JP2647131B2 - Intake device for turbocharged diesel engine - Google Patents

Intake device for turbocharged diesel engine

Info

Publication number
JP2647131B2
JP2647131B2 JP63105109A JP10510988A JP2647131B2 JP 2647131 B2 JP2647131 B2 JP 2647131B2 JP 63105109 A JP63105109 A JP 63105109A JP 10510988 A JP10510988 A JP 10510988A JP 2647131 B2 JP2647131 B2 JP 2647131B2
Authority
JP
Japan
Prior art keywords
intake
pressure
rotation speed
cylinder
supercharging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63105109A
Other languages
Japanese (ja)
Other versions
JPH01277621A (en
Inventor
光夫 人見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Matsuda KK
Original Assignee
Matsuda KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsuda KK filed Critical Matsuda KK
Priority to JP63105109A priority Critical patent/JP2647131B2/en
Publication of JPH01277621A publication Critical patent/JPH01277621A/en
Application granted granted Critical
Publication of JP2647131B2 publication Critical patent/JP2647131B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition

Landscapes

  • Supercharger (AREA)
  • Characterised By The Charging Evacuation (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、過給機を備えたディーゼルエンジンの吸気
装置に関するものである。
Description: TECHNICAL FIELD The present invention relates to an intake device for a diesel engine provided with a supercharger.

(従来の技術) 従来より、この種過給機付ディーゼルエンジンとし
て、例えば特開昭61−93221号公報等に示されるよう
に、エンジンの排気通路に配設されたタービンと、吸気
通路に配設されたコンプレッサとを回転一体に連結して
なり、排気ガスエネルギーによりタービン及びコンプレ
ッサを回転駆動して、そのコンプレッサにより吸気を過
給するようにしたターボ過給機付のものは一般によく知
られている。
2. Description of the Related Art Conventionally, as a diesel engine with a supercharger of this type, for example, as disclosed in Japanese Patent Application Laid-Open No. 61-93221, a turbine disposed in an exhaust passage of an engine and a diesel engine disposed in an intake passage are disclosed. A turbocharger with a turbocharger, which is configured to rotate a turbine and a compressor by exhaust gas energy so as to supercharge the intake air by the compressor and the compressor provided, is generally well known. ing.

(発明が解決しようとする課題) ところで、この過給機付ディーゼルエンジンにおいて
は、中/高速域で吸気の体積効率が必要以上に高いの
で、過給された空気の圧縮圧のみで着火後の燃焼圧が気
筒の機械的な強度である燃焼最高圧を越える虞れがあ
り、このことから、燃焼噴射時期を遅らせることが行わ
れている。そして、エンジンの出力を増大すべく燃料噴
射量を増加させるときには、さらに噴射時期を遅らせる
必要がある。
(Problems to be Solved by the Invention) In the turbocharged diesel engine, since the volumetric efficiency of the intake air is higher than necessary in the middle / high speed range, the ignition after ignition only by the compression pressure of the supercharged air is performed. There is a possibility that the combustion pressure may exceed the maximum combustion pressure, which is the mechanical strength of the cylinder. For this reason, the combustion injection timing is delayed. Then, when increasing the fuel injection amount to increase the output of the engine, it is necessary to further delay the injection timing.

しかし、その場合、排気ガス温度が上昇するため、過
給機のタービン等、排気系の耐熱限界を越える虞れがあ
り、燃料噴射量を無闇に増加させることはできない。す
なわち、排気ガス中のスモーク発生までに余裕を残しな
がら出力トルクを有限に制限する必要がある。
However, in that case, since the exhaust gas temperature rises, there is a possibility that the heat resistance limit of an exhaust system such as a turbocharger turbine may be exceeded, and the fuel injection amount cannot be increased unnecessarily. That is, it is necessary to limit the output torque finitely while leaving a margin before the generation of smoke in the exhaust gas.

本発明は斯かる諸点に鑑みてなされたもので、その目
的は、上記した過給機付ディーゼルエンジンにおいて、
吸気の動的過給効果を効果的に活用し、その中/高速域
での吸気の体積効率を低く抑えて、燃料噴射時期を進め
かつ燃料噴射量を増加できるようにし、よってエンジン
の低速域から高速域まで出力トルクを増大させることに
ある。
The present invention has been made in view of such points, and its object is to provide the above-described diesel engine with a supercharger,
By effectively utilizing the dynamic supercharging effect of the intake air, the volumetric efficiency of the intake air in the middle / high-speed range is kept low, so that the fuel injection timing can be advanced and the fuel injection amount can be increased. To increase the output torque from high to high speed ranges.

