JPS60200813A - Production of composite fine powder consisting of silicon nitride and silicon carbide - Google Patents

Production of composite fine powder consisting of silicon nitride and silicon carbide

Info

Publication number
JPS60200813A
JPS60200813A JP59055173A JP5517384A JPS60200813A JP S60200813 A JPS60200813 A JP S60200813A JP 59055173 A JP59055173 A JP 59055173A JP 5517384 A JP5517384 A JP 5517384A JP S60200813 A JPS60200813 A JP S60200813A
Authority
JP
Japan
Prior art keywords
reaction
silicon
silicon nitride
silicon carbide
fine powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59055173A
Other languages
Japanese (ja)
Other versions
JPH0454609B2 (en
Inventor
Takashi Suzuki
喬 鈴木
Takamasa Kawakami
川上 殷正
Goji Koyama
剛司 小山
Masami Orisaku
織作 正美
Hiromasa Isaki
寛正 伊崎
Rieko Nakano
里愛子 中野
Akira Mori
晃 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP59055173A priority Critical patent/JPS60200813A/en
Priority to US06/712,036 priority patent/US4594330A/en
Priority to DE19853510264 priority patent/DE3510264A1/en
Publication of JPS60200813A publication Critical patent/JPS60200813A/en
Publication of JPH0454609B2 publication Critical patent/JPH0454609B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To produce the titled composite fine powder giving a composite sintered body having superior characteristics at high temp. by bringing an organosilicon compound consisting of Si, N, C and H into a vapor phase reaction. CONSTITUTION:An organosilicon compound represented by the formula such as CH3Si(NHCH3)3 is gasified once, fed to a reaction zone with a nonoxidizing gas such as NH3, H2 or N2, and brought into a reaction. The partial pressure of the gaseous starting material in the reaction zone is 0.001 - several atm., the reaction time is generally 120-0.05sec, and the reaction temp. is generally 600- 1,600 deg.C, preferably 800-1,500 deg.C. The resulting gas contg. formed silicon nitride and silicon carbide is cooled and introduced into a proper capturing apparatus to capture the compounds. Thus, composite fine powder of <=1mum particle size contg. uniformly silicon nitride and silicon carbide is obtd.

Description

【発明の詳細な説明】 本発明は窒化珪素と炭化珪素との複合微粉末の製造方法
に関する発明である。更に詳しくは一般式がRnSi 
(NR’R”) m (式中RR’R”は水素、アルキ
ル基、アリル茫、フェニル基を表1−ただしRIt’1
1”が同時に水素である場合を除<+n=o〜3、m=
4−nである)である有機珪素化合物を気相で反応する
ことを特徴とする窒化珪素と炭化珪素との複合微粉末の
製造方法に関する発明である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a fine composite powder of silicon nitride and silicon carbide. More specifically, the general formula is RnSi
(NR'R") m (in the formula, RR'R" represents hydrogen, an alkyl group, an allyl group, or a phenyl group in Table 1-However, RIt'1
1" is hydrogen at the same time <+n=o~3, m=
This invention relates to a method for producing a fine composite powder of silicon nitride and silicon carbide, characterized by reacting an organosilicon compound (4-n) in the gas phase.

窒化珪素や炭化珪素等の非酸化物系セラミックスはアル
ミナを中心とする酸化物系セラミックスに比べて高温強
度や耐熱衝撃性等の高温特性に優れているので、その製
造方法及びその応用に関する研究が最近盛んに行われて
おり、高温で作動させるガスタービン、ジーゼルエンジ
ン、熱交換器等の耐熱構造材料等の高温材料にその用途
が拓けつつある。
Non-oxide ceramics such as silicon nitride and silicon carbide have superior high-temperature properties such as high-temperature strength and thermal shock resistance compared to oxide ceramics, mainly alumina, so research on their manufacturing methods and their applications is ongoing. Recently, it has been widely used, and its application is opening up to high-temperature materials such as heat-resistant structural materials for gas turbines, diesel engines, heat exchangers, etc. that operate at high temperatures.

