JPS60196283A - Laser working device - Google Patents

Laser working device

Info

Publication number
JPS60196283A
JPS60196283A JP59052763A JP5276384A JPS60196283A JP S60196283 A JPS60196283 A JP S60196283A JP 59052763 A JP59052763 A JP 59052763A JP 5276384 A JP5276384 A JP 5276384A JP S60196283 A JPS60196283 A JP S60196283A
Authority
JP
Japan
Prior art keywords
laser
oscillator
laser light
point
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59052763A
Other languages
Japanese (ja)
Inventor
Takafumi Nakayama
隆文 中山
Kazuhiro Kono
和宏 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP59052763A priority Critical patent/JPS60196283A/en
Publication of JPS60196283A publication Critical patent/JPS60196283A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • B23K26/0608Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams in the same heat affected zone [HAZ]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)

Abstract

PURPOSE:To prevent decrease in energy of laser light and to increase working speed by deviating the timings for driving the Q switching elements of plural laser oscillators by each prescribed time and condensing each laser light at the same spot diameter to the working point. CONSTITUTION:A positive trigger pulse is outputted from a trigger circuit 9 to drive the Q switching element 6 of the 1st oscillator A, by which laser light is outputted. This laser light is condensed via the 1st and 3rd reflecting mirrors 11, 12 and the 1st condenser lens 13 to a working point P. A negative trigger pulse is then generated from the circuit 9 to drive the Q switching element 6' of the 2nd oscillator B, by which laser light is outputted. This laser light is condensed via the 2nd and 4th reflecting mirrors 11', 12' and the 2nd condenser lens 13' to the point P. The lenses 13, 13' are parallel moved along an optical path O1 or O2 to the working point side P and toward the 3rd or 4th total reflecting mirror 12 or 12' side in order to make equal the spot diameters of the laser light from both oscillators A, B at the point P.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、レーザ光の照射により被加工物の切断、溶
接端を行なうレーザ加工装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a laser processing device that cuts and welds edges of a workpiece by irradiating a workpiece with laser light.

〔従来技術〕[Prior art]

一般に、レーザ加工装置等に使用されるQヌイツチ式の
YAGレーレー倣器は第1図に示すように構成されてい
る。同図において、(1)は全反射筒、(2)は反射筒
(1)内の中央部に配設されたYAGロッド、(3)は
反射筒(1)内のロッド(2)に並設式れた励起用」ク
リプトンアークランプ、(4) 、 (5) Rそれぞ
れロッド(2)の左方および右方に配設さ′Fした固定
反射鏡および全反射鐘、(6)はロッド(2)と全反射
僻(5)との間に設けられたカーセル、超音波セルから
なるQヌイツチ素子であり、トリガ回路(7)から一定
時間ごとに出力されるトリガパルヌにより駆動され、反
射筒(υ、ロッド(2)、ラング(3)1反射箒1(4
) 、 (5)およびQヌイツチ素子+61からなるY
AGレーレー+)A kJ (8)のQllAを急激に
変化させ、発振器(8)をQスイッチ発振させるように
なっており、図示されていないが、反射筒(υ、ロッド
(2)、ランプ+3) 、 Qヌイツチ素子(6)が筒
体内に収納きれ、反射鏡(4) 、 (5)かげ1J記
筒体の両端面に装着されている。
Generally, a Q-Nutsch type YAG relay copying machine used in laser processing equipment and the like is constructed as shown in FIG. In the figure, (1) is a total reflection tube, (2) is a YAG rod placed in the center of the reflection tube (1), and (3) is parallel to the rod (2) in the reflection tube (1). Krypton arc lamp for excitation, (4) and (5) R fixed reflector and total internal reflection bell installed on the left and right sides of rod (2), respectively, (6) is the rod. (2) and the total reflection tube (5) is a Q-Nutsch element consisting of a Kerr cell and an ultrasonic cell. (υ, rod (2), rung (3) 1 reflective broom 1 (4
), (5) and Y consisting of Q Nutsch element +61
AG relay +) A kJ (8) QllA is suddenly changed to cause the oscillator (8) to Q-switch oscillation. ), a Q-neutral element (6) can be housed inside the cylinder, and reflectors (4), (5) are attached to both end faces of the cylinder.

