JPS60208115A - Phase shifter - Google Patents

Phase shifter

Info

Publication number
JPS60208115A
JPS60208115A JP59063594A JP6359484A JPS60208115A JP S60208115 A JPS60208115 A JP S60208115A JP 59063594 A JP59063594 A JP 59063594A JP 6359484 A JP6359484 A JP 6359484A JP S60208115 A JPS60208115 A JP S60208115A
Authority
JP
Japan
Prior art keywords
voltage
signal
phase shift
phase
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59063594A
Other languages
Japanese (ja)
Inventor
Ryoji Maruyama
亮司 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59063594A priority Critical patent/JPS60208115A/en
Publication of JPS60208115A publication Critical patent/JPS60208115A/en
Pending legal-status Critical Current

Links

Landscapes

  • Networks Using Active Elements (AREA)
  • Control Of Voltage And Current In General (AREA)
  • Pulse Circuits (AREA)

Abstract

PURPOSE:To attain phase shift in a desired phase angle even when an input signal is changed by converting input and output signals into pulses, converting the phase difference into a pulse width, converting it into a DC voltage and using the DC voltage so as to control the resistive element for phase shift. CONSTITUTION:The input and output of the phase shift circuit 10 are processed into pulses by comparators 21, 22, a pulse S3 having a pulse width corresponding to the phase difference is formed by a pulse width converting meand 23, the pulse is formed into a DC voltage at an integration circuit 30 and the voltage is impressed to a voltage controlled variable resistive element 11a of the phase shift circuit 10. The integration circuit 30 has a variable voltage source 40, which sets a value of an output voltage S4. Thus, the phase shift amount is controlled automatically so that the potential of a connecting point between a resistor R4 and a capacitor C2 is equal to a voltage of a variable voltage source 40.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、入力信号を所望の位相角に移相する移相装置
の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an improvement in a phase shifting device for shifting an input signal to a desired phase angle.

〔発明の技術的背景〕[Technical background of the invention]

従来の移相装置は、第1図に示すように入力信号eiの
位相角を設定するコンデンサC1および抵抗R1より成
る位相遅延素子と、この位相遅延素子によって移相され
た信号を非反転入力端で受け、前記入力信号e1を抵抗
R2を介して反転入力端で受けて入力信号町を所要の位
相角調整用して出力する演算増幅器1とで構成されたも
のである。R3は演算増幅器1の反転入力端と出力端と
の間に介挿され、前記抵抗R1と同一の抵抗値をもった
抵抗である。
As shown in FIG. 1, a conventional phase shifter includes a phase delay element consisting of a capacitor C1 and a resistor R1 that sets the phase angle of an input signal ei, and a signal phase-shifted by this phase delay element to a non-inverting input terminal. The operational amplifier 1 receives the input signal e1 at its inverting input terminal via a resistor R2, adjusts the input signal to a required phase angle, and outputs the input signal. R3 is a resistor inserted between the inverting input terminal and the output terminal of the operational amplifier 1, and having the same resistance value as the resistor R1.

而して、以上のような移相装置において入力端に正弦波
状の入力信号eIを供給すると、該装置の伝達関数e。
When a sinusoidal input signal eI is supplied to the input end of the phase shift device as described above, the transfer function e of the device is changed.

/eIは、 で表わされ、また出力信号e0と入力信号Jとの位相角
θは、 で表わされることは周知の事実である。但し、θは、0
0≦θ≦180°の関係にある。また、ωは入力信号J
の角速度であって、ω=2πfで表わされる。
It is a well-known fact that /eI is expressed as follows, and that the phase angle θ between the output signal e0 and the input signal J is expressed as follows. However, θ is 0
The relationship is 0≦θ≦180°. Also, ω is the input signal J
is the angular velocity of ω=2πf.