(課題を解決するための手段) 上記の目的を達成するために、本発明の解決手段は、
過給機による吸気過給を抑制するまでの範囲のエンジン
回転域で、吸気の慣性過給を行わせるとともに、上記回
転数を越えると、吸気の共鳴同調を行わせて、その共鳴
同調に伴う体積効率の低下により燃料噴射時期の進角補
正及び燃料噴射量の増量を確保するようにしている。
(Means for Solving the Problems) In order to achieve the above object, a solution of the present invention includes:
In the engine rotation range of the range up to suppressing the supercharging of the intake air by the supercharger, the inertia supercharging of the intake air is performed, and when the rotation speed is exceeded, the resonance tuning of the intake air is performed, and the resonance tuning is performed. The advance of the fuel injection timing and the increase of the fuel injection amount are ensured by reducing the volumetric efficiency.

すなわち、具体的には、本発明は、吸気を過給する過
給機と、該過給機による吸気過給を所定の過給圧抑制回
転数以上で抑制する過給抑制手段と、エンジン負荷及び
エンジン回転数に応じて気筒内燃焼室に燃料を噴射する
とともに、全負荷運転時に所定の制限回転数で過回転を
抑制すべく上記燃料噴射量を減少させる燃料噴射手段と
を備えた過給機付ディーゼルエンジンの吸気装置が前提
である。
That is, specifically, the present invention provides a supercharger for supercharging intake air, a supercharger suppressing unit for suppressing intake supercharging by the supercharger at a predetermined supercharging pressure suppressing rotation speed or more, and an engine load. And a fuel injection means for injecting fuel into the combustion chamber in the cylinder in accordance with the engine speed and reducing the fuel injection amount to suppress overspeed at a predetermined speed limit during full load operation. It is premised on the intake device of a diesel engine with engine.

そして、吸気行程がクランク角で360゜異なる気筒同
士を1つのグループとする複数の気筒グループの各吸気
通路の上流に圧力反転部を有する構成とする。
Then, a plurality of cylinders having intake strokes differing by 360 ° in crank angle as one group have a pressure reversing section upstream of each intake passage of a plurality of cylinder groups.

さらに、各単一気筒における吸気の圧力振動の同調回
転数を、上記過給圧抑制回転数以下の回転数域で、各気
筒の吸気弁が閉じる時の吸気弁周辺の上記圧力振動によ
る圧力が上昇するように該過給圧回転数以下に設定す
る。
Further, in the rotation speed range of the boost pressure suppression rotation speed or less, the pressure due to the above-described pressure vibration around the intake valve when the intake valve of each cylinder is closed is adjusted in the rotation speed range below the supercharging pressure suppression rotation speed. It is set to be lower than the supercharging pressure rotation speed so as to increase.

また、上記各気筒グループの気筒間における吸気の圧
力振動の同調回転数については、上記過給圧抑制回転数
以上で上記制限回転数以下の回転域で、各気筒の吸気弁
が閉じる時の吸気弁周辺の上記圧力振動による圧力が上
記単一気筒での吸気圧力振動の同調回転数での圧力より
も小さくなるように設定する。
Further, with respect to the tuning rotation speed of the intake pressure vibration between the cylinders of each of the cylinder groups, the intake air when the intake valve of each cylinder is closed in the rotation range of not less than the supercharging pressure suppression rotation speed and not more than the limit rotation speed. The pressure due to the pressure vibration around the valve is set to be smaller than the pressure at the synchronized rotation speed of the intake pressure vibration in the single cylinder.

(作用) 上記の構成により、本発明では、各単一気筒における
吸気の圧力振動の同調回転数が過給抑制手段による過給
圧抑制回転数以下に設定されているので、エンジン回転
数が上記過給圧抑制回転数まで上昇しない低速域では、
気筒グループの気筒で吸気の慣性同調が生じて、各気筒
の吸気弁が閉じる時における吸気弁周辺の吸気圧力振動
による圧力が上昇し、吸気が気筒に過給される。よって
エンジンの低速域での吸気の充填量を増加させて出力ト
ルクを増大させることができる。
(Operation) With the above configuration, in the present invention, the tuning rotation speed of the intake pressure vibration in each single cylinder is set to be equal to or less than the supercharging pressure suppression rotation speed by the supercharging suppression means. In the low-speed range where the turbocharger speed does not rise to the boost pressure suppression speed,
The inertia tuning of the intake air occurs in the cylinders of the cylinder group, and the pressure due to the intake pressure vibration around the intake valve when the intake valve of each cylinder closes rises, and the intake air is supercharged into the cylinders. Thus, the output torque can be increased by increasing the amount of intake air in the low-speed region of the engine.

