JPH0517378B2 - - Google Patents

Info

Publication number
JPH0517378B2
JPH0517378B2 JP59082538A JP8253884A JPH0517378B2 JP H0517378 B2 JPH0517378 B2 JP H0517378B2 JP 59082538 A JP59082538 A JP 59082538A JP 8253884 A JP8253884 A JP 8253884A JP H0517378 B2 JPH0517378 B2 JP H0517378B2
Authority
JP
Japan
Prior art keywords
intake
supercharging
valve
main intake
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59082538A
Other languages
Japanese (ja)
Other versions
JPS60224929A (en
Inventor
Haruo Okimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP59082538A priority Critical patent/JPS60224929A/en
Publication of JPS60224929A publication Critical patent/JPS60224929A/en
Publication of JPH0517378B2 publication Critical patent/JPH0517378B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/005Oscillating pipes with charging achieved by arrangement, dimensions or shapes of intakes pipes or chambers; Ram air pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0205Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the charging effect
    • F02B27/0215Oscillating pipe charging, i.e. variable intake pipe length charging
    • F02B27/0221Resonance charging combined with oscillating pipe charging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0226Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the means generating the charging effect
    • F02B27/0247Plenum chambers; Resonance chambers or resonance pipes
    • F02B27/0252Multiple plenum chambers or plenum chambers having inner separation walls, e.g. comprising valves for the same group of cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0226Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the means generating the charging effect
    • F02B27/0289Intake runners having multiple intake valves per cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/08Modifying distribution valve timing for charging purposes
    • F02B29/083Cyclically operated valves disposed upstream of the cylinder intake valve, controlled by external means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/1015Air intakes; Induction systems characterised by the engine type
    • F02M35/10157Supercharged engines
    • F02M35/10163Supercharged engines having air intakes specially adapted to selectively deliver naturally aspirated fluid or supercharged fluid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Characterised By The Charging Evacuation (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、主吸気通路と、過給機を有する過給
通路とを形成し、過給機下流の過給通路にタイミ
ング弁を設け、エンジンの速度に応じてタイミン
グ弁の開閉時期を調整するようにした過給機付エ
ンジンの吸気装置に関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention provides a main intake passage and a supercharging passage having a supercharger, a timing valve provided in the supercharging passage downstream of the supercharger, The present invention relates to an intake system for a supercharged engine that adjusts the opening and closing timing of a timing valve according to the speed of the engine.

(従来技術) 従来、特公昭58−51134号公報に示されるよう
に、主吸気通路と、過給機を有する過給通路とを
形成し、主吸気通路下流端の主吸気ポートと過給
通路下流端の過給ポートとをそれぞれ燃焼室に開
口させるとともに、吸気行程終期に過給を行うよ
うに開閉作動するタイミング弁を過給機下流の過
給通路に設けたエンジンの吸気装置が知られてい
る。この吸気装置によると、主吸気通路からの自
然吸気に加えて過給通路から過給気が燃焼室に供
給され、とくに自然吸気を阻害することなく過給
が行われて充填効率が向上され、エンジンの出力
性能を向上させることができる。
(Prior art) Conventionally, as shown in Japanese Patent Publication No. 58-51134, a main intake passage and a supercharging passage having a supercharger are formed, and a main intake port and a supercharging passage at the downstream end of the main intake passage are formed. An engine intake system is known in which a downstream end supercharging port is opened to a combustion chamber, and a timing valve that opens and closes to perform supercharging at the end of the intake stroke is provided in a supercharging passage downstream of the supercharger. ing. According to this intake device, supercharged air is supplied from the supercharging passage to the combustion chamber in addition to natural intake from the main intake passage, and supercharging is performed without interfering with natural intake, thereby improving charging efficiency. Engine output performance can be improved.

