果によって圧縮波が吸気行程終期に前記主
吸気ボート4付近に与えられるように、予め前記拡大室
18より下流の主吸気通路12の長さが設定されでいる
。つまり、主吸気弁7が開かれる吸気行程ではピストン
2の下降に伴って生じた膨張波(負圧波)が音速で主吸
気通路12内を伝播し、拡大室18で圧縮波(正圧波)
に反転して反射されるが、この圧縮波が主吸気ボート4
付近に返ってくるタイミングは、拡大室18より上流の
主吸気通路12の長さに関係し、かつエンジン回転数に
よって変化する。そこで、高速域にあるときに、上記圧
縮波が主吸気ボート4付近に返ってくる時期が吸気行程
終期となるように、拡大室18より下流の主吸気通路1
2の良さが設定されている。ここで高速域とは、実用回
転数領域内でエンジン回転数が4.OOOrpm以上の
回転数領域をいう。
In such a structure, the length of the main intake passage 12 downstream of the enlarged chamber 18 is determined in advance so that a compression wave is applied to the vicinity of the main intake boat 4 at the end of the intake stroke due to the so-called intake inertia effect in the high-speed range of the engine. has been set. In other words, during the intake stroke when the main intake valve 7 is opened, an expansion wave (negative pressure wave) generated as the piston 2 descends propagates inside the main intake passage 12 at the speed of sound, and a compression wave (positive pressure wave) occurs in the expansion chamber 18.
This compression wave is reversed and reflected by the main intake boat 4.
The timing of the return to the vicinity is related to the length of the main intake passage 12 upstream of the enlarged chamber 18 and changes depending on the engine speed. Therefore, in the high speed range, the main intake passage 1 downstream of the expansion chamber 18 is set so that the compression wave returns to the vicinity of the main intake boat 4 at the end of the intake stroke.
A quality of 2 is set. Here, the high speed range is defined as an engine rotation speed of 4.5 mm within the practical rotation speed range. Refers to the rotational speed region of OOOrpm or higher.

このように構成された吸気装置による場合、エンジンの
高速域では、燃焼室3へ供給される過給気の圧力および
主吸気ボート4f・1近の吸気圧力1.L、クランク角
に対して第3図に示iJ J、うな関係ぐ変化づ°る。
In the case of the intake system configured in this way, in the high speed range of the engine, the pressure of supercharging air supplied to the combustion chamber 3 and the intake pressure near the main intake boat 4f. The relationship between L and crank angle as shown in FIG. 3 changes.

すなわち、前述のように高速域ではタイミング弁23が
進角されて、過給用吸気弁8との開弁ラップ範囲が大き
くされ(第2図参照)、こ゛の状態e吸気行程終期に上
記開弁ラップ範囲に相当づる期間だり、第3図に曲線り
で承りように過給気が燃焼室3に供給される。このよう
に過給気が供給される期間のうら、主吸気弁7の開弁1
11間とラップする期間は、過給気が主吸気通路12に
吹返される可能性がある。一方、主吸気ボート4付近の
吸気圧力は曲線Eで示すように、主吸気ブ?7の開弁後
のTDC伺近から次第に低下し、吸気行程途中で負圧が
最大となってから、次第に負圧が小さくなる。そして、
高速域で前記の吸気慣性効果をもたUない場合、吸気行
程1I41flにお()る吸気圧力は2点鎖線Eaで示
すようになって、吸気流によって主吸気通路12への過
給気の吹返しがある程度抑制されるものの、タイミング
弁23の進角量を大きくしようとすると、吸気圧力が低
いため吹返しを防止しぎれなくなる。また高速時のタイ
ミング弁I′23の進角量を比較的小さくすると、エン
ジン回転数の上昇に伴って過給時間が短くなるので、多
山の過給気を[焼室3に導入プることが難しくなる。
That is, as mentioned above, in the high speed range, the timing valve 23 is advanced and the valve opening lap range with the supercharging intake valve 8 is increased (see Fig. 2), and in this state e, the timing valve 23 is advanced at the end of the intake stroke. Supercharged air is supplied to the combustion chamber 3 for a period corresponding to the valve wrap range, as shown by the curved line in FIG. After the period in which supercharging air is supplied in this way, the main intake valve 7 is opened 1.
There is a possibility that the supercharged air is blown back into the main intake passage 12 during the period that overlaps with the period 11. On the other hand, as shown by curve E, the intake pressure near the main intake boat 4 is the main intake boat 4. The negative pressure gradually decreases from near TDC after the valve is opened in step 7, reaches a maximum in the middle of the intake stroke, and then gradually decreases. and,
In the case where there is no intake inertia effect mentioned above in the high-speed range, the intake pressure in the intake stroke 1I41fl becomes as shown by the two-dot chain line Ea, and the intake flow causes the supercharging air to flow into the main intake passage 12. Although the blowback is suppressed to some extent, if an attempt is made to increase the amount of advance of the timing valve 23, the blowback cannot be prevented completely because the intake pressure is low. Furthermore, if the amount of advance of the timing valve I'23 at high speed is made relatively small, the supercharging time will be shortened as the engine speed increases. things become difficult.