また、上記気筒グループの気筒間における吸気の圧力
振動の同調回転数は、エンジン回転数が上記過給圧抑制
回転数以上で全負荷運転時にエンジンの過回転を抑制す
るための制限回転数以下にあるときに、各気筒の吸気弁
が閉じる時における吸気弁周辺の吸気圧力振動による圧
力が上記単一気筒での吸気圧力振動の同調回転数での圧
力よりも小さくなるように設定されているので、エンジ
ン回転数が過給圧抑制回転数以上で過回転制限回転数以
下の実用回転域にあるときには、吸気の共鳴同調によっ
て、各気筒の吸気弁の閉じる時の吸気弁周辺の吸気圧力
振動による圧力が、上記単一気筒での吸気圧力振動の同
調回転数での圧力よりも低下し、その圧力の低下した分
だけ、燃料噴射時期を進めかつ燃料噴射量を増加させる
ことが可能となってエンジンの出力トルクを増大できる
こととなる。
In addition, the synchronized rotation speed of the intake pressure vibration between the cylinders of the cylinder group is not more than the limit rotation speed at which the engine rotation speed is not less than the supercharging pressure suppression rotation speed and is not more than the limit rotation speed for suppressing the engine overspeed during full load operation. At a certain time, since the pressure due to the intake pressure vibration around the intake valve when the intake valve of each cylinder is closed is set to be smaller than the pressure at the synchronized rotation speed of the intake pressure vibration in the single cylinder. When the engine speed is in a practical rotation range equal to or higher than the supercharging pressure suppression rotation speed and equal to or lower than the overspeed limit rotation speed, due to resonance resonance of the intake air, the intake pressure vibration around the intake valve when the intake valve of each cylinder closes. The pressure is lower than the pressure at the synchronized rotation speed of the intake pressure oscillation in the single cylinder, and the fuel injection timing can be advanced and the fuel injection amount can be increased by the reduced pressure. The ability to increase the output torque of the engine.

(実施例) 以下、本発明の実施例を図面に基づいて説明する。(Example) Hereinafter, an example of the present invention will be described with reference to the drawings.

第1図は本発明の実施例の全体構成を示し、1は直列
に配置された第1〜第4の4つの気筒2a〜2dを有する直
列4気筒ディーゼルエンジンであって、これら4つの気
筒2a〜2dの吸気行程は第1気筒2a、第3気筒2c、第4気
筒2d、第2気筒2bの順序に設定されている。上記4つの
気筒2a〜2dは、吸気行程がクランク角で360゜異なる第
1及び第4気筒2a,2dの2つの気筒と、第2及び第3気
筒2b,2cの2つの気筒とでそれぞれ構成される2つの気
筒グループに分けられている。
FIG. 1 shows an overall configuration of an embodiment of the present invention, wherein 1 is an in-line four-cylinder diesel engine having first to fourth four cylinders 2a to 2d arranged in series, and these four cylinders 2a 2d are set in the order of the first cylinder 2a, the third cylinder 2c, the fourth cylinder 2d, and the second cylinder 2b. The four cylinders 2a to 2d are respectively composed of two cylinders of first and fourth cylinders 2a and 2d whose intake strokes differ by 360 ° in crank angle, and two cylinders of second and third cylinders 2b and 2c, respectively. Are divided into two cylinder groups.

上記各気筒2a〜2dは、吸気弁(図示せず)によって開
閉される吸気ポート4と、排気弁(図示せず)によって
開閉される排気ポート6とを備え、上記各吸気ポート4
には吸気通路7が接続されている。この吸気通路7は、
下流端が各気筒2a〜2dの吸気ポート4に連通する独立吸
気通路8a〜8dと、下流端に上記各気筒グループの2つの
気筒2a,2d(又は2d,2c)における独立吸気通路8a,8d
(又は8b,8c)の上流端同士が集合して接続された第1
及び第2の慣性吸気通路9,10と、下流端に該両慣性吸気
通路9,10の上流端同士が集合して接続された共通吸気通
路11とからなり、この共通吸気通路11の上流端はエアク
リーナ12に接続されている。
Each of the cylinders 2a to 2d includes an intake port 4 opened and closed by an intake valve (not shown) and an exhaust port 6 opened and closed by an exhaust valve (not shown).
Is connected to an intake passage 7. This intake passage 7
Independent intake passages 8a to 8d whose downstream ends communicate with the intake ports 4 of the cylinders 2a to 2d, and independent intake passages 8a and 8d for the two cylinders 2a and 2d (or 2d and 2c) of each cylinder group at the downstream end.
(Or 8b, 8c) is the first upstream end
And a second inertial intake passage 9, 10, and a common intake passage 11 in which the upstream ends of the two inertial intake passages 9, 10 are gathered and connected at the downstream end. Is connected to the air cleaner 12.