高温材料としての炭化珪素は高温での耐酸化性や強度特
性及び熱伝導度に優れている。また窒化珪素は耐熱衝撃
性、熱膨張係数、破壊靭性等に(籠れている。その為に
両者の長所を取り入れた新規材料としての複合セラミッ
クスの開発が最近進められている。
Silicon carbide as a high-temperature material has excellent oxidation resistance, strength properties, and thermal conductivity at high temperatures. In addition, silicon nitride has poor thermal shock resistance, coefficient of thermal expansion, fracture toughness, etc. Therefore, the development of composite ceramics as a new material that incorporates the advantages of both has been progressing recently.

この様な窒化珪素や炭化珪素は主として焼結により加工
成形されるが、高密度の焼結体を得る為の重要な因子と
しては、出発原料の組成、純度。
Silicon nitride and silicon carbide are mainly processed and formed by sintering, but the composition and purity of the starting materials are important factors in obtaining high-density sintered bodies.

結晶型1粒子径2粒子形状等があげられる。Examples include crystal type, 1 particle size, 2 particle shapes, etc.

非酸化系のシリコン系セラミックスは一般に難焼結性で
あり、従って焼結性が優れた原料粉末としてはザブミク
ロン級の粒子径を有し、均一なことが特に必要である。
Non-oxidizing silicon-based ceramics are generally difficult to sinter, and therefore raw material powder with excellent sinterability is particularly required to have a particle size on the submicron level and be uniform.

従来、窒化珪素単品の主な製法としては下記の方法が知
られている。
Conventionally, the following methods are known as main methods for producing single silicon nitride products.

(11金属珪素粉末を窒素またはアンモニアガス中で高
温に加熱して窒化する方法。
(11 A method of nitriding metal silicon powder by heating it to a high temperature in nitrogen or ammonia gas.

(2)珪素粉末とカーボンとの混合物を窒素中で高温に
加熱して還元と窒化とを同時に行う方法。
(2) A method of simultaneously reducing and nitriding a mixture of silicon powder and carbon by heating it to a high temperature in nitrogen.

(3)常温または低温で四塩化珪素とアンモニアを反応
させ、生成したシリコンアミドあるいはシリコンイミド
を分離した後窒素またはアンモニア雰囲気中で高温に加
熱するアミドあるいはイミドの熱分解法。
(3) An amide or imide thermal decomposition method in which silicon tetrachloride and ammonia are reacted at room temperature or low temperature, the resulting silicon amide or silicon imide is separated, and then heated to a high temperature in a nitrogen or ammonia atmosphere.

(4)四塩化珪素とアンモニアとを高温で気相反応させ
る方法。
(4) A method of causing a gas phase reaction between silicon tetrachloride and ammonia at high temperature.

しかし、これらの方法はそれぞれ次の様な解決すべき問
題点を有している。
However, each of these methods has the following problems that must be solved.

(1)については、現在工業的に用いられている方法で
はあるが、この方法では微細な粉末が得難く。
Regarding (1), although it is a method currently used industrially, it is difficult to obtain fine powder with this method.

この方法で得た生成物は、これを長時間粉砕する必要が
ある。このため原料Si中に含まれているFeCa、 
AI、等の不純物が窒化後も残ったり、粉砕過程で不純
物が混入する。
The product obtained in this way requires grinding for a long time. Therefore, FeCa contained in the raw material Si,
Impurities such as AI may remain even after nitriding, or may be mixed in during the grinding process.

(2)の方法は、原料として充分精製したシリカ粉末及
びカーボン粉末を用いる必要があるばかりでなく、得ら
れる生成物ばα型Si3N4 、β型Si3N4 。
In method (2), not only is it necessary to use sufficiently refined silica powder and carbon powder as raw materials, but also the resulting products are α-type Si3N4 and β-type Si3N4.

酸窒化珪素等の混合物であり2粒径及び粒径のバラツキ
を小さくJ−る事が困難である。
It is a mixture of silicon oxynitride, etc., and it is difficult to reduce the particle size and the variation in particle size.