ところでこのように構成きれたレーザ発振器(8)の発
振動作について説明すると、ランプ(3)の光にまりロ
ッド(2)の原子がエネルギを吸収して低エネルギ準位
から高エネルギ準位に励起され、発振器(8)のQ値が
小きいと、レーザ発振を起こすことはなく、多数の原子
が高エネルギ羊位である励起準位に留まり、Qヌイツチ
素二T−+61により発4展器(8)のQ11αが大き
くなると、励起準位にあった多数の原子がエネルギを放
出しながら一度に低エネルギ準位に遷移し、レーザ光(
辰が起こり、/<ルヌ幅が短くピーク値の尚いレーザ光
(以下レーザ/クルヌという)が発振器(8)の反射鏡
(4)を介して出力されるようになっており、たとえば
!<ルヌ幅が100 ns[J1]後でピーク出力1u
(10KWというYAGレーザが実用化されている。
By the way, to explain the oscillation operation of the laser oscillator (8) configured in this way, the atoms of the rod (2) caught in the light of the lamp (3) absorb energy and are excited from a low energy level to a high energy level. If the Q value of the oscillator (8) is small, laser oscillation will not occur, and many atoms will remain at the excited level, which is a high energy level, and the Q value of the oscillator (8) will remain in the excitation level, and the When Q11α in (8) increases, many atoms that were at the excited level emit energy and transit to a lower energy level at once, causing the laser beam (
When a dragon occurs, a laser beam (hereinafter referred to as laser/curnu) with a short width and peak value is outputted via the reflector (4) of the oscillator (8), for example! <Peak output 1u after lune width is 100 ns [J1]
(A 10KW YAG laser has been put into practical use.

そして、前記したように瞬時に出力される高エネルギを
有するレーザ/<ルヌをたとえば鉄板などの被加工物に
集光して照射した場合に、被加工物がレーザパルヌによ
り集中的に瞬時に基発あるいは昇華(7て除去されるた
め、被加工物を、レーザバルヌの照射が15分理外が然
発するなどの熱影響を最小限にとどめた微細加工を行な
うことが可能となり、近年被加工物の切断、溶接等のほ
かに、ガラヌ基板上の薄膜の切断、抵抗のトリミング等
の加工を目的としだレーザ加工装置の開発が進められて
いる。
As mentioned above, when a workpiece such as an iron plate is focused and irradiated with a high-energy laser/<Lunu that is instantaneously output, the workpiece is instantly and intensively irradiated by the laser parnu. Alternatively, sublimation (7) removes the workpiece, making it possible to perform fine processing with minimal thermal effects such as laser balne irradiation occurring outside of the 15 minute range. In addition to cutting and welding, laser processing equipment is being developed for processing such as cutting thin films on Galanu substrates and trimming resistors.

この場合、レーザパルヌを集光レンズ等によシ加工点に
集光し、第2図に示すように、集光されたレーザパルヌ
のヌボツ1−(S)が重複するように、レーザ発]辰器
の発振周波数で定まる加工速度で矢印方向に加工が行な
われる。すなわち、第1図に示すようなYAGレーザ発
振器の場合、レーザ発振周波数はせいぜい100曲程度
であり、発振周波数を100kHzとして幅50μmの
線加工を行なう場合、加工点におけるレーザパルヌをヌ
ボット径50μ■1に集光すればよく、このときのレー
ザノくルヌのヌポットの移動速度である加工速度■は V = 0.05x +05= 5000 (闘/S)
となり、しかもヌボットの重複度を50%とすると、加
工速度■は、 V = 5000 X 0.5 = 2500 〔mj
N/s )となり、2500L騎/S)が加工速度の限
界となり、加工に長時間を要すことになる。
In this case, the laser parnu is focused on the machining point using a condensing lens, etc., and the laser beam is emitted so that the parts 1-(S) of the focused laser parnu overlap, as shown in Fig. 2. Machining is performed in the direction of the arrow at a machining speed determined by the oscillation frequency. In other words, in the case of a YAG laser oscillator as shown in Fig. 1, the laser oscillation frequency is about 100 at most, and when processing a line with a width of 50 μm with the oscillation frequency of 100 kHz, the laser parnu at the processing point is set to a diameter of 50 μm. The processing speed ■, which is the moving speed of the laser nozzle at this time, is V = 0.05x +05 = 5000 (T/S)
And if the degree of overlap of Nubot is 50%, the processing speed ■ is V = 5000 x 0.5 = 2500 [mj
N/s), and the machining speed limit is 2,500L/S), which requires a long time for machining.