そして、エンジン1の低速域では、第2図(a)に示
す如く、エンジン回転数が慣性同調回転数N1のときに、
吸気順序の連続しない一方の気筒グループの各気筒2a,2
d(又は2b,2c)の吸気ポート4付近に、該各気筒2a,2d
(又は2b,2c)の吸気行程前期で吸気弁の開弁により生
じた吸気の圧力振動の負の圧力波を各慣性吸気通路9,10
の上流側方向に伝播させ、の共通吸気通路11との接続部
13で正の圧力波に反転させ、その正の圧力波を下流側に
戻して同じ気筒グループの同じ気筒2a,2d(又は2b,2c)
の吸気ポート4に吸気行程終期つまり吸気弁の閉じる時
に作用させ、吸気を慣性同調させるとともに、エンジン
回転数が上記慣性同調回転数N1よりも高い共鳴同調回転
数N2(>N1)のときに、同図(b)に示す如く、一方の
気筒グループの各気筒2a,2d(又は2b,2c)の吸気ポート
4付近に、該各気筒2a,2d(又は2b,2c)の吸気行程終期
で生じた吸気の圧力振動の正の圧力波を同じ気筒グルー
プの他の気筒2d,2a(又は2c,2b)の吸気ポート4に作用
させて吸気を共鳴同調させるようになされている。よっ
て、本実施例では、上記慣性吸気通路9,10と共鳴用吸気
通路11と接続部13により圧力反転部が構成されている。
尚、第2図において、TDCはピストン上死点を、BDCは同
下死点を、IOは吸気ポート4の開き時期を、ICは同閉じ
時期をそれぞれ示している。
Then, in the low-speed range of the engine 1, as shown in FIG. 2 (a), when the engine speed is the inertia tuning rotational speed N 1,
Each cylinder 2a, 2 of one cylinder group in which the intake order is not continuous
d (or 2b, 2c) near the intake port 4, the respective cylinders 2a, 2d
(Or 2b, 2c) In the first half of the intake stroke, the negative pressure wave of the intake pressure oscillation generated by the opening of the intake valve is applied to each inertial intake passage 9,10.
Propagation in the upstream direction of the connection to the common intake passage 11
Inverts to a positive pressure wave at 13 and returns the positive pressure wave downstream to the same cylinder 2a, 2d (or 2b, 2c) in the same cylinder group
Of the intake port 4 is allowed to act upon closing of the intake stroke end, i.e. the intake valve, causes the inertial tune the intake, high resonance tuning rotational speed N 2 than the engine rotational speed is above the inertia tuning rotational speed N 1 (> N 1) of At this time, as shown in FIG. 2B, the intake stroke of each cylinder 2a, 2d (or 2b, 2c) is located near the intake port 4 of each cylinder 2a, 2d (or 2b, 2c) of one cylinder group. The positive pressure wave of the pressure oscillation of the intake air generated at the end of the period is applied to the intake port 4 of another cylinder 2d, 2a (or 2c, 2b) of the same cylinder group to resonate the intake air. Therefore, in the present embodiment, the inertia intake passages 9 and 10, the resonance intake passage 11, and the connecting portion 13 constitute a pressure inverting portion.
In FIG. 2, TDC indicates the piston top dead center, BDC indicates the bottom dead center, IO indicates the opening timing of the intake port 4, and IC indicates the closing timing.

上記共通吸気通路11の途中にはターボ過給機14のコン
プレッサ14aが配設されている。一方、上記排気ポート
6には排気通路16が接続され、該排気通路16には上記過
給機14のコンプレッサ14aに回転一体に駆動連結したタ
ービン14bが配設されており、上記排気通路16を流れる
排気ガスエネルギーによって過給機14のタービン14b及
びコンプレッサ14aを駆動して、そのコンプレッサ14aに
より吸気を過給するように構成されている。
A compressor 14a of the turbocharger 14 is provided in the middle of the common intake passage 11. On the other hand, an exhaust passage 16 is connected to the exhaust port 6, and a turbine 14b that is rotationally and integrally connected to a compressor 14a of the supercharger 14 is disposed in the exhaust passage 16. The turbine 14b and the compressor 14a of the supercharger 14 are driven by the flowing exhaust gas energy, and the intake air is supercharged by the compressor 14a.

上記排気通路16には上記過給機14のタービン14bをバ
イパスするバイパス通路17が配設され、該バイパス通路
17には、上記コンプレッサ14a下流の吸気通路7での吸
気の過給圧が所定圧以上に上昇すると開弁するウェスト
ゲートバルブ18が配設されており、このウェストゲート
バルブ18により、過給機14による吸気過給を所定の過給
圧抑制回転数N3以上で抑制するようにした過給抑制手段
が構成されている。
A bypass passage 17 that bypasses the turbine 14b of the supercharger 14 is provided in the exhaust passage 16, and the bypass passage 17
A wastegate valve 18 that opens when the supercharging pressure of the intake air in the intake passage 7 downstream of the compressor 14a rises to a predetermined pressure or higher is disposed in the turbocharger 17. boost inhibition means so as to suppress the intake air supercharged by a predetermined supercharging pressure suppression rotational speed N 3 or by 14 is constructed.