またこの種の吸気装置において、各種エンジン
回転数域で効率よく過給を行うため、例えば過給
ポートが過給用吸気弁によつて開閉されるように
しておくとともに、過給通路に設けられた前記タ
イミング弁の開閉時期をエンジンが高速になるに
したがつて進角させるようにしたものも提案され
ている。つまりこの装置は、過給ポートが閉じる
前にタイミング弁が開かれ、過給ポートが閉じて
からタイミング弁が閉じられるようにし、過給ポ
ートとタイミング弁とがともに開かれているラツ
プ期間に過給気が燃焼室に供給されるようにして
いる。そして、吸気流速が遅い低速時にはタイミ
ング弁の開閉時期をある程度遅らせることにより
主吸気通路への吹返しを防止し、また高速時には
吸気流速が高くなつて低速時よりも吹返しが生じ
にくくなり、かつ短時間で多量の過給気を燃焼室
に供給することが難しいので、上記タイミング弁
の開閉時期を進角させることによつて上記ラツプ
期間を大きくするようにしている。この場合、高
速時に過給気供給効率を高めるためにはできるだ
け上記ラツプ期間を増大させるようにタイミング
弁開閉時期の進角量を大きくすることが望ましい
が、高速時でも過給時期が進みすぎると主吸気通
路への吹返しが生じる。従つて、主吸気通路への
吹返しが生じない範囲でタイミング弁の開閉時期
を進角させる必要がある。
In addition, in this type of intake system, in order to efficiently perform supercharging in various engine speed ranges, for example, the supercharging port is opened and closed by a supercharging intake valve, and a supercharging port is provided in the supercharging passage. It has also been proposed that the opening/closing timing of the timing valve is advanced as the engine speed increases. In other words, this device allows the timing valve to be opened before the turbocharging port is closed, the timing valve to be closed after the turbocharging port is closed, and the timing valve to be closed after the turbocharging port is closed. Supply air is supplied to the combustion chamber. At low speeds, when the intake flow rate is slow, the opening and closing timing of the timing valve is delayed to a certain extent to prevent blowback into the main intake passage, and at high speeds, the intake flow rate increases, making blowback less likely to occur than at low speeds. Since it is difficult to supply a large amount of supercharged air to the combustion chamber in a short period of time, the lap period is increased by advancing the opening/closing timing of the timing valve. In this case, in order to increase the supercharging air supply efficiency at high speeds, it is desirable to increase the amount of advance of the timing valve opening/closing timing so as to increase the above-mentioned wrap period as much as possible, but even at high speeds, if the supercharging timing advances too much, Blowing back into the main intake passage occurs. Therefore, it is necessary to advance the opening/closing timing of the timing valve within a range that does not cause the air to blow back into the main intake passage.

(発明の目的) 本発明はこのような事情に鑑み、エンジンの高
速域で、従来と比べてタインミング弁の進角量を
より大きくしても主吸気通路への吹返しを防止す
ることができ、高速時の充填効率を高めて出力を
向上することのできる過給機付エンジンの吸気装
置を提供するものである。
(Objective of the Invention) In view of the above circumstances, the present invention is capable of preventing the air from blowing back into the main intake passage even if the timing valve is advanced in a larger amount than in the past in the high-speed range of the engine. The present invention provides an intake system for a supercharged engine that can increase filling efficiency at high speeds and improve output.

(発明の構成) 本発明は、主吸気通路と、過給機を有する過給
通路とを形成し、吸気行程終期に過給を行うよう
に開閉作動するタイミング弁を上記過給機下流の
過給通路に設ける一方、該タイミング弁の開閉時
期をエンジンが低速域から高速域になるにしたが
つて進角するようにしたエンジンにおいて、主吸
気通路に形成した拡大室の下流の主吸気通路の長
さもしくは上記主吸気通路を含む気筒間の連通路
の長さの少なくともいずれかを、高速域で吸気行
程終期の気筒の主吸気通路開口部付近に圧縮波が
送られるように設定したものである。つまり、タ
イミング弁の開閉時期が進角する高速域では、上
記圧縮波により、主吸気通路に過給気が吹返すこ
とを防止するようにしたものである。
(Structure of the Invention) The present invention forms a main intake passage and a supercharging passage having a supercharger, and a timing valve that opens and closes to perform supercharging at the end of the intake stroke is connected to the supercharger downstream of the supercharger. In an engine in which the opening/closing timing of the timing valve is advanced as the engine moves from a low speed range to a high speed range, the timing valve is provided in the main intake passage downstream of the enlarged chamber formed in the main intake passage. The length or at least the length of the communication passage between the cylinders including the main intake passage is set so that a compression wave is sent to the vicinity of the main intake passage opening of the cylinder at the end of the intake stroke in the high-speed range. be. In other words, in a high speed range where the opening/closing timing of the timing valve is advanced, the compression wave prevents the supercharged air from blowing back into the main intake passage.