したがって、前記と同一条件で発振周波数が1Oklz
 、 I kHzと小さくなれば、加工速度の限界は2
50關/s+25肩m/sと遅くなり、逆に発振周波数
が高くなれば加工速度■は大きくなるが、発振周波数が
高くなり過きると、レーザパルヌの半値幅が大きくなる
と同1時に、出力のビーク1直が低下するため、加工点
への人力エネルギが減少して良好な加工をイ丁なうこと
ができなくなる。
Therefore, under the same conditions as above, the oscillation frequency is 1 Oklz
, I kHz, the limit of machining speed is 2
On the other hand, as the oscillation frequency increases, the machining speed increases, but if the oscillation frequency becomes too high and the half-width of the laser parnu increases, the output peaks at the same time. Since the number of shifts per shift decreases, the amount of human energy required at the machining point decreases, making it impossible to achieve good machining.

ところですでに火施、提案されているレーザ加工装置と
して、たとえば特公昭58−2753号公報や実公昭5
5−7345号公報に記載のものがあシ、目1」者の装
置itは、被加工物を溶接する際に、彼朋]工物の材質
やjbv(、表聞状態等に関係なく再現性のよい溶接を
行なえるよう、波形制御回路によりJヅr定1時間ごと
に繰り返される一定出ノクの期間中にピークの高いレー
ザ光を出力するようにレーザ光の出力波形を制御し、あ
るいv′i連続発振を行なうレーザ発振2gおよび断続
発振を行なうレーザ発振器を並設し、連鯖発倣用レーザ
発振器による一定出力のレーザ光に、l′11「定時間
ごとに断新発撮用し−ザ発+1+1i d+yによる出
力ピーク値の毘いパルヌ状のレーザ光を重畳して被加工
物に照射するものであシ、あく−までも被加工物の材質
等に関係なく伺現性のよい溶接を行なうことを目的とし
ているが、この場合溶接時の加工速度は前記したように
断続発振用レーザ発振kgの発振周波数で決捷り、断続
発振用レーザ発振器がYAGレーザ発振器であるときに
は、加工速度は2500顛/Sが限界となり、溶接に長
時間を要するという問題がある。
By the way, there are laser processing devices that have already been proposed, for example, Japanese Patent Publication No. 58-2753 and Japanese Utility Model Publication No. 58-2753.
The device described in Publication No. 5-7345 is different from the one described in Publication No. 5-7345. When welding a workpiece, the device IT of the first person is capable of reproducing the workpiece regardless of its material, jbv, hearing condition, etc. In order to perform welding with good quality, the waveform control circuit controls the output waveform of the laser beam so that it outputs a laser beam with a high peak during a period of constant output that is repeated every hour. A laser oscillator 2g that performs continuous oscillation and a laser oscillator that performs intermittent oscillation are installed in parallel. In this method, the workpiece is irradiated with superimposed Pirnu-shaped laser light with a peak output value of +1+1i d+y. However, in this case, the processing speed during welding is determined by the oscillation frequency of the intermittent oscillation laser oscillation kg as described above, and when the intermittent oscillation laser oscillator is a YAG laser oscillator, However, there is a problem that the processing speed is limited to 2500 frames/second, and welding takes a long time.

一方、後者すなわち実公昭55−7345s“公報に記
載の装置は、間歇的に回転される1個の回転軸に複数個
のパルヌレーザ発生ヘッドを取り付け、…1記回転軸の
回転により選択されたMiJ記ヘッドからのレーザ光を
集光レンズにより波加工物上の1点に集光するものであ
り、前記各ヘッドからのレーザ光を交互に前記1点に集
めるようにして被加工物へのレーザ光の照射周波数を高
くし、加工速度を速くして加工能率を向上することを目
的としているが、各ヘッドそのものを回転させるため、
装置が非常に大型化し、しかも前記回転軸に大きな荷重
がかがシ、各ヘッドを高速回転させることが困難であシ
、しかも各ヘッドの発振をQヌイツチではなくレーザ励
起用光源を点滅させる充放電用コンデンサの充放′遊に
より制御しているため、エネルギ損失が大きくなるとい
う欠点がある。
On the other hand, the latter, that is, the device described in the Japanese Utility Model Publication No. 55-7345S, has a plurality of Parnu laser generation heads attached to one rotating shaft that rotates intermittently, and... The laser beam from each head is focused on one point on the wave-processed workpiece by a condensing lens, and the laser beam from each head is alternately focused on the one point to direct the laser beam onto the workpiece. The aim is to increase the irradiation frequency of light and increase the processing speed to improve processing efficiency, but since each head itself rotates,
The device becomes extremely large, and the rotating shaft is subject to a large load, making it difficult to rotate each head at high speed.Moreover, the oscillation of each head is caused by a flashing light source for laser excitation instead of a Q switch. Since it is controlled by charging and discharging the discharge capacitor, it has the disadvantage of increasing energy loss.