〔背景技術の問題点〕[Problems with background technology]

ところが、上記装置によって得られる位相差即ち(2)
式から明らかなように、開式には入力信号eIの角速度
ωが含まれている。このため、角速度ω即ち入力信号e
iの周波数fが変化すると、位相角θも変化することに
なる。従って、第1図で示す装置では、入力信号町の周
波数fが変化すると、予め設定された位相角θで遅延さ
れた出力信号e。が得られなくなってしまう。この結果
、この装置の出力側に接続される例えば無効電力量計等
の如きものにおいては、その無効電力を正確に測定でき
ないといった不具合が生じてくる恐れがある。
However, the phase difference obtained by the above device, that is, (2)
As is clear from the equation, the open equation includes the angular velocity ω of the input signal eI. Therefore, the angular velocity ω, that is, the input signal e
When the frequency f of i changes, the phase angle θ will also change. Therefore, in the device shown in FIG. 1, when the frequency f of the input signal changes, the output signal e is delayed by a preset phase angle θ. will no longer be obtained. As a result, there is a risk that a device connected to the output side of this device, such as a reactive watt-hour meter, may be unable to accurately measure its reactive power.

〔発明の目的〕[Purpose of the invention]

本発明は以上のような点に着目してなされたもので、入
力信号の周波数が変化しても所望の位相角で移相し得る
移相装置を提供することを目的とする。
The present invention has been made with attention to the above points, and an object of the present invention is to provide a phase shift device that can shift the phase at a desired phase angle even if the frequency of an input signal changes.

〔発明の概要〕[Summary of the invention]

本発明は、入力信号が入力される電圧制御形移相回路の
出力信号と前記入力信号とのそれぞれ・ぐルス化された
信号のレベル状態を判断してそのレベル状態に応じたパ
ルス幅のパルス信号に変換し、この・やルス幅の・苧ル
ス信号を積分回路によって直流電圧に変換しかつ積分回
路の入力側または出力側に可変電圧源を設け、この可変
電圧源の可変によって前記電圧制御形移相回路へ位相角
調整用の電圧制御信号を供給する移相装置である。
The present invention provides a method for determining the level state of the output signal of a voltage-controlled phase shift circuit to which an input signal is input and the input signal, respectively, and a signal having a pulse width corresponding to the level state. This pulse width signal is converted into a DC voltage by an integrating circuit, and a variable voltage source is provided on the input side or output side of the integrating circuit, and the voltage control is performed by varying the variable voltage source. This is a phase shift device that supplies a voltage control signal for phase angle adjustment to a phase shift circuit.

〔発明の実施例〕[Embodiments of the invention]

第2図は本発明装置の一実施例を示す構成図である。同
図において10は入力信号eIを所望の位相角に移相す
る電圧制御形移相回路であって、これは入力信号を位相
遅延する電圧制御形可変抵抗素子11aおよびコンデン
サllbよりなる位相遅延素子11と、この位相遅延素
子1ノの出力を非反転入力端で受け、また入力信号e1
を抵抗12を介して反転入力端で受けて増幅する演算増
幅器13と、この増幅器13の反転入力端と出力端との
間に介挿された抵抗J4とによって構成されている。な
お、抵抗12゜14は分圧回路を構成している。また、
電圧制御形可変抵抗素子11aとしては例えば電界効果
型トラン2スタやCdSフオトカゾラ等が使用される。
FIG. 2 is a configuration diagram showing an embodiment of the apparatus of the present invention. In the figure, reference numeral 10 denotes a voltage-controlled phase shift circuit that shifts the phase of the input signal eI to a desired phase angle. 11, the output of this phase delay element 1 is received at the non-inverting input terminal, and the input signal e1
It is composed of an operational amplifier 13 which receives and amplifies the signal at its inverting input terminal via a resistor 12, and a resistor J4 inserted between the inverting input terminal and output terminal of this amplifier 13. Note that the resistors 12 and 14 constitute a voltage dividing circuit. Also,
As the voltage-controlled variable resistance element 11a, for example, a field effect transistor 2 star, a CdS photocazola, or the like is used.