これに対し、高速域で前記の吸気慣性効果をもたけた場
合、前記圧縮波により、吸気行程終期に実線部分[bで
示すように主吸気ボート4@近の吸気圧力が高くなり、
過給気の吹返し防止作用が高められる。つまり、吸気慣
性効果をもたせない場合と比べ、タイミング弁23の開
閉時期をより大きく進角させても主吸気通路12への吹
返しが防止され、多聞の過給気が有効に燃焼室3に導入
されて充填効率が高められる。従って、吸気慣性効果を
もたせない場合のエンジン回転数と出力トルクとの関係
は第4図に2点鎖線[で示すようになり、8速域で吸気
慣性効果をらたせた場合はこの図に実線Gで示すように
、高速域で出力トルクが高められることとなる。
On the other hand, when the above-mentioned intake inertia effect is created in the high-speed range, the intake pressure near the main intake boat 4 becomes higher as shown by the solid line [b] at the end of the intake stroke due to the compression wave.
The effect of preventing supercharged air from blowing back is enhanced. In other words, compared to the case where there is no intake inertia effect, even if the opening/closing timing of the timing valve 23 is advanced further, blowback into the main intake passage 12 is prevented, and a large amount of supercharged air is effectively sent to the combustion chamber 3. Introduced to increase filling efficiency. Therefore, the relationship between engine speed and output torque when the intake inertia effect is not provided is shown by the two-dot chain line in Figure 4, and when the intake inertia effect is provided in the 8th gear range, this figure shows the relationship between the engine speed and the output torque. As shown by the solid line G, the output torque is increased in the high speed range.

第5図は本発明の第2実施例を示し、この実施例では、
エンジンの高速域で、いわゆる気筒間吸気干渉効果を利
用して主吸気通路への吹返しを防止するようにしている
。この図は2気筒4サイクルエンジンを示し、その6気
1qla、lbの燃焼室3a、3bにそれぞれ1吸気ボ
ート4a、4b、過給ボー1〜5a、5bおよヒ17を
気ボート6a、6bが開口し、これらのボートに主吸気
弁7a、7b、過給用吸気弁8a、8bおよび排気弁9
a。
FIG. 5 shows a second embodiment of the invention, in which:
In the high-speed range of the engine, the so-called inter-cylinder intake air interference effect is used to prevent air from flowing back into the main intake passage. This figure shows a 2-cylinder 4-stroke engine, with 6 air 1qla and lb combustion chambers 3a and 3b having one intake boat 4a and 4b, supercharging boats 1 to 5a, 5b and hi 17, respectively, and air boats 6a and 6b. is opened, and the main intake valves 7a, 7b, supercharging intake valves 8a, 8b, and exhaust valve 9 are connected to these boats.
a.

9bが装備されている。また、主吸気通路12はその途
中から気筒別に分岐し、この各主吸気通路分岐部12a
、12bが6気1)Ila、1bの主吸気ボート4a、
4bに連通している。過給1120を有りろ過給通路1
3も、過給気コンl−a−ル弁22より下流で気筒別に
分岐しC1それぞれ各気筒1a、1b(7)過給ボート
5a、5bに連通しくおり、この各過給通路分岐部13
a、13bにそれぞれタイミング弁23a、23bが設
けられてイル。コ(7)タイミング弁23a、23bは
、11′Ii実施例の場合と同様にエンジン回転数に応
じで開閉時期が調整されるようになつ−Cいる。
9b is equipped. Further, the main intake passage 12 branches from the middle for each cylinder, and each main intake passage branch part 12a
, 12b is 6 air 1) Ila, 1b main intake boat 4a,
It communicates with 4b. With supercharging 1120 and filtration supply passage 1
3 also branches for each cylinder downstream of the supercharging air control valve 22 and communicates with the respective cylinders 1a, 1b (7) and the supercharging boats 5a, 5b, respectively, and each supercharging passage branch section 13
Timing valves 23a and 23b are provided at ports a and 13b, respectively. (7) The opening and closing timings of the timing valves 23a and 23b are adjusted in accordance with the engine speed, as in the case of the 11'Ii embodiment.