し発明の目的〕 この発明は、前記の諸点に留、意してなされたものであ
り、レーザ光のエネルギが減少することなく、IIIJ
単な装置により容易に加工速度を速くできるようにする
ことを目的とする。
[Object of the Invention] This invention was made keeping in mind the above points, and it is possible to reduce the energy of the laser beam without reducing the energy of the laser beam.
The purpose is to easily increase processing speed with a simple device.

し発明の構成〕 この発明は、Qヌイツチ発振を行なう複数のレーザ発振
器と、前記各発振器のQスイッチ素子の駆動タイミング
を所定時間ずつずらして前記各発振器を1叫次発振させ
るトリガ回路と、目1」記録発振器からのレーザ光をそ
れぞれ加工点に同一スポット径に集光させる複数の光学
系とを備えたことを特徴とするレーザ加工装置である。
[Structure of the Invention] The present invention provides a plurality of laser oscillators that perform Q-switch oscillation, a trigger circuit that shifts the driving timing of the Q-switch element of each of the oscillators by a predetermined period of time, and causes each of the oscillators to oscillate one-by-one; 1. A laser processing apparatus characterized by comprising a plurality of optical systems that respectively focus laser beams from a recording oscillator to the same spot diameter at a processing point.

し発明の効果〕 したがって、この発明のレーザ加工装置によると、各レ
ーザ発振器のQスイッチ素子の駆動タイミングを所定時
間ずつずらして各発振器を順次発振させるトリガ回路を
設け、各発振器からのレーザ光をそれぞれ加r点に同一
スポット径に集光させる複数の光学系を設けたことによ
り、各発振器の発振周波数を変えずに加工点へのレーザ
光の照射周波数を晶めることが可能となり、装置の大型
化を防止することができ、加工点へのレーザ光のエネル
ギが減少することなく、簡単な装置により容易に加工速
度を速くすることができ、実用性の優れたレーザ加工装
置を提供することができる。
[Effects of the Invention] Therefore, according to the laser processing apparatus of the present invention, a trigger circuit is provided that sequentially oscillates each oscillator by shifting the drive timing of the Q-switch element of each laser oscillator by a predetermined time, and the laser beam from each oscillator is By installing multiple optical systems that focus the light to the same spot diameter at each point, it is possible to adjust the frequency of laser beam irradiation to the processing point without changing the oscillation frequency of each oscillator, and the equipment To provide a highly practical laser processing device that can prevent the size of the laser beam from increasing, can easily increase the processing speed with a simple device, and does not reduce the energy of laser light to the processing point. be able to.

〔実施例〕〔Example〕

つぎに、この発明を、その1実施例を示した第3図以下
の図面とともに詳細に説明する。
Next, the present invention will be explained in detail with reference to the drawings from FIG. 3 showing one embodiment thereof.

第3図において、(A)、(B)は第1.第2YAGレ
ーザ発振器(以下第1.第2発振器という)であり、そ
れぞれ前記の第1図に示すYAGレーザ発振器(8)と
同様に、反射筒(1)、(1)、ロッド(2)+(2)
In FIG. 3, (A) and (B) are the first. This is a second YAG laser oscillator (hereinafter referred to as the first and second oscillator), and similarly to the YAG laser oscillator (8) shown in FIG. (2)
.

ランプ+3+ 、 (3r 、反射鏡(4〕、 (5)
 、 (J’ 、 (5rおよびQ、Lイツチ素子+6
1 、 (ai’により構成され、mJ記第1図中のト
リガ回路(7)によるトリガパ/V7の半周期に相当す
る所定時間ごとに正のトリガパルスヌおよび負のトリガ
パルスを交互に出力するトリガ回路(9)が設けられて
おり、トリガ回路(9)からの正、負のトリガパルスに
よシ、それぞれ両Qヌイツチ素子(6)。
Lamp +3+, (3r, reflector (4), (5)
, (J', (5r and Q, L one element +6
1. (ai'), a trigger circuit that alternately outputs positive trigger pulses and negative trigger pulses at predetermined time intervals corresponding to a half cycle of the trigger circuit (7) in Figure 1 of mJ, which corresponds to a half cycle of (9) are provided, each of which receives a positive and a negative trigger pulse from the trigger circuit (9), and has both Q-neutral transistors (6), respectively.