20は入力信号elと電圧制御形移相回路IQの出力e
0をそれぞれ・やルス化するとともに1この両・ンルス
信号のレベル状態に応じた・ぞルス幅の・Pルス信号に
変換する・Pルス幅変換手段である。この手段20は、
具体的には入力信号eIを例えば零ボルトの基準レベル
と比較して・(ルス信号を作成する第1のコン・やレー
タ21と、移相巨1路10の出力信号e0を例えば零ボ
ルトの基準レベルと比較して・セルス信号を作成する第
2のコンノソレータ22と、・やルス幅変換回路23と
を有するものである。この・ンルス幅変換回路23は、
両・ぐルス信号のレベル状態を判断してそのレベル状態
に応じた・ぐルス幅の・ンルス信号に変換するものであ
り、例えば排他的論理和回路が使用されヤいる。
20 is the input signal el and the output e of the voltage controlled phase shift circuit IQ.
This is a P pulse width converting means that converts each 0 into a pulse width signal and converts each signal into a P pulse signal having a pulse width corresponding to the level state of the pulse signal. This means 20 is
Specifically, by comparing the input signal eI with a reference level of, for example, zero volts, It has a second connosolator 22 that compares it with a reference level and creates a pulse signal, and a pulse width conversion circuit 23.This pulse width conversion circuit 23 is
The level state of both signals is determined and converted into a signal with a signal width corresponding to the level state, and an exclusive OR circuit is used, for example.

30は・やルス変換手段2θから出力される)?ルス信
号を積分して直流電圧に変換する積分回路であって、例
えば演算増幅器3ノと、抵抗32vLおよびコンデンサ
32bより成る積分時定数回路32とで構成されている
。この積分時定数回路32のC2・R4時定数としては
入力信号e1の周期よりも十分大きな値とし、これによ
って・eルス幅変換手段20からのノルス信号を確実に
直流電圧に変換するものである。そして、この積分回路
30の出力端は前記電圧制御形可変抵抗素子11aの電
圧供給端に接続し、積分出力電圧を供給して可変抵抗素
子11aの抵抗値を可変する。40け正、負の直流電圧
を可変し得る可変電圧源であって、これを可変すること
によって移相回路IQで遅延すべき位相角を決定するも
のである。
30 is output from the Lux conversion means 2θ)? The integration circuit integrates a pulse signal and converts it into a DC voltage, and is composed of, for example, an operational amplifier 3, and an integration time constant circuit 32 consisting of a resistor 32vL and a capacitor 32b. The C2 and R4 time constants of this integral time constant circuit 32 are set to values that are sufficiently larger than the period of the input signal e1, thereby ensuring that the Nors signal from the pulse width converting means 20 is converted into a DC voltage. . The output terminal of the integrating circuit 30 is connected to the voltage supply terminal of the voltage-controlled variable resistance element 11a, and the integrated output voltage is supplied to vary the resistance value of the variable resistance element 11a. This is a variable voltage source that can vary positive and negative DC voltages by 40 degrees, and by varying this, the phase angle to be delayed by the phase shift circuit IQ is determined.

次に、以上のように構成された装置の作用について第3
図を参照して説明する。なお、同図は可変電圧源40の
出力電圧が零ゲルトの場合の波形図であって、eIは入
力信号、eoは出力信号、SlおよびS2は第1および
第2のコン・!レータ21,22によって得られる・や
ルス信号、S3は・やルス幅変換回路23によって得ら
れる信号、S4は積分回路30から出力される電圧制御
信号であってこれが電圧制御形可変抵抗素子1imK供
給される。
Next, we will discuss the operation of the device configured as described above in the third section.
This will be explained with reference to the figures. The figure is a waveform diagram when the output voltage of the variable voltage source 40 is zero, where eI is the input signal, eo is the output signal, and Sl and S2 are the first and second controllers! S3 is the signal obtained by the pulse width conversion circuit 23, and S4 is the voltage control signal output from the integrating circuit 30, which is supplied to the voltage controlled variable resistance element 1imK. be done.

先ず、初期状態イにおいて積分回路3θからの電圧制御
信号S4が零・2ルトであるとすると、電圧制御形可変
抵抗素子11hは無限大の抵抗値を示すことになり、こ
の結果、入力信号e1と出力信号e0との位相差(位相
角)θは(2)式においてRに■として与えられるため
、θ#O0となる。
First, in the initial state A, if the voltage control signal S4 from the integrating circuit 3θ is zero.2, the voltage-controlled variable resistance element 11h exhibits an infinite resistance value, and as a result, the input signal e1 Since the phase difference (phase angle) θ between the output signal e0 and the output signal e0 is given to R as ■ in equation (2), it becomes θ#O0.

従って、入力信号eIと出力信号e0の位相角はほぼ0
°となる。これらの両信号J、66は第1および第2の
コン−ぐレータ21.22VCよって・やルス化されて
第3図のような・やルス信号Sl。
Therefore, the phase angle between the input signal eI and the output signal e0 is approximately 0.
°. Both of these signals J, 66 are converted into a somewhat loose signal by the first and second conglomerators 21, 22 VC to produce a somewhat loose signal Sl as shown in FIG.