また、19は上記各気筒2a〜2d内燃焼室に燃料を噴射供
給するインジェクタであって、この各インジェクタ19に
はエンジン1によって駆動される燃料噴射手段としての
分配式等の燃料噴射ポンプ20が燃料供給配管21を介して
接続されている。そして、この燃料噴射ポンプ20は、図
示しないが公知のガバナ機構を有していて、エンジン負
荷及びエンジン回転数に応じて気筒2a〜2d内燃焼室に燃
料を噴射するとともに、ガバナ機構の作動により全負荷
運転時の所定の制限回転数N4で過回転を抑制すべく燃料
噴射量を減少させるように作動する。
Reference numeral 19 denotes an injector for injecting fuel into the combustion chamber in each of the cylinders 2a to 2d. Each injector 19 is provided with a fuel injection pump 20 of a distribution type or the like as fuel injection means driven by the engine 1. It is connected via a fuel supply pipe 21. The fuel injection pump 20 has a well-known governor mechanism (not shown), injects fuel into the combustion chambers in the cylinders 2a to 2d according to the engine load and the engine speed, and operates by operating the governor mechanism. It operates to reduce the fuel injection amount to suppress excessive rotation at a predetermined limit rotational speed N 4 during full load operation.

そして、本発明の特徴として、各単一気筒2a〜2dにお
ける吸気の圧力振動の同調回転数としての上記慣性同調
回転数N1は、上記過給圧抑制回転数N3以下の回転数域で
は各気筒2a〜2dの吸気弁が閉じる時における吸気弁周辺
の上記吸気圧力振動による圧力が上昇するように該過給
圧回転数N3以下に設定されている。
Then, as a feature of the present invention, the inertial tuning rotational speed N 1 of the tuning rotational speed of the pressure oscillations in the intake of each single cylinder 2a~2d is the supercharging pressure suppression rotational speed N 3 following the rotation speed zone pressure by the intake pressure vibration near the intake valve is set below supercharger pressure rpm N 3 to rise at the time when the intake valve is closed in each cylinder 2 a to 2 d.

一方、各気筒グループの気筒2a,2d(又は2b,2c)間に
おける吸気の圧力振動の同調回転数としての上記共鳴同
調回転数N2は、上記過給圧抑制回転数N3以上でかつ制限
回転数N4以下の回転域にあるときに、各気筒2a,2d(又
は2b,2c)の吸気弁が閉じる時における吸気弁周辺の上
記圧力振動による圧力が上記慣性同調回転数N1(単一気
筒2a〜2dでの吸気圧力振動の同調回転数)での圧力より
も小さくなるように設定されている。
On the other hand, the resonance tuning rotational speed N 2 of the tuning rotational speed of the pressure oscillations in the intake between the cylinders 2a of each cylinder group, 2d (or 2b, 2c) is and limited by the supercharging pressure suppression rotational speed N 3 or more when in the rotational speed N 4 or less rotation zone, each cylinder 2a, 2d (or 2b, 2c) intake valve near the pressure vibration pressure by the above inertia tuning rotational speed N 1 (single-in when the intake valve closes the The pressure is set to be smaller than the pressure at the synchronized rotation speed of the intake pressure vibration in each of the cylinders 2a to 2d.

したがって、上記実施例においては、エンジン1の運
転中、その回転数が過給圧抑制回転数N3に達しないとき
には、過給機14による吸気過給が抑制されず、排気通路
16の排気ガスエネルギーにより過給機14のタービン14b
及びコンプレッサ14aが駆動されて、そのコンプレッサ1
4aにより吸気が過給される。そして、各気筒2a〜2dにお
ける吸気の慣性同調回転数N1がウェストゲートバルブ18
の作動による過給圧抑制回転数N3以下に設定されている
ので、この回転域では、エンジン回転数が上記慣性同調
回転数N1のときに、吸気順序の連続しない一方の気筒グ
ループの各気筒2a,2d(又は2b,2c)の吸気ポート4付近
に、該各気筒2a,2d(又は2b,2c)の吸気行程前期で生じ
た吸気の圧力振動の負の圧力波が各慣性吸気通路9,10の
上流側方向に伝播して、その共通吸気通路11との接続部
13で正の圧力波に反転した後、同じ気筒グループの同じ
気筒2a,2d(又は2b,2c)の吸気ポート4に吸気弁の閉じ
る時に作用するという吸気の慣性同調が生じて、吸気が
気筒に過給される。それ故、上記過給圧抑制回転数N3
での回転域で過給機14による吸気の過給効果が低くと
も、それを補償するように、吸気の慣性同調により吸気
が気筒2a〜2dに過給されることとなり、よってエンジ1
の低速域での吸気の充填量を増加させて出力トルクを増
大させることができる。
Accordingly, in the above embodiment, during operation of the engine 1, that when the rotational speed does not reach the supercharging pressure suppression rotational speed N 3 is not sucked supercharged by the supercharger 14 is suppressed, an exhaust passage
Turbine 14b of turbocharger 14 by 16 exhaust gas energy
And the compressor 14a is driven, and the compressor 1
The intake air is supercharged by 4a. The inertia tuning rotational speed N 1 of intake air in each cylinder 2a~2d is waste-gate valve 18
Since the set to boost pressure suppression rotational speed N 3 or less by the operation, in this speed range, when the engine speed is the inertia tuning rotational speed N 1, each of the one cylinder group nonconsecutive intake order Near the intake port 4 of each of the cylinders 2a, 2d (or 2b, 2c), a negative pressure wave of the pressure vibration of the intake air generated in the first half of the intake stroke of each of the cylinders 2a, 2d (or 2b, 2c) is applied to each inertial intake passage. Propagating in the upstream direction of 9, 10 and connecting to the common intake passage 11
After reversing to a positive pressure wave at 13, an inertia tuning of the intake air occurs, which acts on the intake port 4 of the same cylinder 2a, 2d (or 2b, 2c) of the same cylinder group when the intake valve closes, and the intake air is shifted to the cylinder. To be supercharged. Therefore, even supercharging effect of the intake air in the speed range by the supercharger 14 to the supercharging pressure suppression rotational speed N 3 is low, so as to compensate for it, the intake air cylinder 2a~2d by inertia tuning of the intake Will be supercharged, so engine 1
, The output torque can be increased by increasing the filling amount of intake air in the low-speed range.