(6)′が前記lり「定時間ずつずれて駆動され、両売
振器(A)、(B)から、mJ記第1図に示すレーザ発
振器(8)の発振周期の172に相当する時間ごとに、
 loooS前後のパルス輻の短いピーク値の高いレー
ザ光が交互に出力される。
(6)' is driven by the above-mentioned "1" with a fixed time difference, and from both oscillators (A) and (B), mJ corresponds to 172 of the oscillation period of the laser oscillator (8) shown in Figure 1. every hour,
Laser beams with a short pulse intensity and a high peak value before and after loooS are output alternately.

11Q 、 Illはそれぞれ光軸が両売振器(AC、
(B)の光軸に一致して配置さh両売振器(A)、(B
)からのレーザ光を同一ビーム径に広げ平行光として出
力する凹レンズ、凸レンズからなるコリメータレンズ系
、0υ、ajuそれぞれ両コリメータレンズ系+10 
11Q and Ill have two optical axes (AC,
The two vending machines (A) and (B) are placed in line with the optical axis of (B).
) A collimator lens system consisting of a concave lens and a convex lens that spreads the laser light from the same beam diameter to the same beam diameter and outputs it as parallel light.Both collimator lens systems for 0υ and aju each +10
.

114の光軸上に配置dされ両売振器(A)、(B)か
らのレーザ光を反射して光路を変史する第1.第2全反
射儒、曹、Qdはそれぞれ第1.第2全反射鐘qυ。
114, and reflects the laser beams from both vibrators (A) and (B) to change the optical path. The second total reflection Yū, Cao, and Qd are respectively the first. Second total internal reflection bell qυ.

Uυ′による反射光の光路上に回転自在に配置され第1
、第2全反射幌u1昌Oυ′による反射光の光路をさら
に変史する第3.第4全反射鋼、(13、(IJ’はそ
れぞれ第3.第4全反射儒ua 、 us’による光路
(0+ ) 。
The first lens is rotatably arranged on the optical path of the light reflected by Uυ′.
, the third one further changes the optical path of the reflected light by the second total reflection canopy u1shoOυ′. The fourth total reflection steel, (13, (IJ') is the optical path (0+) due to the third and fourth total reflection ua and us', respectively.

(02)上に配置された第1.第2集光レンズであシ、
それぞれ光路(0+ ) 、 (02) 方向に平行移
動自在に設けられ、両光路(01)、(02)の交点で
ある被加工物の加工点(P)に両売振器(A) 、 (
B)からのレーザ光を同一スポット径に集光するように
なっており、第1、第3全反射鏡(]υ、α4および第
1集光レンズ時によシ第1光学系Oψが構成されるとと
もに、第2゜第4全反射鏡(1η、(1つおよび第2集
光レンズu4によシ第2光学系Q4)が構成されている
(02) The first . With the second condensing lens,
Both vibrators (A) and (A) are provided so as to be movable in parallel in the optical paths (0+) and (02), respectively, and are placed at the processing point (P) of the workpiece, which is the intersection of both optical paths (01) and (02).
The laser beam from B) is condensed into the same spot diameter, and the first optical system Oψ is configured in addition to the first and third total reflection mirrors (]υ, α4, and the first condensing lens. At the same time, a 2° fourth total reflection mirror (1η) (a second optical system Q4 is constituted by one and a second condensing lens U4).

なお、画集光レンズ時、 atは第3.第4全反射鏡u
a 、 atがある角度だけ回転した場合、両反射鏡u
a 、 atのそれぞれの回転中心を中心として両反射
鏡αq 、 aiの回転角度の2倍の角度それぞれ両反
射鏡αす、(2)とともに回転するようになっている。
Note that when using an image condensing lens, at is the third. 4th total reflection mirror u
When a and at are rotated by a certain angle, both reflectors u
The reflecting mirrors αq and ai rotate together with the reflecting mirrors αs and (2) at an angle twice the rotation angle of the reflecting mirrors αq and ai, respectively, about the respective rotation centers of a and at.

つぎに、mJ記実施例の動作について説明する。Next, the operation of the mJ embodiment will be explained.

まず、トリガ回路(9)からの正のトリガパルスが出力
されると、mJ記正のトリガパルスにより第1発撤g?
r(A)のQ7.イツチ禦子+61が駆動式れ、第1発
振器(A)がQヌイツチ発振して第1発振器(A)から
レーザ光が出力され、第1.第3反射債圓。
First, when a positive trigger pulse is output from the trigger circuit (9), a trigger pulse with a value of mJ causes the first firing g?
r(A) Q7. Ittsuchi Mutsuko +61 is driven, the first oscillator (A) performs Q-neutral oscillation, a laser beam is output from the first oscillator (A), and the first oscillator (A) outputs a laser beam. Third reflection bond circle.