(3)の方法には液相法と気相法とがあるが、いずれの
方法もシリ:1ンアミドやシリコンイミドと共に大量の
塩化アンモニウムが副生ずる。このため生成物の分離や
熱分解工程における塩化アンモニウムを除去するわずら
れしさや腐食あるいは溶媒使用に依る不純物の混入が起
こりやすい。
Method (3) includes a liquid phase method and a gas phase method, but in both methods, a large amount of ammonium chloride is produced as a by-product along with siliamide and silicon imide. For this reason, separation of the product and removal of ammonium chloride during the thermal decomposition process are troublesome, and impurities are likely to be mixed in due to corrosion or the use of solvents.

また、シリコンアミドやシリコンイミドを熱分解して得
られる粉末の粒径や結晶型は、微小粒子にしたり、整っ
た等軸的な粒状粒子とするには限界がある。
Furthermore, there are limits to the particle size and crystal type of powder obtained by thermally decomposing silicon amide or silicon imide, making it possible to form fine particles or regular equiaxed granules.

これらの中では(4)の気相法が高品質の物がiOられ
ると言われている。しかしながら四塩化珪素とアンモニ
アの反応が速いため各原料ガス供給管の出口部分でも反
応が起こり、出口部分が閉塞されてしまい長期の連続運
転が出来なくなるばかりでなく131の方法と同様に副
生ずる塩化アンモニウムを除去するわずられしさや、装
置の腐食対策等を講じなげればならない。
Among these, the gas phase method (4) is said to produce high quality iO. However, since the reaction between silicon tetrachloride and ammonia is fast, the reaction also occurs at the outlet of each raw material gas supply pipe, and the outlet is blocked, making long-term continuous operation impossible. Measures must be taken to avoid the hassle of removing ammonium and to prevent corrosion of the equipment.

更には塩化アンモニウムを完全に除去したとしても微量
の塩素は除去し難く、以後の結晶化工程において窒化珪
素が8品化したり、結晶型が針状になったりして焼結せ
しめる際にも悪影響を及ばずようになる。
Furthermore, even if ammonium chloride is completely removed, trace amounts of chlorine are difficult to remove, and in the subsequent crystallization process, silicon nitride may become eight products, or the crystal shape may become needle-shaped, which may have an adverse effect on sintering. It will fall short of that.

また、従来炭化珪素単味の主な製法としては下記の方法
が知られている。
Furthermore, the following methods have been known as main methods for producing silicon carbide alone.

(1)珪石(Si02)とコークス(C)を混合してア
チソン炉で加熱する方法。
(1) A method in which silica (Si02) and coke (C) are mixed and heated in an Acheson furnace.

(2)金属珪素イ5)末と炭素粉末の固相反応法。(2) Solid phase reaction method of metal silicon powder and carbon powder.

(3)シリカ粉末と炭素粉末との固相反応法。(3) Solid phase reaction method between silica powder and carbon powder.

しかし、いずれの方法も原料中に不揮発性の金属不純物
などが含有されているために、これが製品中に濃縮して
蓄積されたり、あるいは粒径のバラツキを小さくするこ
とが困難である等の欠点があった。
However, both methods have drawbacks such as non-volatile metal impurities contained in the raw materials, which may accumulate in the product, or make it difficult to reduce particle size variation. was there.

以上のような製法で得られた窒化珪素や炭化珪素の各単
品の粉末は2通常知られたポットプレス、常圧焼結1反
応焼結などの各種の方法で成形。
The individual powders of silicon nitride and silicon carbide obtained by the above manufacturing method are molded by various methods such as pot press, pressureless sintering, and reaction sintering.

焼結されるが、前記のような窒化珪素と炭化珪素の両者
の長所を取り入れた複合焼結体の製法も種々検討されて
おり2例えば2次のような製法が知られている。
Although sintered, various methods for manufacturing composite sintered bodies that incorporate the advantages of both silicon nitride and silicon carbide as described above have been studied, and for example, the following manufacturing method is known.