そして、エンジン回転数が上記過給圧抑制回転数N3
上昇すると、ウェストゲートバルブ18が開いて排気ガス
の一部がバイパス通路17にバイパスされて、タービン14
bに至る排気ガス量が抑えられ、コンプレッサ14aによる
吸気の過給圧が略一定圧力に抑制される。また、エンジ
ン1が全負荷状態となり、その回転数がさらに上昇して
制限回転数N4に達すると、燃料噴射ポンプ20のガバナ機
構が作動し、該ポンプ20から各気筒2a〜2dに供給される
燃料噴射量が減少してエンジン1の過回転が抑制され
る。
When the engine speed increases to the supercharging pressure suppression rotational speed N 3, a portion of the exhaust gas is bypassed to the bypass passage 17 waste gate valve 18 is opened, the turbine 14
The amount of exhaust gas reaching b is suppressed, and the supercharging pressure of the intake air by the compressor 14a is suppressed to a substantially constant pressure. Further, the engine 1 becomes a full load, the rotation speed is further to reach the limit rotational speed N 4 increases, the governor mechanism of the fuel injection pump 20 is activated, it is supplied to each cylinder 2a~2d from the pump 20 The fuel injection amount is reduced, and the overspeed of the engine 1 is suppressed.

その場合、上記気筒グループの気筒2a,2d(又は2b,2
c)間における吸気の共鳴同調回転数N2は、上記過給圧
抑制介回転数N3以上でかつ制限回転数N4以下の回転域で
は、各気筒2a,2d(又は2b,2c)の吸気弁の閉時における
吸気弁周辺の圧力振動により圧力が上記慣性同調回転数
N1での圧力よりも小さくなるように設定されているの
で、上記燃料噴射ポンプ20のガバナ機構が作動するまで
の実用回転域では、エンジン回転数が上記共鳴同調回転
数N2に達し、一方の気筒グループの各気筒2a,2d(又は2
b,2c)の吸気ポート4付近に、該各気筒2a,2d(又は2b,
2c)の吸気行程終期で生じた吸気の圧力振動の正の圧力
波が他の気筒グループの他の気筒2d,2a(又は2c,2b)の
吸気ポート4に吸気弁の閉じる時に作用するという吸気
の共鳴同調状態となる。この共鳴同調状態では、第3図
(c)に示すように、上記過給圧抑制回転数N3以上でか
つ制限回転数N4以下の回転域での吸気の体積効率が低下
するため、その分、同図(i)に示す如く燃料噴射時期
を進め、かつ図(g)に示す如く燃料噴射量を増加させ
ることができ、この燃料噴射時期の促進及び燃料噴射量
の増加によってエンジン1の高速域での出力トルクを増
大することができる。尚、第3図はエンジン回転数に対
する各種状態量の特性を通常の吸気系の場合(破線にて
示す特性)と対比して示すものであり、図(c),
(g),(i)のほか、図(a)は平均有効圧の特性
を、図(b)は過給機14による過給圧の特性を、図
(d)はスモークの発生率を、図(e)は燃焼最高圧の
特性を、図(f)は排気ガス温度の特性を、図(h)は
空気過剰率の特性をそれぞれ示している。
In that case, the cylinders 2a, 2d (or 2b, 2
resonance tuning rotational speed N 2 of the intake air in c) between the said supercharging pressure suppression via rotational speed N 3 or more and limit rotation speed N 4 following speed range, each cylinder 2a, 2d (or 2b, 2c) of Due to the pressure oscillation around the intake valve when the intake valve is closed, the pressure becomes the above inertial tuning speed.
Because it is set to be smaller than the pressure at the N 1, the practical speed range up to the governor mechanism of the fuel injection pump 20 is operated, the engine rotational speed reaches the resonance tuning rotational speed N 2, whereas Cylinders 2a, 2d (or 2
b, 2c), the respective cylinders 2a, 2d (or 2b, 2b,
The positive pressure wave of the pressure fluctuation of the intake air generated at the end of the intake stroke of 2c) acts on the intake port 4 of another cylinder 2d, 2a (or 2c, 2b) of another cylinder group when the intake valve closes. In a resonance tuning state. In this resonance tuning state, as shown in FIG. 3 (c), since the volumetric efficiency of the intake air by the supercharging pressure suppression in the rotational speed N 3 or more and limit engine speed N 4 following speed range decreases, the The fuel injection timing can be advanced as shown in FIG. 2 (i), and the fuel injection amount can be increased as shown in FIG. 2 (g). By promoting the fuel injection timing and increasing the fuel injection amount, the engine 1 The output torque in the high speed range can be increased. FIG. 3 shows the characteristics of various state quantities with respect to the engine speed in comparison with the case of a normal intake system (characteristics indicated by broken lines).
In addition to (g) and (i), FIG. (A) shows the characteristic of the average effective pressure, FIG. (B) shows the characteristic of the supercharging pressure by the supercharger 14, FIG. FIG. 9E shows the characteristic of the maximum combustion pressure, FIG. 9F shows the characteristic of the exhaust gas temperature, and FIG. 9H shows the characteristic of the excess air ratio.