S2に変換され、後続の・ンルス幅変換回路23に供給
される。ここで、・ヂルス幅変換回路23社、両ノfル
ス信号Sl、S2のレベル(H#か”L”)を判断する
ことにより、第3図のような・Pルス幅の・母ルス信号
S3を得、これを積分回路30へ導入して積分する。こ
の積分動作によって積分回路30の積分出力つ壕り電圧
制御信号S4は上昇しはじめる。なお、この積分出力S
4は積分回路3oを構成するコンデンサc2と抵抗R4
の時定数C2・R4が入力信号e1の周期に比べて十分
大きいため完全な直流としてらの電圧制御信号S4が上
昇すると、この信号S4を受けて電圧制御形可変抵抗素
子11aの抵抗値が降下し、入力信号e1と出力信号e
0との間に位相差が生じ、よってパルス幅変換回路23
からは口状態の信号S3に示すように・セルス幅が増加
してくる。さらに、積分回路3oの積分動作によって状
態ハのようになり、入力信号e1と出力信号e。との位
相差が90°になると、・ぐルス幅変換回路23の出力
S3の平均値が零ボルトになり、積分回路30は積分動
作を停止して平衡に達する。
S2 and supplied to the subsequent signal width conversion circuit 23. Here, by determining the level (H# or "L") of both pulse width conversion circuits Sl and S2, a base pulse signal of P pulse width as shown in Fig. 3 is generated. S3 is obtained and introduced into the integrating circuit 30 for integration. Due to this integrating operation, the integrated output voltage control signal S4 of the integrating circuit 30 begins to rise. Note that this integral output S
4 is a capacitor c2 and a resistor R4 that constitute an integrating circuit 3o.
Since the time constant C2·R4 is sufficiently larger than the period of the input signal e1, when the voltage control signal S4 rises as a complete DC signal, the resistance value of the voltage-controlled variable resistance element 11a drops in response to this signal S4. Then, input signal e1 and output signal e
0, a phase difference occurs between the pulse width conversion circuit 23 and
From then on, as shown in the mouth state signal S3, the cell width increases. Furthermore, due to the integration operation of the integration circuit 3o, the state becomes as shown in C, and the input signal e1 and the output signal e. When the phase difference between the output signal and the signal width conversion circuit 23 becomes 90 degrees, the average value of the output S3 of the signal width conversion circuit 23 becomes zero volts, and the integration circuit 30 stops its integration operation and reaches equilibrium.

また、状態二に示すように、積分回路3oの出力が過大
となり、入力信号e1と出力信号e。の位相差が90°
以上になると、・!ルス幅変換回路23の・セルス信号
S3の平均値は正となり、積分回路30は状態ホのよう
に・ヂルス幅変換回路23の出力の平均値が零ゲルトに
なるまで下降積分を行なう。
Moreover, as shown in state 2, the output of the integrating circuit 3o becomes excessive, and the input signal e1 and the output signal e. The phase difference is 90°
When it comes to more than that...! The average value of the cell signal S3 of the pulse width conversion circuit 23 becomes positive, and the integrating circuit 30 performs downward integration as in state E until the average value of the output of the pulse width conversion circuit 23 becomes zero.

上記実施例は、可変電圧源40の出力が零ボルトの場合
つまシ位相差として90°を与えた場合の動作であるが
、θ=90°以外の位相差(0°≦θ≦180°)の場
合には可変電圧源40を可変して正または負の電圧を発
生させ、積分回路3θの電圧制御信号S4を偏らせるこ
とにより容易に実現することができる。
The above embodiment operates when a phase difference of 90° is given when the output of the variable voltage source 40 is 0 volts, but if the phase difference is other than θ=90° (0°≦θ≦180°) In this case, this can be easily realized by varying the variable voltage source 40 to generate a positive or negative voltage and biasing the voltage control signal S4 of the integrating circuit 3θ.