(実施例) 第1図は本発明の第1実施例を示している。こ
の図において、1はエンジンの気筒であつて、そ
の内部にはピストン2が収容され、このピストン
2の上方に燃焼室3が形成されている。この燃焼
室3には主吸気ポート4、過給ポート5および排
気ポート6が開口し、これらのポート4〜6に主
吸気弁7、過給用吸気弁8および排気弁9がそれ
ぞれ装備されている。
(Embodiment) FIG. 1 shows a first embodiment of the present invention. In this figure, reference numeral 1 indicates a cylinder of an engine, and a piston 2 is housed inside the cylinder, and a combustion chamber 3 is formed above the piston 2. A main intake port 4, a supercharging port 5, and an exhaust port 6 are opened in this combustion chamber 3, and these ports 4 to 6 are equipped with a main intake valve 7, a supercharging intake valve 8, and an exhaust valve 9, respectively. There is.

11は吸気通路であつて、その途中からは主吸
気通路12と過給通路13とが互いに分岐してお
り、主吸気通路12は主吸気ポート4に連通し、
過給通路13は過給ポート5に連通している。こ
の主吸気通路12と過給通路13との分岐箇所よ
り上流の吸気通路11には、エアクリーナ14お
よびエアフローメータ15が配設され、エアフロ
ーメータ15により検出された吸入空気量に応
じ、主吸気通路12等に具備された燃料噴射弁
(図示せず)からの燃料噴射量が制御されるよう
になつている。
Reference numeral 11 denotes an intake passage, from which a main intake passage 12 and a supercharging passage 13 diverge from each other, and the main intake passage 12 communicates with the main intake port 4.
The supercharging passage 13 communicates with the supercharging port 5. An air cleaner 14 and an air flow meter 15 are disposed in the intake passage 11 upstream of the branch point between the main intake passage 12 and the supercharging passage 13. The amount of fuel injected from a fuel injection valve (not shown) provided at 12 or the like is controlled.

上記主吸気通路12には、アクセル操作によつ
て開閉作動されるスロツトル弁17が設けられる
とともに、このスロツトル弁17より下流に拡大
室(サージタンク)18が形成されている。また
過給通路13には過給機20が設けられており、
この過給機20は、例えばエンジンの出力軸21
により駆動されるベーンタイプのエアポンプから
なつている。この過給機20は、常時エンジンの
出力軸21に連動して作動するようにしてもよい
が、クラツチ機構を介して出力軸21に接続する
ことにより、過給の必要がない低負荷時には停止
させるようにしておいてもよい。
The main intake passage 12 is provided with a throttle valve 17 that is opened and closed by accelerator operation, and an expansion chamber (surge tank) 18 is formed downstream of the throttle valve 17. Further, a supercharger 20 is provided in the supercharging passage 13,
This supercharger 20 includes, for example, an output shaft 21 of an engine.
It consists of a vane type air pump driven by. This supercharger 20 may be operated in conjunction with the output shaft 21 of the engine at all times, but by connecting it to the output shaft 21 via a clutch mechanism, it can be stopped at low loads when supercharging is not necessary. You may also leave it to do so.

上記過給機20より下流の過給通路13には、
エンジンの負荷に応じて過給量をコントロールす
る過給気コントロール弁22が設けられ、さらに
この過給気コントロール弁22より下流にロータ
リバルブからなるタイミング弁23が設けられて
いる。また上記過給通路13に対し、過給機20
と過給気コントロール弁22との間の部分の余剰
の過給気を過給機20の上流側にリリーフするリ
リーフ通路24が形成され、このリリーフ通路2
4の途中には、チエツク弁タイプのリリーフ弁2
5が設けられている。
In the supercharging passage 13 downstream from the supercharger 20,
A supercharging control valve 22 that controls the amount of supercharging according to the load of the engine is provided, and a timing valve 23 made of a rotary valve is further provided downstream of the supercharging control valve 22. Also, for the supercharging passage 13, the supercharger 20
A relief passage 24 is formed for relieving surplus supercharging air in the portion between the supercharging air control valve 22 and the supercharging air control valve 22 to the upstream side of the supercharger 20.
In the middle of 4 is a check valve type relief valve 2.
5 is provided.

上記タイミング弁23は、エンジンが高速にな
るにしたがつて進角するように、タイミング可変
機構を介してエンジンの出力軸21に連結されて
いる。このタイミング可変機構は従来から種々提
案されているため、図示および詳しい説明は省略
するが、例えば回転に伴う遠心力を利用し、遠心
力の変化に応じてタイミング弁23の位相が変え
られるような構造となつている。
The timing valve 23 is connected to the output shaft 21 of the engine via a variable timing mechanism so as to advance as the engine speeds up. Since various timing variable mechanisms have been proposed in the past, illustrations and detailed explanations will be omitted. It has a structure.