α4および第1集光レンズu4を介して加工点(P)に
集光される。
The light is focused on the processing point (P) via α4 and the first focusing lens u4.

つぎに、トリガ回路(9)から前記正のトリガパルヌに
続いて負のトリガパルヌが出力されると、前記負の1−
リガパルスにより第2発4辰器(B)のQヌイツチ素子
(6)′が駆動され、第2発振器(B)がQヌイツチ発
振して第2発振器(H)からレーザ光が出力され、第2
.第4全反射鐘uu’ 、 aa’および第2集光レン
ズ(喝を介して加工点(P)に集光されるとともに、こ
れらの動作が繰り返されて両光振器(A)。
Next, when a negative trigger pulse is output from the trigger circuit (9) following the positive trigger pulse, the negative 1-
The trigger pulse drives the Q-neutral element (6)' of the second oscillator (B), causing the second oscillator (B) to oscillate as a Q-neutral oscillation, outputting laser light from the second oscillator (H), and
.. The light is focused on the processing point (P) through the fourth total reflection bell uu', aa' and the second focusing lens (hole), and these operations are repeated to produce both optical oscillators (A).

(13)からのレーザ光が加工点(P)に同一スポット
径に集光され、被加工物の加工か行なわれる。
The laser light from (13) is focused to the same spot diameter at the processing point (P), and the workpiece is processed.

このとき、たとえば第1発掘器(A)からのレーザ光の
加工点(I′)におけるヌボッ[・径が所定スポット径
に等しく、第2発振器(B)からのレーザ光の加工点(
P )におけるスポット径がAiJ記Iツ「冗ヌボット
径よりも小さい場合および大きい場合、第2集光レンズ
<+:iを光路(02)に清って加工点(」′)側およ
び第4全反射鏡t、ta’側へそれぞれ平行移動するこ
とにより、第2発掘器(B)からのレーザ光の加工点(
P)におけるスポット径がそれぞれ大きくおよび小さく
なり、逆に第1発掘器(A、)からのレーザ光のスポッ
ト径のみが111記所定ヌボツト径よりも小ざい場合お
よび大きい場合には、A’lJ記と同様に第1集光レン
ズ0免を光路(01)に活って加工点(P)側および第
3全反射鏡Q匂側へそれぞれjf行移動することにより
、第1発掘器(A)からのレーザ光の加工点(P )に
おけるヌボット径がそれぞれ大きくおよび小さくなる。
At this time, for example, if the diameter of the Nubo[.
If the spot diameter at P) is smaller or larger than the diameter of the AiJ 1 point, the second condensing lens <+:i is placed in the optical path (02) and the By moving the total reflection mirrors in parallel to the t and ta' sides, the processing point of the laser beam from the second excavator (B) (
When the spot diameter at P) becomes larger and smaller, respectively, and conversely, when only the spot diameter of the laser beam from the first excavator (A,) is smaller or larger than the 111 predetermined diameter, A'lJ Similarly to the above, by using the first condensing lens 0 on the optical path (01) and moving jf rows to the processing point (P) side and the third total reflection mirror Q side, the first excavator (A ) The Nuvot diameter at the processing point (P ) of the laser beam from ) becomes larger and smaller, respectively.

寸だ、加工点(1”)の位置を父えるために、第3全反
射鏡曹を第4図中の太線に示す状態から1点鎖線に示す
状態へ、点Sを中心に角度θだけ回転した場合、第3全
反射鏑昆による反射光の光路((力)が同図中の細線か
ら1点鎖線へ角度2θ回転するため、第1集光レンズ(
13を点Sを中・bに角度2θ回転させることにより、
第1集光レンズ(13は常に光路(01)上に位置する
ことにな9、第2集光レンズ(13)についても同様に
第4全反射境adの回転角度の2倍回転させることによ
り、第2集光レンズ(13’は常に光路(02)上に位
置することになシ、以上の動作により加工点CP)の位
置が変ゎシ、前記したように両しンス(」、夕+ u’
、7を変史後の光路(01)、(02)に沿って平行移
動させることにょ9、新たな加工点(1’)に詞兄倣イ
# (A) 、(”)からのレーザ光がそれぞれ四−ス
ポット径に集光される。
In order to find the position of the processing point (1"), move the third total reflection mirror from the state shown by the thick line in Figure 4 to the state shown by the one-dot chain line by an angle θ with the point S as the center. When rotated, the optical path ((force) of the reflected light by the third total reflection lens rotates by 2θ from the thin line to the dashed line in the figure, so the first condensing lens (
By rotating 13 by an angle of 2θ to center point S and b,
The first condensing lens (13) is always located on the optical path (01)9, and the second condensing lens (13) is similarly rotated by twice the rotation angle of the fourth total internal reflection boundary ad. , since the second condensing lens (13' is always located on the optical path (02)), the position of the processing point CP is changed by the above operation, and as mentioned above, the position of the second condenser lens (13') + u'
, 7 are moved in parallel along the optical paths (01) and (02) after the change in history. are each focused to a four-spot diameter.