山気筒1a、1b間の前記各主吸気通路分岐部12a、
12bからなる連通路の長さは、エンジンの高速域で次
のような気筒間吸気干渉効果によって吸気行程終期にあ
る気筒の主吸気ボート付近に圧縮波が与えられるように
設定されている。つまり、山気筒1a、1bのうちの一
方の気筒の主吸気ボート開口時にt、L燃焼室内の残留
ガス1(で吸気が[縮されて、その圧縮波が他方の気筒
の主吸気ボートへ送られ、また一方の気筒の主吸気ボー
ト閉口時には吸気流による作用で圧縮波が生じて、その
圧縮波が他方の気筒の主吸気ボートに送られる。そして
エンジン高速域で、一方の気筒の吸気ボート開口時に生
じる圧縮波またtま吸気ボート閉口時に生じる圧縮波が
、他方の気筒の吸気行程終期にその主吸気ボート付近に
達づるように、前記連通路の長さが設定されている。
each of the main intake passage branch portions 12a between the mountain cylinders 1a and 1b;
The length of the communication path 12b is set so that a compression wave is applied near the main intake boat of the cylinder at the end of the intake stroke due to the following inter-cylinder intake air interference effect in the high speed range of the engine. In other words, when the main intake boat of one of the mountain cylinders 1a and 1b is opened, the intake air is compressed by the residual gas 1 in the combustion chamber t and L, and the compression wave is sent to the main intake boat of the other cylinder. When the main intake boat of one cylinder is closed, a compression wave is generated by the action of the intake air flow, and this compression wave is sent to the main intake boat of the other cylinder.Then, in the engine high speed range, the intake boat of one cylinder The length of the communication passage is set so that the compression waves generated when the cylinder opens and the compression waves generated when the intake boat is closed reach the vicinity of the main intake boat at the end of the intake stroke of the other cylinder.

このように気筒間吸気干渉効果を利用しても、エンジン
の高速域では各気筒1a、1bに対してそれぞれ吸気行
程終期に主吸気ボート4a、4b付近に圧縮波が与えら
れるため、′51実施例の場合とβ1様に過給気の吹返
しが防止され、充填効率が高められることとなる。
Even if the inter-cylinder intake interference effect is utilized in this way, compression waves are applied near the main intake boats 4a and 4b for each cylinder 1a and 1b at the end of the intake stroke in the high-speed range of the engine, so the '51 implementation As in the case of the example and β1, blowing back of the supercharging air is prevented, and the charging efficiency is increased.

なお、主吸気通路12の気筒別分岐箇所に第5図に2点
鎖線で示すように拡大室28を設り、拡大室28を通し
て気筒la、1b間で圧縮波が伝播されるようにしても
よい。3気筒以上の多気筒エンジンにおいても、拡大室
から各気筒別に主吸気通路を分岐させて、高速域で各気
n相ZIJに気筒間吸気干渉効果をもたせるように設定
するこができる。また、拡大室の配dおよび主吸気通路
分岐部の長さの設定によっては、高速域で前述の吸気慣
性効果と気筒間吸気干渉効果を同時にbたりることも可
能である。
Incidentally, an expansion chamber 28 may be provided at each cylinder branch point of the main intake passage 12 as shown by the two-dot chain line in FIG. 5, and the compression wave may be propagated between the cylinders la and 1b through the expansion chamber 28. good. Even in a multi-cylinder engine with three or more cylinders, the main intake passage can be branched from the enlarged chamber for each cylinder, so that each air n-phase ZIJ can be set to have an inter-cylinder intake interference effect in the high speed range. Furthermore, depending on the arrangement of the enlarged chamber and the length of the main intake passage branch, it is possible to simultaneously achieve the above-mentioned intake inertia effect and inter-cylinder intake interference effect in the high-speed range.