第2図は横軸をクランク角として、前記主吸気
弁7、過給用吸気弁8およびタイミング弁23の
開閉時期の関係を表わしている。主吸気弁7はこ
の図に線Aで示すように、TDC(上死点)の直前
から開き始めてBDC(下死点)の直後に閉じられ
るようになつている。また過給用吸気弁8は線B
で示すように、主吸気弁7よりも開弁時期および
閉弁時期が多少遅れるようにしてある。これに対
してタイミング弁23は、エンジンの低速域では
破線Cで示すタイミングで開閉され、高速域で
は実線Chで示すタイミングで開閉されるように
してある。つまりこのタイミング弁23は、吸気
行程の終期において少なくとも過給用吸気弁8が
閉じられる前に開かれ、過給用吸気弁8の閉弁時
期以後に閉じられるようになつていて、このタイ
ミング弁23と過給用吸気弁8の開弁ラツプ範囲
に相当する期間だけ過給気が燃焼室に供給される
ようにしてある。そしてエンジンの低速域ではタ
イミング弁23の開閉時期が遅らされて上記開弁
ラツプ範囲が小さくなり、高速域ではタイミング
弁23の開閉時期が進角されることにより上記開
弁ラツプ範囲が大きくなるようにしている。この
ようにした場合、タイミング弁23の開弁期間は
主吸気弁7の開弁期間とも一部ラツプし、タイミ
ング弁23を進角させるほど、主吸気弁7の開弁
期間とのラツプ範囲も大きくなる。
FIG. 2 shows the relationship between the opening and closing timings of the main intake valve 7, the supercharging intake valve 8, and the timing valve 23, with the horizontal axis representing the crank angle. As shown by line A in this figure, the main intake valve 7 starts opening just before TDC (top dead center) and closes just after BDC (bottom dead center). Also, the supercharging intake valve 8 is connected to line B.
As shown, the opening timing and closing timing of the main intake valve 7 are delayed somewhat. On the other hand, the timing valve 23 is opened and closed at the timing shown by the broken line C in the low speed range of the engine, and is opened and closed at the timing shown by the solid line Ch in the high speed range. In other words, this timing valve 23 is opened at least before the supercharging intake valve 8 is closed at the end of the intake stroke, and is closed after the closing timing of the supercharging intake valve 8. The supercharging air is supplied to the combustion chamber only for a period corresponding to the opening lap range of the supercharging intake valve 8. In the low speed range of the engine, the opening/closing timing of the timing valve 23 is delayed and the above-mentioned valve opening lap range becomes smaller, and in the high speed range, the opening/closing timing of the timing valve 23 is advanced, thereby increasing the above-mentioned valve opening lap range. That's what I do. In this case, the opening period of the timing valve 23 partially overlaps with the opening period of the main intake valve 7, and as the timing valve 23 is advanced, the range of overlap with the opening period of the main intake valve 7 also increases. growing.

このような構造において、エンジンの高速域で
はいわゆる吸気慣性効果によつて圧縮波が吸気行
程終期に前記主吸気ポート4付近に与えられるよ
うに、予め前記拡大室18より下流の主吸気通路
12の長さが設定されている。つまり、主吸気弁
7が開かれる吸気行程ではピストン2の下降に伴
つて生じた膨張波(負圧波)が音速で主吸気通路
12内を伝播し、拡大室18で圧縮波(正圧波)
に反転して反射されるが、この圧縮波が主吸気ポ
ート4付近に返つてくるタイミングは、拡大室1
8より下流の主吸気通路12の長さに関係し、か
つエンジン回転数によつて変化する。そこで、高
速域にあるときに、上記圧縮波が主吸気ポート4
付近に返つてくる時期が吸気行程終期となるよう
に、拡大室18より下流の主吸気通路12の長さ
が設定されている。ここで高速域とは、実用回転
数領域内でエンジン回転数が4000rpm以上の回転
数領域をいう。
In such a structure, the main intake passage 12 downstream of the enlarged chamber 18 is preliminarily compressed so that a compression wave is applied to the vicinity of the main intake port 4 at the end of the intake stroke due to the so-called intake inertia effect in the high-speed range of the engine. The length is set. That is, during the intake stroke in which the main intake valve 7 is opened, an expansion wave (negative pressure wave) generated as the piston 2 descends propagates inside the main intake passage 12 at the speed of sound, and a compression wave (positive pressure wave) occurs in the expansion chamber 18.
However, the timing at which this compression wave returns to the vicinity of the main intake port 4 is due to the expansion chamber 1.
8 and changes depending on the engine speed. Therefore, when in the high speed range, the compression wave is generated at the main intake port 4.
The length of the main intake passage 12 downstream of the expansion chamber 18 is set so that the time when it returns to the vicinity is at the end of the intake stroke. Here, the high-speed range refers to a rotational speed range in which the engine rotational speed is 4000 rpm or more within the practical rotational speed range.