ところで1−リガ回路(9)によるトリガパpノの圧力
周波数が第1図における]・リガ回路(7)にょるトリ
ガバルヌの出ツノ周波数と同じであれば、自発]辰器(
A)、(B)それぞれの発振周波数は前記の発振器(8
)の発振1〜波数と同じになQ、両光1辰器(A)、(
B)からのレーザ光それぞれの加工点(P)における照
射周枝数も目14記第1図の場合と同じになるが、両光
振器(A)、(B)からのレーザ光が加工点(j′)に
交互に集光きれるため、カロ工点(1’)には1〕1」
記の発振器(8)によるレーザ光の照射周波数の2倍の
周波数でレーザ光か照射されることになり、目1j記の
発振器(8)による加工速度■の2倍の速度で加工を行
なえることになる。
By the way, if the pressure frequency of the trigger valve from the trigger circuit (9) is the same as the output horn frequency of the trigger valve from the trigger circuit (7) in FIG.
The oscillation frequency of each of A) and (B) is determined by the oscillator (8).
) is the same as the oscillation 1 ~ wave number of Q, both optical 1-axis (A), (
The number of radial branches irradiated by each laser beam from B) at the processing point (P) is the same as in Figure 1, item 14, but the laser beams from both optical oscillators (A) and (B) are used for processing. Since the light can be focused alternately on the point (j'), there is 1〕1'' at the point (1').
The laser beam will be irradiated with a frequency twice that of the laser beam irradiation frequency by the oscillator (8) described above, and processing can be performed at twice the processing speed ■ by the oscillator (8) described in item 1j. It turns out.

ガ回路(5))によるトリガパルヌの半周期にA−目当
する時間ずつずらし、両光学系1.14J 、 14j
’により両光振器(A)、(B)からのそれぞれのレー
ザ光を異なる光路(01)、(02)を経て加工点(I
’)に集光するようにしたため、両光振器(A) 、 
(B)の発4辰周波数を変えずに加工点(P)へのレー
ザ光の照射周波数を前記発掘周波数の2倍に高めること
が可能となり、従来のように装置が大型化することを防
止することができ、レーザ発振周波数の増大にょるレー
ザ光の出ツノエネルギの減少もなく、簡単な装置により
容易に加工速度を速くすることができ、実用i生の優れ
たレーザ加工装置を提供することができる。
Shift the half cycle of the trigger pulse by A-target time by the trigger circuit (5)), and both optical systems 1.14J, 14j
', the laser beams from both optical oscillators (A) and (B) are passed through different optical paths (01) and (02) to the processing point (I
'), so both optical oscillators (A),
It is now possible to increase the laser beam irradiation frequency to the processing point (P) to twice the excavation frequency without changing the emission frequency of (B), preventing the equipment from increasing in size as in the past. To provide an excellent laser processing device for practical use, which can easily increase the processing speed with a simple device without reducing the output energy of laser light due to an increase in the laser oscillation frequency. I can do it.

なお、発振gf (A) 、(B)はYAGレーザ以外
のガラヌレーザやルビレーザ等の固体レーザ発振器によ
り構成してもよい。
Note that the oscillations gf (A) and (B) may be configured by a solid laser oscillator such as a Galanu laser or a ruby laser other than a YAG laser.

またレーザ発振器および光学系を3個以上設けても、こ
の発明を同様に実施することができる。
Further, even if three or more laser oscillators and optical systems are provided, the present invention can be implemented in the same manner.