(1)窒化珪素と炭化珪素粉末を機械的に混合してホッ
トプレスなどで成形、焼結する方法。
(1) A method in which silicon nitride and silicon carbide powder are mechanically mixed, molded using a hot press, etc., and sintered.

(2)反応焼結的な手法を用いて、あらかじめ炭化珪素
と珪素の混合物を成形後、窒化反応を行わせて窒化珪素
質を生成させたり、窒化珪素と炭素の混合物を成形後、
珪素を浸透させて炭化珪素質を生成させる方法。
(2) Using a reaction sintering method, after forming a mixture of silicon carbide and silicon in advance, a nitriding reaction is performed to generate silicon nitride, or after forming a mixture of silicon nitride and carbon,
A method of infiltrating silicon to produce silicon carbide.

(3)有機珪素ポリマーを原料とし、これに珪素粉末を
加えて、直接あるいは熱処理した後成形し、窒化反応を
行わゼて、炭化珪素質と窒化珪素質を生成させる方法。
(3) A method in which an organic silicon polymer is used as a raw material, silicon powder is added thereto, molded directly or after heat treatment, and a nitriding reaction is performed to produce silicon carbide and silicon nitride.

しかしながら、これらの試みは通常の原料粉末を用いた
のでは2粒径、形状などの粒子特性のほかに混合程度を
十分に制御し、各成分を均一に混合することに限界があ
ること、また機械的粉砕。
However, in these attempts, there are limitations in sufficiently controlling particle characteristics such as particle size and shape as well as mixing degree and uniformly mixing each component by using ordinary raw material powder. Mechanical crushing.

混合により不純物が混入しやすいので、好ましい焼結体
が得られない欠点がある。また1反応焼結的な手法でも
多孔質化や、工程、操作が複雑になったり、あるいは組
成の均一性にも限界があることから好ましい焼結体が得
られない等の欠点がある。
Since impurities are likely to be mixed in by mixing, a desirable sintered body cannot be obtained. In addition, even the one-reaction sintering method has disadvantages such as increased porosity, complicated processes and operations, and limited uniformity of composition, making it impossible to obtain a desirable sintered body.

木兄明考等は、高?!A特性に優れた窒化珪素と炭化珪
素の複合系焼結体を(Mるべく窒化珪素と炭化珪素の微
粉末の合成法について種々の方法を鋭意研究を行った。
Is Kinoe Akiyoshi et al. high? ! In order to create a composite sintered body of silicon nitride and silicon carbide with excellent A properties, we have conducted intensive research on various methods for synthesizing fine powders of silicon nitride and silicon carbide.

その結果5ある種の有機珪素化合物を気相で反応せしめ
る際の反応条件を制御して、窒化珪素と炭化珪素との複
合微粉末を得ることにより、前記の様な高温特性に優れ
た焼結体がf−1られることを見出して本発明を完成す
るに至った。
As a result, by controlling the reaction conditions when reacting 5 types of organosilicon compounds in the gas phase and obtaining a fine composite powder of silicon nitride and silicon carbide, we were able to produce a sintered product with excellent high-temperature properties as described above. The present invention was completed by discovering that the body is f-1.

即ち1本発明は、Si、N、C,及び■からなるアミノ
珪素化合物を気相で反応ゼしぬることを特徴とする窒化
珪素と炭化珪素の複合微粉末の製法に関するものである
That is, the present invention relates to a method for producing a composite fine powder of silicon nitride and silicon carbide, which is characterized by reacting an amino silicon compound consisting of Si, N, C, and (1) in a gas phase.

本発明方法によれば、1ミク1」ン以下の微粒子オーダ
ーで窒化珪幸と炭化珪素を均一に含む複合微粉末が容易
に得られる。
According to the method of the present invention, a fine composite powder uniformly containing silicon nitride and silicon carbide can be easily obtained on the order of fine particles of 1 micron or less.

次に本発明について詳述する。Next, the present invention will be explained in detail.