このように構成された吸気装置による場合、エ
ンジンの高速域では、燃焼室3へ供給される過給
気の圧力および主吸気ポート4付近の吸気圧力
は、クランク角に対して第3図に示すような関係
で変化する。すなわち、前述のように高速域では
タイミング弁23が進角されて、過給用吸気弁8
との開弁ラツプ範囲が大きくされ(第2図参照)、
この状態で吸気行程終期に上記開弁ラツプ範囲に
相当する期間だけ、第3図に曲線Dで示すように
過給気が燃焼室3に供給される。このように過給
気が供給される期間のうち、主吸気弁7の開弁期
間とラツプする期間は、過給気が主吸気通路12
に吹返される可能性がある。一方、主吸気ポート
4付近の吸気圧力は曲線Eで示すように、主吸気
弁7の開弁後のTDC付近から次第に低下し、吸
気行程途中で負圧が最大となつてから、次第に負
圧が小さくなる。そして、高速域で前記の吸気慣
性効果をもたせない場合、吸気行程終期における
吸気圧力は2点鎖線Eaで示すようになつて、吸
気流によつて主吸気通路12への過給気の吹返し
がある程度抑制されるものの、タイミング弁23
の進角量を大きくしようとすると、吸気圧力が低
いため吹返しを防止しきれなくなる。また高速時
のタイミング弁23の進角量を比較的小さくする
と、エンジン回転数の上昇に伴つて過給時間が短
くなるので、多量の過給気を燃焼室3に導入する
ことが難しくなる。
In the case of an intake system configured in this manner, in the high-speed range of the engine, the pressure of the supercharging air supplied to the combustion chamber 3 and the intake pressure near the main intake port 4 are as shown in FIG. 3 with respect to the crank angle. This relationship changes. That is, as mentioned above, the timing valve 23 is advanced in the high speed range, and the supercharging intake valve 8
The valve opening lap range has been increased (see Figure 2),
In this state, supercharged air is supplied to the combustion chamber 3 at the end of the intake stroke for a period corresponding to the above-mentioned valve opening lap range, as shown by curve D in FIG. Among the periods in which supercharging air is supplied, during the period that overlaps with the opening period of the main intake valve 7, the supercharging air is supplied to the main intake passage 12.
There is a possibility that it will be blown back. On the other hand, as shown by curve E, the intake pressure near the main intake port 4 gradually decreases from around TDC after the main intake valve 7 opens, reaches a maximum negative pressure in the middle of the intake stroke, and then gradually decreases to a negative pressure. becomes smaller. If the above-mentioned intake inertia effect is not provided in the high-speed range, the intake pressure at the end of the intake stroke becomes as shown by the two-dot chain line Ea, and the supercharged air is blown back into the main intake passage 12 by the intake flow. Although the timing valve 23 is suppressed to some extent,
If you try to increase the amount of advance, it will not be possible to prevent blowback because the intake pressure is low. Furthermore, if the amount of advance of the timing valve 23 at high speed is relatively small, the supercharging time becomes shorter as the engine speed increases, making it difficult to introduce a large amount of supercharging air into the combustion chamber 3.