なお、上記実施例で11移相回路10として演算増幅器
13と、コンデンサおよび電圧制御形可変抵抗素子11
gよりなる位相遅延素子1ノとを用いたが、例えば第4
図のように積分回路30からの電圧制御信号S4によっ
てクロック周期が可変される電圧制御形クロック発生器
15と、B B D (Backet Brigade
 Device )素子やCCD (Charge C
oupled Device )素子などの遅延素子1
6とで構成しでもよい。このような構成の移相回路10
においても第2図と同様、移相回路10のクロック発生
器15に積分回路30から電圧制御信号を加えることに
より、入力信号elを遅延させて所望の位相角に移相さ
せることができる。
In the above embodiment, the operational amplifier 13 and the capacitor and voltage-controlled variable resistance element 11 are used as the phase shift circuit 10.
For example, the fourth phase delay element 1 was used.
As shown in the figure, a voltage-controlled clock generator 15 whose clock period is varied by a voltage control signal S4 from an integrating circuit 30, and a BBD (Backet Brigade)
Device) elements and CCD (Charge C
Delay element 1 such as an extended device
6. Phase shift circuit 10 having such a configuration
Similarly to FIG. 2, by applying a voltage control signal from the integrating circuit 30 to the clock generator 15 of the phase shift circuit 10, the input signal el can be delayed and shifted to a desired phase angle.

また、上記実施例では、可変電圧源40を演算増幅器3
1の非反転入力端に接続したが、例えば第5図のように
パルス幅変換手段20の出力端と接続される演算増幅器
31の反転入力端に加算要素40aを介して接続しても
同様の作用効果を奏する。なお、演算増幅器3ノの非反
転入力端は接地されている。特に、このような構成とす
れば、接地電位を基準として積分するとき或いは非反転
入力端に他の信号が入力されて可変電圧源40が使用で
きない場合に有効である。また、第6図に示すように1
積分回路30の出力側に加算要素40bを付加し、これ
に可変電圧源4θを加えても第5図と同様の有利な点が
ある。また、第1および第2のコン・ぐレータ21,2
2の基準レベルとして零ボルトを使2ト 用したが、零デルト以轡の電圧レベルのものを使用して
もよい。さらに1第2図に示す装#は位相角θが0°≦
θ≦180°の例であるが、該装置をn段直列に接続す
ればO0≦θ(nX180゜まで位相角を移相でき、こ
れによって所望の位相角で複数個所から出力信号e0を
取り出して使用する電気機器に適用して有効なものとな
る。
Further, in the above embodiment, the variable voltage source 40 is connected to the operational amplifier 3.
Although the connection is made to the non-inverting input terminal of the operational amplifier 31, which is connected to the output terminal of the pulse width converting means 20 as shown in FIG. It has an effect. Note that the non-inverting input terminal of the operational amplifier 3 is grounded. In particular, such a configuration is effective when integrating with the ground potential as a reference or when the variable voltage source 40 cannot be used because another signal is input to the non-inverting input terminal. In addition, as shown in Figure 6, 1
Adding the adding element 40b to the output side of the integrating circuit 30 and adding the variable voltage source 4.theta. has the same advantages as in FIG. In addition, the first and second controllers 21, 2
Although zero volts is used as the second reference level, voltage levels higher than zero may also be used. Furthermore, in the device #1 shown in Fig. 2, the phase angle θ is 0°≦
In the example of θ≦180°, if n stages of the devices are connected in series, the phase angle can be shifted up to O0≦θ(n It becomes effective when applied to the electrical equipment used.

その他、本発明はその要旨を逸脱しない範囲で棹々変形
して実施できる。
In addition, the present invention can be practiced with considerable modification without departing from the gist thereof.