本発明において、原料として用いる有機珪素化合物すな
わちアミノ珪素化合物としては2例えばCI−IJ s
= (パノHCH3)J、(ctゴ3)25r−CuH
CH3)2.(tH))zsIQJ(ctイリ2,1 
J等であり。
In the present invention, the organosilicon compound, that is, the amino silicon compound used as a raw material is 2, for example, CI-IJ s
= (panoHCH3)J, (ctgo3)25r-CuH
CH3)2. (tH))zsIQJ(ctIri2,1
J et al.

一般式RnSi (NR’R”) m (式中n=o〜
3.m−4−nであり、 RR’R’”は水素、アルキ
ル基。
General formula RnSi (NR'R”) m (in the formula, n=o~
3. m-4-n, and RR'R''' is hydrogen or an alkyl group.

アリル基、フェニル基等の炭化水素類の置換基を表す、
ただしRI?’R”が同時に水素である場合を除く)で
表示される化合物である。これらの原料は必要に応じて
2種以上を混合して用いてもよ(、また炭化水素類を共
存さゼても良い。
Represents a substituent of hydrocarbons such as allyl group and phenyl group,
However, RI? This is a compound represented by 'R' (except when 'R' is hydrogen at the same time).These raw materials may be used as a mixture of two or more types as necessary (and hydrocarbons may not coexist). Also good.

これらの原料の反応帯への供給は、原料が常温で液体や
固体状の場合、均一な反応を速やかに実施し、所望の複
合粉体を得るために9例えば適当な間接加熱等の手段に
より一旦ガス化させた後に行う事が重要である。
When the raw materials are liquid or solid at room temperature, these raw materials are supplied to the reaction zone by means such as appropriate indirect heating in order to quickly carry out a uniform reaction and obtain the desired composite powder. It is important to do this after it has been gasified.

また、実施例で示す様に原料をNHJ+’ II□、N
2゜Ar、lle、等の非酸化性ガスに同伴させること
により、原料分圧の調節や供給速度を制御して行うこと
もできるのみならず、同伴させるN11.、J、 II
よ、N2、^1. lle、等の非酸化性ガスの選択や
その混合比により生成粉体の組成(SiC、Si、3N
t、L比)を任意にコントロールすることが可能である
In addition, as shown in the examples, the raw materials were NHJ+' II□, N
By entraining N11. , J., II.
Yo, N2, ^1. The composition of the produced powder (SiC, Si, 3N
t, L ratio) can be arbitrarily controlled.

例えばSi、N4の割合を多くしたい場合には、Ni+
For example, if you want to increase the proportion of Si and N4,
.

やII、iを増加さセるのが有効であるが、珪素化合物
の種類や濃度9反応温度2反応時間等によってその必要
量が異なってくる。
It is effective to increase , II, and i, but the required amount varies depending on the type of silicon compound, concentration, reaction temperature, reaction time, etc.

反応帯における原料ガスの分圧及び反応時間は生成物の
粒径や形状及びSTY等により決定されるが1例えば分
圧は0.001〜数atm好ましくは0.01〜0.5
atmである。
The partial pressure and reaction time of the raw material gas in the reaction zone are determined by the particle size and shape of the product, STY, etc.1 For example, the partial pressure is 0.001 to several atm, preferably 0.01 to 0.5
It is ATM.

反応時間は一般的には120〜0.05secである。The reaction time is generally 120 to 0.05 seconds.

好ましくは60〜O,1secである。Preferably it is 60 to 0,1 sec.

これらの値より反応分圧が小さかったり2反応時間が長
くなる場合は3反応装置が不必要に大型化して工業的に
は不利となり、逆にこれらの値より反応分圧が大きかっ
たり2反応時間が短くなる場合は実質的に反応が進行し
ない場合があるので好ましくない。
If the reaction partial pressure is smaller than these values or the 2nd reaction time is longer, the 3rd reaction device will become unnecessarily large and this will be disadvantageous from an industrial standpoint; conversely, if the reaction partial pressure is larger than these values or the 2nd reaction time will be longer is not preferable because the reaction may not substantially proceed if it becomes too short.