これに対し、高速域で前記の吸気慣性効果をも
たせた場合、前記圧縮波により、吸気行程終期に
実線部分Ebで示すように主吸気ポート4付近の
吸気圧力が高くなり、過給気の吹返し防止作用が
高められる。つまり、吸気慣性効果をもたせない
場合と比べ、タイミング弁23の開閉時期をより
大きく進角させても主吸気通路12への吹返しが
防止され、多量の過給気が有効に燃焼室3に導入
されて充填効率が高められる。従つて、吸気慣性
効果をもたせない場合のエンジン回転数と出力ト
ルクとの関係は第4図に2点鎖線Fで示すように
なり、高速域で吸気慣性効果をもたせた場合はこ
の図に実線Gで示すように、高速域で出力トルク
が高められることとなる。
On the other hand, when the above-mentioned intake inertia effect is provided at high speeds, the compression wave causes the intake pressure near the main intake port 4 to increase at the end of the intake stroke as shown by the solid line Eb, causing the supercharged air to blow out. The anti-return effect is enhanced. In other words, compared to the case where there is no intake inertia effect, even if the opening/closing timing of the timing valve 23 is advanced to a greater extent, blowback into the main intake passage 12 is prevented, and a large amount of supercharged air is effectively sent to the combustion chamber 3. Introduced to increase filling efficiency. Therefore, the relationship between engine speed and output torque when the intake inertia effect is not provided is as shown by the two-dot chain line F in Fig. 4, and when the intake inertia effect is provided in the high speed range, the relationship between the engine speed and the output torque is shown by the solid line in this figure. As shown by G, the output torque is increased in the high speed range.

第5図は本発明の第2実施例を示し、この実施
例では、エンジンの高速域で、いわゆる気筒間吸
気干渉効果を利用して主吸気通路への吹返しを防
止するようにしている。この図は2気筒4サイク
ルエンジンを示し、その各気筒1a,1bの燃焼
室3a,3bにそれぞれ主吸気ポート4a,4
b、過給ポート5a,5bおよび排気ポート6
a,6bが開口し、これらのポートに主吸気弁7
a,7b、過給用吸気弁8a,8bおよび排気弁
9a,9bが装備されている。また、主吸気通路
12はその途中から気筒別に分岐し、この各主吸
気通路分岐部12a,12bが各気筒1a,1b
の主吸気ポート4a,4bに連通している。過給
機20を有する過給通路13も、過給気コントロ
ール弁22より下流で気筒別に分岐して、それぞ
れ各気筒1a,1bの過給ポート5a,5bに連
通しており、この各過給通路分岐部13a,13
bにそれぞれタイミング弁23a,23bが設け
られている。このタイミング弁23a,23b
は、第1実施例の場合と同様にエンジン回転数に
応じて開閉時期が調整されるようになつている。
FIG. 5 shows a second embodiment of the present invention. In this embodiment, the so-called inter-cylinder intake interference effect is utilized to prevent intake air from flowing back into the main intake passage in the high-speed range of the engine. This figure shows a two-cylinder four-stroke engine, with main intake ports 4a and 4 in the combustion chambers 3a and 3b of each cylinder 1a and 1b, respectively.
b, supercharging ports 5a, 5b and exhaust port 6
a, 6b are opened, and the main intake valve 7 is connected to these ports.
a, 7b, supercharging intake valves 8a, 8b, and exhaust valves 9a, 9b. Further, the main intake passage 12 branches into cylinders from the middle thereof, and each of the main intake passage branch parts 12a, 12b corresponds to each cylinder 1a, 1b.
It communicates with the main intake ports 4a and 4b. The supercharging passage 13 having the supercharger 20 also branches for each cylinder downstream from the supercharging control valve 22 and communicates with the supercharging ports 5a and 5b of each cylinder 1a and 1b, respectively. Path branch parts 13a, 13
Timing valves 23a and 23b are respectively provided at b. These timing valves 23a, 23b
As in the case of the first embodiment, the opening/closing timing is adjusted according to the engine speed.

両気筒1a,1b間の前記各主吸気通路分岐部
12a,12bからなる連通路の長さは、エンジ
ンの高速域で次のような気筒間吸気干渉効果によ
つて吸気行程終期にある気筒の主吸気ポート付近
に圧縮波が与えられるように設定されている。つ
まり、両気筒1a,1bのうちの一方の気筒の主
吸気ポート開口時には燃焼室内の残留ガス圧で吸
気が圧縮されて、その圧縮波が他方の気筒の主吸
気ポートへ送られ、また一方の気筒の主吸気ポー
ト開口時には吸気流による作用で圧縮波が生じ
て、その圧縮波が他方の気筒の主吸気ポートに送
られる。そしてエンジン高速域で、一方の気筒の
吸気ポート開口時に生じる圧縮波または吸気ポー
ト閉口時に生じる圧縮波が、他方の気筒の吸気行
程終期にその主吸気ポート付近に達するように、
前記連通路の長さが設定されている。
The length of the communication path consisting of the main intake passage branch parts 12a and 12b between the two cylinders 1a and 1b is determined by the length of the communication path between the cylinders 1a and 1b at the end of the intake stroke due to the following inter-cylinder intake interference effect in the high-speed range of the engine. It is set so that compression waves are applied near the main intake port. In other words, when the main intake port of one of the two cylinders 1a and 1b is opened, the intake air is compressed by the residual gas pressure in the combustion chamber, and the compression wave is sent to the main intake port of the other cylinder. When the main intake port of a cylinder opens, a compression wave is generated by the action of the intake air flow, and the compression wave is sent to the main intake port of the other cylinder. Then, in the engine high speed range, the compression wave that occurs when the intake port of one cylinder opens or the compression wave that occurs when the intake port closes reaches the vicinity of the main intake port of the other cylinder at the end of the intake stroke.
The length of the communication path is set.