(発明の効果) 以上のように本発明は、過給通路に段1ノだタイミング
弁の開閉時期をエンジン高速域で進角さぜるよう−にす
るとともに、高速域では吸気行程NJFJの気筒の主吸
気通路開口部付近に圧縮波を与えることにより、主吸気
通路への過給気の吹返しを防止する作用を高めているた
め、高速域で充填効率を高めて出ノ〕を向上づることが
できるものである。
(Effects of the Invention) As described above, the present invention allows the opening and closing timing of the stage 1 timing valve in the supercharging passage to be advanced in the engine high speed range, and in the high speed range, the intake stroke NJFJ cylinder By applying a compression wave near the opening of the main intake passage, the effect of preventing supercharged air from blowing back into the main intake passage is enhanced, increasing charging efficiency and improving output at high speeds. It is something that can be done.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1実施例を示1概略図、第2図は主
吸気弁、過給用吸気弁およびタイミング弁の開r#1時
期を示づ゛説明図、第3図は燃焼室に導入される過給気
圧力および主吸気ボート付近の吸気圧力の変化を示づ説
明図、第4図はエンジン回転数と出力トルクとの関係を
示す説明図、第5図は第2実施例を示り概略図である。 1.1a、1b・・・気筒、12・・・主吸気通路、1
3・・・過給通路、18・・・拡大室、20・・・過給
機、23・・・タイミング弁。 特許出願人 東洋工業株式会社
Fig. 1 is a schematic diagram showing the first embodiment of the present invention, Fig. 2 is an explanatory drawing showing the opening r#1 timing of the main intake valve, the supercharging intake valve, and the timing valve. An explanatory diagram showing changes in supercharging air pressure introduced into the combustion chamber and intake pressure near the main intake boat, Figure 4 is an explanatory diagram showing the relationship between engine speed and output torque, and Figure 5 is an explanatory diagram showing the relationship between engine speed and output torque. It is a schematic diagram showing an example. 1.1a, 1b...Cylinder, 12...Main intake passage, 1
3... Supercharging passage, 18... Expansion chamber, 20... Supercharger, 23... Timing valve. Patent applicant: Toyo Kogyo Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 1、主吸気通路と、過給機を有りろ過給通路とを形成し
、吸気行程終期に過給を行うように開閉作動するタイミ
ング弁を上記過給機下流の過給通路に設ける一方、該タ
イミング弁の開閉時期をエンジンが低速域から高速域に
なるにしたがって進角づるようにしたエンジンにおいて
、主吸気通路に形成した拡大室の下流の主吸気通路の長
さもしくは上記主吸気通路を含む気n間の連通路の長さ
の少なくともいずれかを、高速域で吸気行程終期の気筒
の主吸気通路開口部付近に圧縮波が送られるように設定
したことを特徴とする過給機付エンジンの吸気装置。
1. A main intake passage and a filter feeding passage with a supercharger are formed, and a timing valve that opens and closes to perform supercharging at the end of the intake stroke is provided in the supercharging passage downstream of the supercharger. In an engine in which the opening and closing timing of the timing valve is advanced as the engine moves from a low speed range to a high speed range, the length of the main intake passage downstream of the enlarged chamber formed in the main intake passage or the length of the main intake passage. A supercharged engine characterized in that at least one of the lengths of the communication passage between air and air is set so that a compression wave is sent to the vicinity of the main intake passage opening of the cylinder at the end of the intake stroke in a high-speed range. intake device.
JP59082538A 1984-04-23 1984-04-23 Suction system for supercharged engine Granted JPS60224929A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59082538A JPS60224929A (en) 1984-04-23 1984-04-23 Suction system for supercharged engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59082538A JPS60224929A (en) 1984-04-23 1984-04-23 Suction system for supercharged engine

Publications (2)

Publication Number Publication Date
JPS60224929A true JPS60224929A (en) 1985-11-09
JPH0517378B2 JPH0517378B2 (en) 1993-03-09

Family

ID=13777283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59082538A Granted JPS60224929A (en) 1984-04-23 1984-04-23 Suction system for supercharged engine

Country Status (1)

Country Link
JP (1) JPS60224929A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4517772B2 (en) * 2004-08-19 2010-08-04 マツダ株式会社 Multi-cylinder engine intake system
JP6760677B2 (en) * 2016-07-15 2020-09-23 シージェイ チェイルジェダン コーポレーションCj Cheiljedang Corporation Ryconostock mesenteroides CJLM181 strain with low gas generation and kimchi production method using this strain

Also Published As

Publication number Publication date
JPH0517378B2 (en) 1993-03-09

Similar Documents

Publication Publication Date Title
JP2863927B2 (en) Engine intake system
JPH06108858A (en) Intake device of engine
JPS60224929A (en) Suction system for supercharged engine
JP3377828B2 (en) Intake device for engine with mechanical supercharger
JPH0452377B2 (en)
JPH0337009B2 (en)
JPH0517377B2 (en)
JP2601655B2 (en) Intake device for supercharged engine
JPS6326261B2 (en)
JP2647131B2 (en) Intake device for turbocharged diesel engine
JPH0128209B2 (en)
JPH0619807Y2 (en) Engine scavenger
JPS61218720A (en) Intake device of engine with supercharger
JPH0559249B2 (en)
JPS60228726A (en) Intake device of multicylinder engine with supercharger
JP3427396B2 (en) Intake device for engine with mechanical supercharger
JPS5970833A (en) Intake device of rotary piston engine
JPS60222524A (en) Suction device of engine
JPH05187234A (en) Air intake device for engine with turbosupercharger
JPS63297741A (en) Engine equipped with mechanical supercharger
JPS61210222A (en) Engine with supercharger
JPH01182525A (en) Valve timing control device for engine
JPS59141725A (en) Intake apparatus for rotary piston engine
JPH086600B2 (en) Engine intake system
JPS5979041A (en) Intake apparatus for rotary piston engine