また1反応温度は一般的には600〜1600℃の範囲
であり、好ましくは800〜1500°Cである。温度
が600℃より低い場合にば反応が十分に進行せず珪素
の窒化物及び炭化物の生成率が低く、逆に1600℃を
超える場合には多大のエネルギーを要し経済的でない。
Moreover, one reaction temperature is generally in the range of 600 to 1600°C, preferably 800 to 1500°C. If the temperature is lower than 600°C, the reaction will not proceed sufficiently and the production rate of silicon nitrides and carbides will be low; if the temperature is higher than 1600°C, a large amount of energy will be required, which is not economical.

本反応の具体的な実施手段としては1例えば原料である
有機珪素化合物を予めガス化せしめて必要な場合にはア
ンモニア及び非酸化性ガスであるII、、 Nよ2等と
十分に均一に混合したの15.外部加熱式反応管に導入
する。
As a specific means of carrying out this reaction, 1. For example, the organic silicon compound as a raw material is gasified in advance, and if necessary, it is thoroughly and uniformly mixed with ammonia and non-oxidizing gases such as II, N, etc. 15. Introduce into an externally heated reaction tube.

反応管は空塔あるいは充虜塔式の流通型が用いられるが
、ガスの流れが脈動あるいは乱流状にならず、熱的にも
均一性が保たれる様な構造とすることが生成複合微粉末
の均一性に重要である。
The reaction tube used is either an empty column or a filled column type, but it is important to create a structure that prevents the gas flow from becoming pulsating or turbulent and maintains thermal uniformity. Important for uniformity of fine powder.

珪素の窒化物と炭化物を含む生成ガスは冷却されて捕集
装置へ導入されるが1本発明に用いられる捕集装置は特
に制約はなく1通常用いられている充填層形式や71δ
、過方式の集塵機、電気集塵機。
The produced gas containing silicon nitrides and carbides is cooled and introduced into a collection device.1 The collection device used in the present invention is not particularly limited and can be of the commonly used packed bed type or 71δ.
, filtration type dust collector, electric dust collector.

ザイクロン等を適宜用いることができるが、生成ガス中
に腐食性カスの塩化水素や500℃以下に冷Jillさ
れると固体となって析出する塩化アンモニウムなどが含
まれていないため、従来の様な高級材質を用いたり2塩
化アンモニウを除去するための処理装置を必要としない
ので経済的な捕集方式を選択できる。
Zyclone, etc. can be used as appropriate, but since the generated gas does not contain hydrogen chloride, which is a corrosive residue, or ammonium chloride, which becomes solid and precipitates when cooled to below 500°C, Since it does not require the use of high-grade materials or processing equipment to remove ammonium dichloride, an economical collection method can be selected.

以下に本発明を実施例によって更に詳しく説明するか1
本発明はこれらの実施例に限定されるものではない。
The present invention will be explained in more detail with reference to examples below.
The present invention is not limited to these examples.

実施例1〜4 電気炉中に設置された内径25■、長さ700部の高純
度アルミナ質反応管と反応管出口部に取りつりだ反応生
成物捕集器とからなる装置を用い所定の反応温度に保持
した。
Examples 1 to 4 A device consisting of a high-purity alumina reaction tube with an inner diameter of 25 mm and a length of 700 parts installed in an electric furnace and a reaction product collector attached to the outlet of the reaction tube was used to conduct a specified reaction. The reaction temperature was maintained.

アミノ珪素化合物をガス化さ−Uたのら、アンモニアや
非酸化性ガスである計または11ユガスとあらかじめ良
く混合し1反応管出口部部から吹込み反応させた。
After the aminosilicon compound was gasified, it was thoroughly mixed with ammonia and a non-oxidizing gas such as gas or gas, and the mixture was blown into the reaction tube from the outlet of the reaction tube to cause a reaction.

捕集器に捕集された微粉末は、いずれも1ミクロン以下
の粒子径を有し且つ等軸状の均一な微粒子であった。
All of the fine powders collected in the collector were equiaxed, uniform fine particles with a particle size of 1 micron or less.