このように気筒間吸気干渉効果を利用しても、
エンジンの高速域では各気筒1a,1bに対して
それぞれ吸気行程終期に主吸気ポート4a,4b
付近に圧縮波が与えられるため、第1実施例の場
合と同様に過給気の吹返しが防止され、充填効率
が高められることとなる。
Even if we use the inter-cylinder intake interference effect in this way,
In the high-speed range of the engine, the main intake ports 4a and 4b are connected to each cylinder 1a and 1b at the end of the intake stroke, respectively.
Since compression waves are applied to the vicinity, blowback of supercharged air is prevented as in the first embodiment, and charging efficiency is increased.

なお、主吸気通路12の気筒別分岐箇所に第5
図に2点鎖線で示すように拡大室28を設け、拡
大室28を通して気筒1a,1b間で圧縮波が伝
播されるようにしてもよい。3気筒以上の多気筒
エンジンにおいても、拡大室から各気筒別に主吸
気通路を分岐させて、高速域で各気筒相互間に気
筒間吸気干渉効果をもたせるように設定するこが
できる。また、拡大室の配置および主吸気通路分
岐部の長さの設定によつては、高速域で前述の吸
気慣性効果と気筒間吸気干渉効果を同時にもたせ
ることも可能である。
In addition, a fifth branch is installed at each cylinder branch point of the main intake passage 12.
As shown by the two-dot chain line in the figure, an expansion chamber 28 may be provided so that the compression wave is propagated between the cylinders 1a and 1b through the expansion chamber 28. Even in a multi-cylinder engine with three or more cylinders, the main intake passage can be branched from the enlarged chamber for each cylinder to create an inter-cylinder intake interference effect between each cylinder in a high-speed range. Furthermore, depending on the arrangement of the enlarged chamber and the length of the main intake passage branch, it is possible to simultaneously provide the above-mentioned intake inertia effect and inter-cylinder intake interference effect in the high-speed range.

(発明の効果) 以上のように本発明は、過給通路に設けたタイ
ミング弁の開閉時期をエンジン高速域で進角させ
るようにするとともに、高速域では吸気行程終期
の気筒の主吸気通路開口部付近に圧縮波を与える
ことにより、主吸気通路への過給気の吹返しを防
止する作用を高めているため、高速域で充填効率
を高めて出力を向上することができるものであ
る。
(Effects of the Invention) As described above, the present invention advances the opening/closing timing of the timing valve provided in the supercharging passage in the engine high speed range, and in the high speed range, the main intake passage of the cylinder opens at the end of the intake stroke. By applying compression waves near the main intake passage, the effect of preventing the supercharged air from blowing back into the main intake passage is enhanced, thereby increasing charging efficiency and output in the high-speed range.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例を示す概略図、第
2図は主吸気弁、過給用吸気弁およびタイミング
弁の開閉時期を示す説明図、第3図は燃焼室に導
入される過給気圧力および主吸気ポート付近の吸
気圧力の変化を示す説明図、第4図はエンジン回
転数と出力トルクとの関係を示す説明図、第5図
は第2実施例を示す概略図である。 1,1a,1b……気筒、12……主吸気通
路、13……過給通路、18……拡大室、20…
…過給機、23……タイミング弁。
Fig. 1 is a schematic diagram showing the first embodiment of the present invention, Fig. 2 is an explanatory diagram showing the opening/closing timing of the main intake valve, supercharging intake valve, and timing valve, and Fig. 3 is a diagram showing the opening/closing timing of the main intake valve, the supercharging intake valve, and the timing valve. FIG. 4 is an explanatory diagram showing changes in supercharging pressure and intake pressure near the main intake port, FIG. 4 is an explanatory diagram showing the relationship between engine speed and output torque, and FIG. 5 is a schematic diagram showing the second embodiment. be. 1, 1a, 1b...Cylinder, 12...Main intake passage, 13...Supercharging passage, 18...Enlargement chamber, 20...
...supercharger, 23...timing valve.