さらに両光学系u4) 、 a4)’は前記したものに
限るものでないことは勿論である。
Furthermore, it goes without saying that both optical systems u4) and a4)' are not limited to those described above.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は一般のYA、Gレーザ発振器の構成図、第2図
は一般の17一ザ加工時の動作説明図、第3図以下の図
+1JIはこの発明のレーザ加工装置の1実施例を示し
、第3図は構成図、第4図は一部の動作説明図である。 (A、) 、 (B)・・・第1.第2発搬器、16+
 、 t6i’・・・Qヌイツチ素子、(9)・・1−
リガIυ」路、(貝、 a4・・・光学系。 代坤人 弁理士 藤田龍太部 第1図 へ 。
Fig. 1 is a configuration diagram of a general YA and G laser oscillator, Fig. 2 is an explanatory diagram of the operation during general 17-laser processing, Fig. 3 and the following figures + 1JI show one embodiment of the laser processing apparatus of the present invention. FIG. 3 is a configuration diagram, and FIG. 4 is a partial operation explanatory diagram. (A,), (B)... 1st. 2nd launcher, 16+
, t6i'...Q neutral element, (9)...1-
Riga Iυ'' road, (shell, A4...optical system. Patent attorney Ryuta Fujita) Go to Figure 1.

Claims (1)

【特許請求の範囲】[Claims] (J) Qスイッチ発振を竹なう複数のレーザ発4辰器
と、[11J記各発振器のQヌイツチ素子の駆動タイミ
ンクを所:;i::I時間ずつずらして11J記各発倣
器をj唄次発振させるトリガ回路と、HIJ記各記録発
振器のレーザ光をそハ、それ加工点に同一ヌボット径に
集光させる複数の光学系とを備えたことを特徴とするレ
ーザ加工装置。
(J) A plurality of laser oscillators that perform Q-switch oscillation, and [11J each oscillator's drive timing of each oscillator is shifted by: ;i::I time to generate each oscillator in 11J. A laser processing device characterized by comprising: a trigger circuit that oscillates each recording oscillator; and a plurality of optical systems that focus laser beams from each recording oscillator on a processing point to the same diameter.
JP59052763A 1984-03-19 1984-03-19 Laser working device Pending JPS60196283A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59052763A JPS60196283A (en) 1984-03-19 1984-03-19 Laser working device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59052763A JPS60196283A (en) 1984-03-19 1984-03-19 Laser working device

Publications (1)

Publication Number Publication Date
JPS60196283A true JPS60196283A (en) 1985-10-04

Family

ID=12923913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59052763A Pending JPS60196283A (en) 1984-03-19 1984-03-19 Laser working device

Country Status (1)

Country Link
JP (1) JPS60196283A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62183992A (en) * 1986-02-10 1987-08-12 Mitsubishi Heavy Ind Ltd Laser beam machining equipment
US5500505A (en) * 1994-05-09 1996-03-19 General Electric Company Method for cutting epoxy/carbon fiber composite with lasers
US5719372A (en) * 1994-11-17 1998-02-17 Nec Corporation Laser marking system and method using controlled pulse width of Q-switch

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62183992A (en) * 1986-02-10 1987-08-12 Mitsubishi Heavy Ind Ltd Laser beam machining equipment
US5500505A (en) * 1994-05-09 1996-03-19 General Electric Company Method for cutting epoxy/carbon fiber composite with lasers
US5719372A (en) * 1994-11-17 1998-02-17 Nec Corporation Laser marking system and method using controlled pulse width of Q-switch

Similar Documents

Publication Publication Date Title
AU669721B2 (en) Engraving head
JPS6012292A (en) Drilling machining method by laser and device for said method
WO1988006504A1 (en) Method and apparatus for dull finish of roll with pulse laser
JP5446334B2 (en) Laser welding apparatus and laser welding method
JPS60196283A (en) Laser working device
JPH02137687A (en) Laser light condensing device
KR100371125B1 (en) Solid-state pulse laser system with low average power and high luminance
JPH01245992A (en) Multiwavelength laser beam machine
JPH04135083A (en) Laser beam machine
JPS6033595B2 (en) Laser processing equipment
JPS63140788A (en) Crater treating method for co2 laser welding
JPH0722685A (en) Focus composition method of beam and its focus composition device
JPS5913588A (en) Laser working device
JP3970501B2 (en) Laser processing equipment
JPH01254392A (en) Dull working method for product surface
JPH0322277B2 (en)
JPH04270091A (en) Laser beam machine
JPS60119786A (en) Q switch laser device
JPH0942138A (en) Engine igniter
JP3177775B2 (en) Photosynthesis method and synthetic emission optical system
JPS5978793A (en) Laser working device
JPH01228689A (en) Method and device for laser beam machining
JP4437878B2 (en) Q-switch carbon dioxide laser device
JP5120712B2 (en) Q-switched laser oscillator
JP3105914B2 (en) Rotating mirror for pulse laser beam expansion