〔発明の効果〕〔Effect of the invention〕

以上詳記したように本発明によれば、・ンルス幅変換手
段によって得られた・ンルス幅の・eルス信号を積分回
路で積分して該・ヂルス幅の・母ルス信号の平均値が可
変電圧源の出力電圧と等しくなるまで積分を繰返してそ
の積分出力を移相回路の制御電圧として印加するように
したので、入力信号の周波数が変化しても予め設定され
た所望の位相角で移相した出力信号を取り出すことがで
き、よって例えば電力量計などに適用して電力等を高精
度に測定し得る移相装置を提供できる。
As described in detail above, according to the present invention, the average value of the base signal of the pulse width is varied by integrating the pulse signal of the pulse width obtained by the pulse width conversion means by the integrating circuit. Integration is repeated until the voltage becomes equal to the output voltage of the voltage source, and the integrated output is applied as the control voltage of the phase shift circuit, so even if the frequency of the input signal changes, it can be shifted at the desired phase angle set in advance. It is possible to provide a phase shift device that can extract phased output signals, and can therefore be applied to, for example, a power meter to measure power and the like with high precision.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来装置の構成図、第2図は本発明に係る移相
装置の一実施例を示す構成図、第3図は動作を説明する
波形図、第4図ないし第6図はそれぞれ本発明装置の一
部における他の例を示す構成図である。 10・・・移相回路、1ノ・・・位相遅延素子、−11
a・・・電圧制御形可変抵抗素子、15・・・電圧制御
型クロック発生器、16・・・遅延素子、20・・・・
ぐルス幅変換手段、27 、 22・・・コンツヤレー
タ、23・・・やルス幅変換回路、30・・・積分回路
、32・・・時定数回路、40・・・可変電圧源。
Fig. 1 is a block diagram of a conventional device, Fig. 2 is a block diagram showing an embodiment of the phase shift device according to the present invention, Fig. 3 is a waveform diagram explaining the operation, and Figs. 4 to 6 are respectively It is a block diagram which shows another example of a part of this invention apparatus. 10...phase shift circuit, 1no...phase delay element, -11
a... Voltage controlled variable resistance element, 15... Voltage controlled clock generator, 16... Delay element, 20...
pulse width conversion means, 27, 22... Contourator, 23... and pulse width conversion circuit, 30... Integrating circuit, 32... Time constant circuit, 40... Variable voltage source.

Claims (6)

【特許請求の範囲】[Claims] (1)入力信号を所望の位相角に移相する電圧制御形移
相回路と、との移相回路の出力信号と前記入力信号とを
それぞれ基準レベルで比較して・eルス化するとともに
、これらの両・ぐルス信号のレベル状態を判断してパル
ス幅に変換する・9ルス幅変換手段と、この・ぐルス幅
変換手段によって得られた・セルス幅の・ぐルス信号を
積分して制御電圧信号を得る積分回路と、この積分回路
の入力側および出力側の何れか一方に接続された可変電
圧源とを備え、この可変電圧源の可変によって前記電圧
制御形移相回路に加える前記積分回路の制御電圧信号を
可変して前記電圧制御形移相回路から出力される信号の
位相角を調整することを特徴とする移相装置。
(1) A voltage-controlled phase shift circuit that shifts the input signal to a desired phase angle, and compares the output signal of the phase shift circuit with the input signal at a reference level, and converts the input signal into an error signal. A pulse width conversion means judges the level states of these two pulse signals and converts them into pulse widths, and integrates the pulse signal of the pulse width obtained by this pulse width conversion means. It includes an integrating circuit that obtains a control voltage signal, and a variable voltage source connected to either the input side or the output side of this integrating circuit, and the voltage applied to the voltage controlled phase shift circuit by varying the variable voltage source. A phase shifter characterized in that the phase angle of a signal output from the voltage controlled phase shift circuit is adjusted by varying a control voltage signal of an integrating circuit.
(2)電圧制御形移相回路は、入力信号を位相遅延する
電圧制御形可変抵抗素子およびコンデンサよりなる位相
遅延素子と、この位相遅延素子の出力と前記入力信号と
を受ける演算増幅器とで構成されたものである特許請求
の範囲第1項記載の移相装置。
(2) The voltage-controlled phase shift circuit consists of a phase delay element consisting of a voltage-controlled variable resistance element and a capacitor that delays the phase of an input signal, and an operational amplifier that receives the output of this phase delay element and the input signal. A phase shift device according to claim 1, which is a phase shift device according to claim 1.
(3)電圧制御形移相回路は、前記制御電圧信号を受け
てクロック周期が変化する電圧制御形クロック発生器と
、このクロック発生器の出力によって前記入力信号の位
相角を制御する遅延素子とで構成されたものである特許
請求の範囲第1項記載の移相装置。
(3) The voltage-controlled phase shift circuit includes a voltage-controlled clock generator whose clock cycle changes in response to the control voltage signal, and a delay element which controls the phase angle of the input signal by the output of the clock generator. A phase shift device according to claim 1, which is comprised of:
(4)積分回路の積分時定数は、前記入力信号の周期拠
比べて大きな値としたことを特徴とする特許請求の範囲
第1項記載の移相装置。
(4) The phase shift device according to claim 1, wherein the integration time constant of the integration circuit is set to a value larger than the periodicity of the input signal.
(5)可変電圧源は、積分回路を構成する増幅器の2つ
の入力端のうち、前記ノ4ルス幅の・セルス信号が入力
される入力端とは別の入力端に接続してなることを特徴
とする特許請求の範囲第1項記載の移相装置。
(5) The variable voltage source is connected to an input terminal of the two input terminals of the amplifier constituting the integrating circuit, which is different from the input terminal to which the cell signal with the width of 4 pulses is input. A phase shift device according to claim 1, characterized in that:
(6)可変電圧源は、積分回路を構成する増幅器02つ
の入力端のうち、前記・平ルス幅の・ンルス信号が入力
される入力端または積分回路の出力端に加算要素を介し
て接続されてなるものである特許請求の範囲第1項記載
の移相装置。
(6) The variable voltage source is connected to the input terminal of the two input terminals of the amplifier constituting the integrating circuit, into which the pulse width signal is inputted, or to the output terminal of the integrating circuit via an addition element. 2. A phase shifting device according to claim 1, which comprises:
JP59063594A 1984-03-31 1984-03-31 Phase shifter Pending JPS60208115A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59063594A JPS60208115A (en) 1984-03-31 1984-03-31 Phase shifter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59063594A JPS60208115A (en) 1984-03-31 1984-03-31 Phase shifter