Claims (1)

【特許請求の範囲】[Claims] 1 主吸気通路と、過給機を有する過給通路とを
形成し、吸気行程終期に過給を行うように開閉作
動するタイミング弁を上記過給機下流の過給通路
に設ける一方、該タイミング弁の開閉時期をエン
ジンが低速域から高速域になるにしたがつて進角
するようにしたエンジンにおいて、主吸気通路に
形成した拡大室の下流の主吸気通路の長さもしく
は上記主吸気通路を含む気筒間の連通路の長さの
少なくともいずれかを、高速域で吸気行程終期の
気筒の主吸気通路開口部付近に圧縮波が送られる
ように設定したことを特徴とする過給機付エンジ
ンの吸気装置。
1. A main intake passage and a supercharging passage having a supercharger are formed, and a timing valve that opens and closes to perform supercharging at the end of the intake stroke is provided in the supercharging passage downstream of the supercharger. In an engine in which the valve opening/closing timing is advanced as the engine moves from a low speed range to a high speed range, the length of the main intake passage downstream of the enlarged chamber formed in the main intake passage or the length of the main intake passage A supercharged engine characterized in that at least one of the lengths of communication passages between cylinders is set so that a compression wave is sent to the vicinity of the main intake passage opening of the cylinder at the end of the intake stroke in a high-speed range. intake device.
JP59082538A 1984-04-23 1984-04-23 Suction system for supercharged engine Granted JPS60224929A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59082538A JPS60224929A (en) 1984-04-23 1984-04-23 Suction system for supercharged engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59082538A JPS60224929A (en) 1984-04-23 1984-04-23 Suction system for supercharged engine

Publications (2)

Publication Number Publication Date
JPS60224929A JPS60224929A (en) 1985-11-09
JPH0517378B2 true JPH0517378B2 (en) 1993-03-09

Family

ID=13777283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59082538A Granted JPS60224929A (en) 1984-04-23 1984-04-23 Suction system for supercharged engine

Country Status (1)

Country Link
JP (1) JPS60224929A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006057528A (en) * 2004-08-19 2006-03-02 Mazda Motor Corp Intake device for multiple cylinder engine
KR20180008341A (en) * 2016-07-15 2018-01-24 씨제이제일제당 (주) Leuconostoc mesenteroides CJLM181 producing decreased amounts of gas and methods for preparing kimchi using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006057528A (en) * 2004-08-19 2006-03-02 Mazda Motor Corp Intake device for multiple cylinder engine
JP4517772B2 (en) * 2004-08-19 2010-08-04 マツダ株式会社 Multi-cylinder engine intake system
KR20180008341A (en) * 2016-07-15 2018-01-24 씨제이제일제당 (주) Leuconostoc mesenteroides CJLM181 producing decreased amounts of gas and methods for preparing kimchi using the same

Also Published As

Publication number Publication date
JPS60224929A (en) 1985-11-09

Similar Documents

Publication Publication Date Title
JP3325598B2 (en) Control device for engine with mechanical supercharger
JP2863927B2 (en) Engine intake system
JPH06108858A (en) Intake device of engine
JPH1089106A (en) Engine with turbo-supercharger and power unit of vehicle loaded with the same engine
JPS6211169B2 (en)
JPH0517378B2 (en)
JP3183560B2 (en) Control device for supercharged engine
JPH0452377B2 (en)
JPH0517377B2 (en)
JP2601655B2 (en) Intake device for supercharged engine
JPH0128209B2 (en)
JP2647131B2 (en) Intake device for turbocharged diesel engine
JPH0619807Y2 (en) Engine scavenger
JP2673426B2 (en) Engine with mechanical supercharger
JP3427396B2 (en) Intake device for engine with mechanical supercharger
JPS60147534A (en) Suction device for internal-combustion engine
JPH0559249B2 (en)
JPS61218720A (en) Intake device of engine with supercharger
JPH04194318A (en) Suction device for engine
JPS60228726A (en) Intake device of multicylinder engine with supercharger
JP3280757B2 (en) Intake device for engine with mechanical supercharger
JPS5970833A (en) Intake device of rotary piston engine
JPH0214527B2 (en)
JPH0340214B2 (en)
JPH0517372B2 (en)