尚、本発明は、ターボ過給機14ではなくて機械式過給
機を備えたエンジンに対しても適用することが可能であ
る。
It should be noted that the present invention can be applied not only to the turbocharger 14 but also to an engine having a mechanical supercharger.

また、本発明は、上記実施例の如き直列4気筒ディー
ゼルエンジン以外に例えば6気筒エンジン等の各種多気
筒ディーゼルエンジンに対しても適用することができる
のはいうまでもない。
In addition, it goes without saying that the present invention can be applied to various multi-cylinder diesel engines such as a six-cylinder engine in addition to the in-line four-cylinder diesel engine as in the above embodiment.

(発明の効果) 以上説明したように、本発明によると、過給機を備え
たディーゼルエンジンにおいて、過給機による吸気過給
を抑制するまでの範囲のエンジン回転域で、吸気の慣性
過給を行うとともに、過給抑制回転数以上でエンジンの
過回転を抑制する制限回転数までの回転域では、吸気弁
周辺の吸気圧力振動による吸気圧力を下げるように吸気
を共鳴同調させるようにしたことにより、エンジンの低
速域では吸気の慣性過給による体積効率の上昇によって
出力トルクを増大させることができるとともに、高速域
では、気筒間の吸気の共鳴同調に伴う体積効率の低下し
た分だけ燃料噴射時期を進めかつ燃料噴射量を増加させ
ることができ、よってエンジンの信頼性を確保しつつ、
その出力トルクを全体として増大させることができる。
(Effects of the Invention) As described above, according to the present invention, in a diesel engine equipped with a supercharger, inertial supercharging of intake air is performed in an engine rotation range in a range up to suppressing intake supercharging by the supercharger. In addition, in the rotation range above the supercharging suppression rotation speed and up to the limit rotation speed that suppresses the engine overspeed, the intake air is resonantly tuned to reduce the intake pressure due to the intake pressure vibration around the intake valve. In the low-speed region of the engine, the output torque can be increased by increasing the volumetric efficiency due to the inertial supercharging of the intake air, and in the high-speed region, the fuel injection is reduced by the reduced volumetric efficiency due to the resonance tuning of the intake air between the cylinders. The timing can be advanced and the fuel injection amount can be increased, thus ensuring the reliability of the engine,
The output torque can be increased as a whole.

【図面の簡単な説明】[Brief description of the drawings]