Publications (1)

Publication Number Publication Date
JPS60208115A true JPS60208115A (en) 1985-10-19

Family

ID=13233746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59063594A Pending JPS60208115A (en) 1984-03-31 1984-03-31 Phase shifter

Country Status (1)

Country Link
JP (1) JPS60208115A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62292012A (en) * 1986-06-11 1987-12-18 Matsushita Electric Ind Co Ltd 90× phase discriminating device
JPH0457406A (en) * 1990-06-27 1992-02-25 Shindengen Electric Mfg Co Ltd Phase shift circuit for rf generator
EP4071440A1 (en) * 2021-04-08 2022-10-12 NXP USA, Inc. Trim circuit and method of oscillator drive circuit phase calibration

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62292012A (en) * 1986-06-11 1987-12-18 Matsushita Electric Ind Co Ltd 90× phase discriminating device
JPH0457406A (en) * 1990-06-27 1992-02-25 Shindengen Electric Mfg Co Ltd Phase shift circuit for rf generator
EP4071440A1 (en) * 2021-04-08 2022-10-12 NXP USA, Inc. Trim circuit and method of oscillator drive circuit phase calibration

Similar Documents

Publication Publication Date Title
US4638255A (en) Rectangular wave pulse generators
JP2593080B2 (en) Differential reset stabilizing latch
US9852860B2 (en) Parameter setting circuit of a power conversion apparatus and a method for generating a current
US5231360A (en) Multi-range voltage amplifier having multiplying digital/analog converters and programmable filter using multiplying DAC in feedback loop
JPS60208115A (en) Phase shifter
JP3431053B2 (en) Timing generator
JPS62186607A (en) Triangular wave generator
JPH0514150A (en) Variable delay device
JPS62165281A (en) Integration circuit
JP2671343B2 (en) Capacity measuring device
JPS60113521A (en) Timing circuit
KR920004916B1 (en) Phase delay circuit of pulse
JPS5929907B2 (en) computing device
JPH0410807A (en) Clock signal generating circuit
JPH09289439A (en) Phase adjusting circuit
SU1265639A1 (en) Device for generating complex harmonic signal with preset harmonic factor
SU750449A1 (en) Method of adjusting temperature compensation circuits of parametric converter with differential output
JPS60173922A (en) Converting circuit
KR100191781B1 (en) Data equalizer
JP2548418B2 (en) Delay device
SU1681380A1 (en) Controlled amplifier
KR0165822B1 (en) Off set regulating apparatus
JPH03117026A (en) Filter and phase locked loop circuit
JPH04219014A (en) Low frequency delay circuit
JPH0193915A (en) Comparator with hysteresis