実施例1で得られた捕集微粒子の走査電子顕微鏡写真を
図面に示した。
A scanning electron micrograph of the collected fine particles obtained in Example 1 is shown in the drawing.

次にこの生成物を不活性雰囲気下で高純度アルミナ管に
充填してアルコン雰囲気下、1500°Cに加熱されて
いる電気炉中で2時間熱処理を行った。
Next, this product was filled into a high-purity alumina tube under an inert atmosphere and heat-treated for 2 hours in an electric furnace heated to 1500°C under an Alcon atmosphere.

反応条件と得られた粉末の分析結果を表1に示したか、
いずれもX線的に、β−3iCとα−3i3N5z成分
だけであった。また、螢光X線分析で不純物を測定した
ところ、 Fe、AI 、Ca 、 −4+−の含有率
はそに 、れぞれ10ppm以下、及びCIの含有率は1100
pp以下であった。
The reaction conditions and analysis results of the obtained powder are shown in Table 1.
In both cases, only β-3iC and α-3i3N5z components were observed by X-ray analysis. In addition, when impurities were measured by fluorescent X-ray analysis, the content of Fe, AI, Ca, -4+- was each less than 10 ppm, and the content of CI was 1100 ppm or less.
It was less than pp.

表 1 手続補正書(方式) 昭和59年7月24日 昭和59年特許願第55173号 2、発明の名称 窒化珪素と炭化珪素との複合微粉末の製造方法 3、補正をする者 住所 東京都千代田区丸の陶工丁目5番2号挿入する。Table 1 Procedural amendment (formality) July 24, 1982 1981 Patent Application No. 55173 2. Name of the invention Method for producing composite fine powder of silicon nitride and silicon carbide 3. Person who makes corrections Address: 5-2 Maruno Pottery-chome, Chiyoda-ku, Tokyo Insert.

「4、図面の簡単な説明″ 図面は実施例1で得られた捕集微粒子の走査電子顕微鏡
写真を示す。」 手続補正書(自発) 昭和59年7月30日 1、事件の表示 昭和59年特許願第55173号 2、発明の名称 窒化珪素と炭化珪素との複合微粉末の製造方法3、補正
する者 事件との関係 特許出願人 明細書 5、補正の内容 第3頁第7行の「珪素粉末」を「シリカ粉末」と補正す
る。
"4. Brief Description of the Drawings" The drawings show scanning electron micrographs of collected fine particles obtained in Example 1. ” Procedural amendment (voluntary) July 30, 1980 1. Indication of the case 1982 Patent Application No. 55173 2. Name of the invention Process for producing composite fine powder of silicon nitride and silicon carbide 3. Person making the amendment Relationship to the case In Patent Applicant's Specification 5, content of the amendment, "silicon powder" in line 7, page 3 is amended to read "silica powder."

Claims (1)

【特許請求の範囲】 一般式がl1nSi (NR’R”) m (式中RR
’R目は水素、アルキル基、アリル基、フェニル基を表
す。 ただしRR’R”が同時に水素である場合を除く。 n−0〜3.m=4−nである)である有機珪素化合物
を気相で反応することを特徴とする窒化珪素と炭化珪素
との複合微粉末の製造方法
[Claims] The general formula is l1nSi (NR'R") m (in the formula RR
'R' represents hydrogen, an alkyl group, an allyl group, or a phenyl group. However, this excludes the case where RR'R'' is hydrogen at the same time. Silicon nitride and silicon carbide are characterized by reacting organic silicon compounds which are n-0 to 3.m=4-n in the gas phase. Method for producing composite fine powder
JP59055173A 1984-03-22 1984-03-22 Production of composite fine powder consisting of silicon nitride and silicon carbide Granted JPS60200813A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP59055173A JPS60200813A (en) 1984-03-22 1984-03-22 Production of composite fine powder consisting of silicon nitride and silicon carbide
US06/712,036 US4594330A (en) 1984-03-22 1985-03-15 Fine amorphous powder and process for preparing fine powdery mixture of silicon nitride and silicon carbide
DE19853510264 DE3510264A1 (en) 1984-03-22 1985-03-21 AMORPHOUS FINE-PART POWDER AND METHOD FOR PRODUCING A FINE-PART POWDER MIXTURE FROM SILICON NITRIDE AND SILICIUM CARBIDE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59055173A JPS60200813A (en) 1984-03-22 1984-03-22 Production of composite fine powder consisting of silicon nitride and silicon carbide

Publications (2)

Publication Number Publication Date
JPS60200813A true JPS60200813A (en) 1985-10-11
JPH0454609B2 JPH0454609B2 (en) 1992-08-31

Family

ID=12991333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59055173A Granted JPS60200813A (en) 1984-03-22 1984-03-22 Production of composite fine powder consisting of silicon nitride and silicon carbide

Country Status (1)

Country Link
JP (1) JPS60200813A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60235708A (en) * 1984-05-08 1985-11-22 Mitsubishi Gas Chem Co Inc Production of fine powder of silicon nitride
JPS61127616A (en) * 1984-11-26 1986-06-14 Mitsubishi Gas Chem Co Inc Production of silicon carbide fine powder

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4969717A (en) * 1972-09-05 1974-07-05
JPS54132500A (en) * 1978-04-05 1979-10-15 Toshiba Ceramics Co Manufacture of silicon nitride powder

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4969717A (en) * 1972-09-05 1974-07-05
JPS54132500A (en) * 1978-04-05 1979-10-15 Toshiba Ceramics Co Manufacture of silicon nitride powder

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60235708A (en) * 1984-05-08 1985-11-22 Mitsubishi Gas Chem Co Inc Production of fine powder of silicon nitride
JPH0454611B2 (en) * 1984-05-08 1992-08-31 Mitsubishi Gas Chemical Co
JPS61127616A (en) * 1984-11-26 1986-06-14 Mitsubishi Gas Chem Co Inc Production of silicon carbide fine powder

Also Published As

Publication number Publication date
JPH0454609B2 (en) 1992-08-31

Similar Documents

Publication Publication Date Title
JPS6112844B2 (en)
US4613490A (en) Process for preparing silicon nitride, silicon carbide or fine powdery mixture thereof
US4346068A (en) Process for preparing high-purity α-type silicon nitride
JPH02188412A (en) Manufacture of crystal silicon nitride powder
JPS61191506A (en) Production of high alpha-type silicon nitride powder
JPS6111886B2 (en)
JPS60200813A (en) Production of composite fine powder consisting of silicon nitride and silicon carbide
JPS62241812A (en) Manufacture of silicon nitride
JPS5930645B2 (en) Manufacturing method of high purity α-type silicon nitride
JPH0454610B2 (en)
JPS6111885B2 (en)
JPS60200812A (en) Production of composite fine powder consisting of silicon nitride and silicon carbide
JPS61136904A (en) Production of composite fine powder of silicon nitride and silicon carbide
JPS61247608A (en) Preparation of mixture of fine powder of silicon nitride with silicon carbide
JPS60200814A (en) Production of composite fine powder consisting of silicon nitride and silicon carbide
JPS61127606A (en) Preparation of silicon nitride or silicon carbide
JPS6163510A (en) Production of composite fine powder
JPS63230508A (en) Production of silicon nitride-silicon carbide mixed fine powder of silicon nitride fine powder
JPS6042209A (en) Manufacture of fine isometric silicon nitride powder of high purity
JPS61127616A (en) Production of silicon carbide fine powder
JPS61117108A (en) Preparation of fine powdery silicon nitride
Kasai et al. Synthesis of Si3N4 powder by thermal decomposition of Si (NH) 2 and sintering properties
JPS6140805A (en) Manufacture of silicon nitride fine powder
JPS6148409A (en) Fine powder comprising silicon, carbon, and nitrogen, and process for preparing such powder
JPS63230509A (en) Production of silicon nitride-silicon carbide mixed fine powder