図面は本発明の実施例を示し、第1図はエンジンの吸気
系の構成を概略的に示す模式平面図、第2図は吸気の慣
性同調時及び共鳴同調時における圧力波の特性を示す特
性図、第3図はエンジン回転数に対する各種状態量の特
性を示す特性図である。 1……エンジン、2a〜2d……気筒、13……接続部(圧力
反転部)、14……過給機、18……ウェストゲートバル
ブ、20……燃料噴射ポンプ(燃料噴射手段)、N1……慣
性同調回転数、N2……共鳴同調回転数、N3……過給圧抑
制回転数、N4……制限回転数。
1 shows an embodiment of the present invention, FIG. 1 is a schematic plan view schematically showing the structure of an intake system of an engine, and FIG. 2 is a characteristic showing pressure wave characteristics at the time of inertial tuning and resonance tuning of intake air. FIG. 3 is a characteristic diagram showing characteristics of various state quantities with respect to the engine speed. 1 ... engine, 2a-2d ... cylinder, 13 ... connection part (pressure reversal part), 14 ... supercharger, 18 ... waste gate valve, 20 ... fuel injection pump (fuel injection means), N 1 …… Inertia tuning speed, N 2 …… Resonance tuning speed, N 3 …… Charging pressure suppression speed, N 4 …… Limit speed.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】吸気を過給する過給機と、該過給機による
吸気過給を所定の過給圧抑制回転数以上で抑制する過給
抑制手段と、エンジン負荷及びエンジン回転数に応じて
気筒内燃焼室に燃料を噴射するとともに、全負荷運転時
に所定の制限回転数で過回転を抑制すべく上記燃料噴射
量を減少させる燃料噴射手段とを備えた過給機付ディー
ゼルエンジンの吸気装置において、 吸気行程がクランク角で360゜異なる気筒同士を1つの
グループとする複数の気筒グループの各吸気通路の上流
に圧力反転部を有する構成とし、 各単一気筒における吸気の圧力振動の同調回転数を、上
記過給圧抑制回転数以下の回転数域で、各気筒の吸気弁
が閉じる時の吸気弁周辺の上記圧力振動による圧力が上
昇するように該過給圧回転数以下に設定するとともに、 上記各気筒グループの気筒間における吸気の圧力振動の
同調回転数を、上記過給圧抑制回転数以上でかつ上記制
限回転数以下の回転域で、各気筒の吸気弁が閉じる時の
吸気弁周辺の上記圧力振動による圧力が上記単一気筒で
の吸気圧力振動の同調回転数での圧力よりも小さくなる
ように設定したことを特徴とする過給機付ディーゼルエ
ンジンの吸気装置。
1. A supercharger for supercharging intake air, a supercharger suppressing means for suppressing intake supercharging by the supercharger at or above a predetermined supercharging pressure suppressing rotation speed, and a supercharger according to an engine load and an engine rotation speed. A fuel injection means for injecting fuel into the combustion chamber within the cylinder and reducing the fuel injection amount to suppress overspeed at a predetermined limit rotation speed during full load operation. In the apparatus, a pressure reversing section is provided upstream of each intake passage of a plurality of cylinder groups in which cylinders whose intake strokes differ by 360 ° in crank angle form one group, and synchronization of intake air pressure vibration in each single cylinder is performed. The rotation speed is set to be equal to or lower than the supercharging pressure rotation speed so that the pressure due to the pressure vibration around the intake valve when the intake valve of each cylinder is closed rises in the rotation speed range equal to or lower than the supercharging pressure suppression rotation speed. Along with the above The rotational speed of the intake pressure oscillation between the cylinders of the cylinder group is adjusted to a value equal to or higher than the supercharging pressure suppressing rotational speed and equal to or less than the limit rotational speed. An intake device for a turbocharged diesel engine, wherein the pressure due to the pressure oscillation is set to be smaller than the pressure at the synchronized rotation speed of the intake pressure oscillation in the single cylinder.
JP63105109A 1988-04-27 1988-04-27 Intake device for turbocharged diesel engine Expired - Fee Related JP2647131B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63105109A JP2647131B2 (en) 1988-04-27 1988-04-27 Intake device for turbocharged diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63105109A JP2647131B2 (en) 1988-04-27 1988-04-27 Intake device for turbocharged diesel engine

Publications (2)

Publication Number Publication Date
JPH01277621A JPH01277621A (en) 1989-11-08
JP2647131B2 true JP2647131B2 (en) 1997-08-27

Family

ID=14398679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63105109A Expired - Fee Related JP2647131B2 (en) 1988-04-27 1988-04-27 Intake device for turbocharged diesel engine

Country Status (1)

Country Link
JP (1) JP2647131B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6734796B2 (en) * 2017-02-24 2020-08-05 三菱重工業株式会社 Marine diesel engine and engine control device and method

Also Published As

Publication number Publication date
JPH01277621A (en) 1989-11-08

Similar Documents

Publication Publication Date Title
JP3422033B2 (en) Intake device for engine with mechanical supercharger
JP2863927B2 (en) Engine intake system
US4732118A (en) Two-cycle internal combustion engine
US4732116A (en) Two-cycle internal combustion engine
JPH0791984B2 (en) Intake device for supercharged engine
JPH06108858A (en) Intake device of engine
EP0249129B1 (en) Two-cycle internal combustion engine
JPH1089106A (en) Engine with turbo-supercharger and power unit of vehicle loaded with the same engine
JP3280758B2 (en) Intake device for engine with mechanical supercharger
JPH0586989A (en) Exhaust gas reflux device for engine with mechanical type supercharger
JP2647131B2 (en) Intake device for turbocharged diesel engine
JPS6211169B2 (en)
EP1239130B1 (en) Dual-mode engine with controlled auto-ignition
JP2799388B2 (en) Engine with turbocharger
JP3377828B2 (en) Intake device for engine with mechanical supercharger
JP3551436B2 (en) Engine with turbocharger
JP2601655B2 (en) Intake device for supercharged engine
JPH0452377B2 (en)
JPH01159417A (en) Valve system for internal combustion engine
JPS63195325A (en) Valve timing control device for engine with supercharger
JPH0128209B2 (en)
JPH0717787Y2 (en) Supercharged engine
JP3280757B2 (en) Intake device for engine with mechanical supercharger
JP3427396B2 (en) Intake device for engine with mechanical supercharger
JPH08291713A (en) Engine having mechanical supercharger

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees