JPS60194066A - Production of hard film-coated material - Google Patents

Production of hard film-coated material

Info

Publication number
JPS60194066A
JPS60194066A JP4926784A JP4926784A JPS60194066A JP S60194066 A JPS60194066 A JP S60194066A JP 4926784 A JP4926784 A JP 4926784A JP 4926784 A JP4926784 A JP 4926784A JP S60194066 A JPS60194066 A JP S60194066A
Authority
JP
Japan
Prior art keywords
irradiated
rotating body
laser light
laser beam
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4926784A
Other languages
Japanese (ja)
Other versions
JPS6338427B2 (en
Inventor
Nobushige Mineta
峰田 進栄
Nobuo Yasunaga
安永 暢男
Noboru Tarumi
樽見 昇
Akira Obara
明 小原
Masayuki Ikeda
正幸 池田
Junichi Sato
純一 佐藤
Kunio Shibuki
渋木 邦夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Tungaloy Corp
Resonac Holdings Corp
Original Assignee
Agency of Industrial Science and Technology
Showa Denko KK
Toshiba Tungaloy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Showa Denko KK, Toshiba Tungaloy Co Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP4926784A priority Critical patent/JPS60194066A/en
Publication of JPS60194066A publication Critical patent/JPS60194066A/en
Publication of JPS6338427B2 publication Critical patent/JPS6338427B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation

Abstract

PURPOSE:To obtain a hard film-coated material coated with a dense film having high hardness by controlling the irradiating angle of the convergent laser light irradiated on a rotating body which is a material to be irradiated within a prescribed range and irradiating laser light having large output thereon. CONSTITUTION:Laser light 1 is converged by a condenser lens 2 and is introduced through a transmission window 3 into a vessel 4 where the laser light is irradiated from a tangent direction on the rotating surface of a rotating body 5 formed of a material to be irradiated. The sample to be irradiated existing in the irradiating region is then evaporated and released in an arrow R direction. The released sample is deposited by evaporation on a base material 7. The output of the convergent laser light is made >=500W and the irradiating angle of the convergent laser light on the irradiating region is controlled to 2-40 deg. with respect to the tangent direction in the irradiating region. The kind of the usable material to be irradiated is increased and the rate of forming the film is increased according to the above-mentioned method for forming the coated material. The dense and high-hardness characteristics are given to the resultant hard film.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は基材の表面を硬質膜で被覆した材料の製造方法
に関し、更に詳しくは、レーザ光を用いて、基材表面を
緻密で高硬度の被膜で被覆して成る硬質膜被覆材料の製
造方法に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a method for producing a material in which the surface of a base material is coated with a hard film, and more specifically, the present invention relates to a method for producing a material in which the surface of a base material is coated with a hard film. The present invention relates to a method for manufacturing a hard film coating material coated with a film of the present invention.

[発明の技術的背景とその問題点] 各種の基材の表面を金属化合物又はセラミックス被膜で
被覆した部材は、該被膜が耐熱性、耐酸化性に優れてい
るので、電子工業分野をはじめとする多くの分野で活用
されている。また、該被膜が高硬度である場合には、得
られた部材は切削工具等の分野での利用が期待される。
[Technical background of the invention and its problems] Members whose surfaces are coated with metal compound or ceramic coatings are widely used in the electronic industry and other fields because the coatings have excellent heat resistance and oxidation resistance. It is used in many fields. Moreover, when the coating has high hardness, the obtained member is expected to be used in the field of cutting tools and the like.

基材を金属化合物又はセラミックスからなる被膜で被覆
する方法としては既に種々の方法が知られているが、そ
の中で近時注目を集めている方法にレーザ光を用いる方
法がある。これは、成膜すべき金属化合物又はセラミッ
クスから成る被照射試料にレーザ光を照射して該被照射
試料を蒸発させ、その蒸発粒子を基材前面に堆積させて
成膜するという方法である。
Various methods are already known for coating a substrate with a film made of a metal compound or ceramics, and among these methods, one method that has recently attracted attention is a method using laser light. This is a method in which a laser beam is irradiated onto an irradiated sample made of a metal compound or ceramic to be formed into a film, the irradiated sample is evaporated, and the evaporated particles are deposited on the front surface of a substrate to form a film.

具体的には、支持板上に置いた被照射試料の表面に対し
て垂直方法から収束レーザ光を照射するのであるが、そ
の際には、レーザ光をスキャンニングさせるか又は被照
射試料を支持板の法線軸の周囲に回転させる。
Specifically, the surface of the sample to be irradiated placed on a support plate is irradiated with a focused laser beam in a vertical direction. Rotate around the normal axis of the plate.

このようなレーザ光照射方式では、レーザ光の出力をあ
まり高くすると、被照射試料上の照射域では該試料の不
均一加熱が起って該試料の熱破壊を招き安定かつ連続し
たレーザ光照射が不可能になる。そのため、通常は、レ
ーザ光の照射出力が100W以下に制限されている。
In such a laser beam irradiation method, if the output of the laser beam is too high, uneven heating of the sample will occur in the irradiation area on the irradiated sample, leading to thermal destruction of the sample, resulting in stable and continuous laser beam irradiation. becomes impossible. Therefore, the irradiation output of laser light is usually limited to 100W or less.

ところで、被照射試料に照射する収束レーザ光の出力が
高ければ高いほど、蒸発しにくい試料も蒸発させ易くな
り、成膜速度は大きくなり、しかも基材表面に形成され
た被膜は緻密で高硬度になる。しかしながら、従来の方
式では前記した理由により照射レーザ光の出力を制限せ
ざるを得ない。
By the way, the higher the output of the focused laser beam that irradiates the irradiated sample, the easier it is to evaporate even the difficult-to-evaporate sample, the faster the film formation rate, and the more dense and hard the film formed on the surface of the base material. become. However, in the conventional method, the output of the irradiated laser beam must be limited for the reasons described above.

この点を改善するために、本発明者らは既に、被照射試
料をリングなどの回転体形状としこれを軸回転させてそ
の回転面に接線方向から収束レーザ光を照射するという
方式の装置と方法を提案した(精機学会秋季大会□学術
講演会、昭和57年10月20日「CO2レーザによる
セラミックスコーティングの研究」、特願昭57−22
5587号)。
In order to improve this point, the present inventors have already developed an apparatus in which the sample to be irradiated is a rotating body such as a ring, the sample is rotated on an axis, and the rotating surface is irradiated with focused laser light from the tangential direction. proposed a method (Autumn Conference of Japan Precision Machinery Society□Academic Lecture, October 20, 1982, ``Research on Ceramic Coating Using CO2 Laser'', Patent Application 1982-22)
No. 5587).

この方式によれば、被照射試料が一定回転数で回転する
ので回転面における試料の不均一加熱は抑制され、また
、試料表面のみが蒸発するので、連続して安定な成膜操
作が可能となって、比較的大出力のレーザ光を照射する
ことができる。
According to this method, since the irradiated sample rotates at a constant rotation speed, uneven heating of the sample on the rotating surface is suppressed, and since only the sample surface is evaporated, continuous and stable film formation is possible. Therefore, relatively high output laser light can be irradiated.

そして、被覆されるべき金属化合物又はセラミックス被
膜を一層緻密化し、微結晶化し、高硬度化するために、
更なる研究が積み重ねられている。
In order to further densify, microcrystalize, and harden the metal compound or ceramic coating to be coated,
Further research is ongoing.

[発明の目的] 本発明は、基材の表面が緻密で高硬度の被膜で被覆され
て成る硬質膜被覆材料の製造方法の提供を目的とする。
[Object of the Invention] An object of the present invention is to provide a method for manufacturing a hard film coating material in which the surface of a base material is coated with a dense and highly hard film.

[発明の概要] 本発明者らは、被照射試料が回転体である前記のレーザ
蒸着装置を用いて上記目的を達成すべく鋭意研究を重ね
たところ、回転体の回転面に照射する収束レーザ光の照
射角度を所定の範囲に管理すると、大出力のレーザ光を
照射することができるようになりその結果、照射域にお
ける出方密度を高めることが可能となって、優れた特性
、とりわけ高硬度の被膜を基材上に形成することができ
るとの知見を得、本発明方法を完成するに到った。
[Summary of the Invention] The present inventors have conducted intensive research to achieve the above object using the above-mentioned laser evaporation apparatus in which the sample to be irradiated is a rotating body. By controlling the light irradiation angle within a predetermined range, it becomes possible to irradiate a high-output laser beam, and as a result, it becomes possible to increase the output density in the irradiation area, resulting in excellent characteristics, especially high They found that a hard coating can be formed on a substrate, and completed the method of the present invention.

すなわち、本発明の硬質膜被覆材料の製造方法は、容器
内で軸回転する回転体の回転面に接線方向から収束レー
ザ光を照射して該回転体から蒸発した粒子を基材表面に
堆積させてなる被覆材料の製造方法において、該収束レ
ーザ光の出力が500W以上であり、かつ、該収束レー
ザ光の照射域への照射角度が、該照射域における接線方
向に対し、2〜40度であることを特徴とする。
That is, the method for producing a hard film coating material of the present invention involves irradiating a convergent laser beam from a tangential direction onto the rotating surface of a rotating body that rotates on its axis in a container, and depositing particles evaporated from the rotating body on the surface of a base material. In the method for producing a coating material, the output of the focused laser beam is 500 W or more, and the irradiation angle of the focused laser beam to the irradiation area is 2 to 40 degrees with respect to the tangential direction of the irradiation area. characterized by something.

以下に、概念図として例示したレーザ蒸着装置を参考に
して本発明方法を説明する。
The method of the present invention will be described below with reference to a laser evaporation apparatus illustrated as a conceptual diagram.

図で1はレーザ発振器(図示しない)から放射された平
行なレーザ光である。レーザ光lは集光レンズ2で収束
され透過窓3から容器4内に導入される。容器4の中に
は、被照射試料で構成された例えばリング形状の回転体
5が、例えば矢印P方向に回転しまた回転軸の方向に揺
動できるように配置され、回転体5の周囲には予熱ヒー
タ6が配設されている。この予熱ヒータ6は、回転体5
全体を予熱するためのヒータでレーザ光照射時の局部加
熱に基づく回転体の熱衝撃破壊を防止するために設けら
れる。
In the figure, 1 is a parallel laser beam emitted from a laser oscillator (not shown). The laser beam l is converged by a condensing lens 2 and introduced into a container 4 through a transmission window 3. Inside the container 4, a ring-shaped rotating body 5 made of a sample to be irradiated is arranged so that it can rotate, for example, in the direction of arrow P and swing in the direction of the rotation axis. A preheating heater 6 is provided. This preheating heater 6 includes a rotating body 5
A heater for preheating the entire body is provided to prevent thermal shock destruction of the rotating body due to local heating during laser beam irradiation.

ここで、回転体5を構成する被照射試料は黒鉛、金属、
合金、金属化合物、超硬合金、サーメット、セラミック
ス等何であってもよく格別制限されるものではない。例
えば、黒鉛、炭素、ダイヤモンド状カーボン、ダイヤモ
ンド、炭化ケイ素、窒化ケイ素、アルミナ、ジルコニア
、六方晶型窒化ホウ素、立方晶型窒化ホウ素、ウルツ型
窒化ホウ素、ムライト、サイアロン、高融点金属又は合
金などがあげられる。これらのうち、とくに黒鉛、炭素
、ダイヤモンド状カーボン、ダイヤモンド、六方晶型窒
化ホウ素、立方晶型窒化ホウ素、ウルツ型窒化ホウ素の
少なくとも1種からなる回転体の場合は形成された被膜
が極めて緻密かつ高硬度となるので有用である。
Here, the irradiated sample constituting the rotating body 5 is graphite, metal,
It may be any alloy, metal compound, cemented carbide, cermet, ceramic, etc., and is not particularly limited. For example, graphite, carbon, diamond-like carbon, diamond, silicon carbide, silicon nitride, alumina, zirconia, hexagonal boron nitride, cubic boron nitride, Wurtzian boron nitride, mullite, sialon, high melting point metals or alloys, etc. can give. Among these, especially in the case of a rotating body made of at least one of graphite, carbon, diamond-like carbon, diamond, hexagonal boron nitride, cubic boron nitride, and Wurtz type boron nitride, the coating formed is extremely dense and It is useful because it has high hardness.

回転体5の形状は通常リング状、円板状、円筒状又は円
柱状である。
The shape of the rotating body 5 is usually a ring shape, a disk shape, a cylindrical shape, or a cylindrical shape.

容器4に導入された収束レーザ光は回転体5の回転面に
接線方向から照射される。そして、回転面の上で焦点を
結ぶ。このときの収束レーザ光の照射角度は、回転体5
の照射域Qにおける接線(点線で図示)方向に対する角
度:θとして示しである。
The convergent laser beam introduced into the container 4 is irradiated onto the rotating surface of the rotating body 5 from a tangential direction. Then, focus on the rotating surface. The irradiation angle of the convergent laser beam at this time is
The angle with respect to the tangent (indicated by a dotted line) direction in the irradiation area Q is shown as θ.

収束レーザ光が照射されると照射域Qに存在する被照射
試料は蒸発し、その蒸発粒子は矢印R方向に放出されて
基材9の上に蒸着して堆積する。
When the focused laser beam is irradiated, the irradiated sample existing in the irradiation area Q is evaporated, and the evaporated particles are emitted in the direction of arrow R and deposited on the base material 9.

10は基材9を加熱するヒータで、これは基材9とその
上に形成された硬質膜との密着性を高めるために設けら
れる。
Reference numeral 10 denotes a heater for heating the base material 9, which is provided to improve the adhesion between the base material 9 and the hard film formed thereon.

基材としては、その材質、形状とも格別限定を受けるも
のではないが、例えば、モリブデン、タングステン、鉄
などの金属、超硬合金、サーメッ゛ト、アルミナ、炭化
ケイ素、窒化ケイ素等の各種セラミックス焼結体、各種
の工具鋼などをあげることができる。
Although there are no particular limitations on the material or shape of the base material, examples include metals such as molybdenum, tungsten, and iron, cemented carbide, cermets, various fired ceramics such as alumina, silicon carbide, and silicon nitride. Examples include aggregates and various tool steels.

なお、回転体5と基材9との距離は、被照射試料の種類
、収束レーザ光の出力、後述するレーザ光の照射出力密
度によっても変動するが、概ね20〜30ha程度が好
適である。
Note that the distance between the rotating body 5 and the base material 9 varies depending on the type of sample to be irradiated, the output of the convergent laser beam, and the irradiation output density of the laser beam, which will be described later, but is preferably about 20 to 30 ha.

以上の装置において、本発明方法の特徴は、用いる収束
レーザ光の出力が500w以上であり、かつ、θが2〜
40度の範囲に管理されることである。
In the above apparatus, the feature of the method of the present invention is that the output of the convergent laser beam used is 500 W or more, and θ is 2 to 2.
It is to be controlled within a range of 40 degrees.

この2つの条件が同時に満足しない場合には、基材表面
に形成された硬質膜は、低密度でかつ硬さも低下する傾
向を示す。
If these two conditions are not satisfied at the same time, the hard film formed on the surface of the base material tends to have low density and hardness.

とくに後者の条件は照射域に投入される収束レーザ光の
エネルギー密度を規定し、そのことによって形成する硬
質膜の特性を向上せしめるので重要な因子である。
In particular, the latter condition is an important factor because it defines the energy density of the focused laser beam applied to the irradiation area and thereby improves the properties of the hard film formed.

本発明方法では、まず収束レーザ光の出力は500W以
上である。この出力は被照射試料の種類によって変化さ
せればよいので一義的には定められないが、特に、被照
射試料である回転体が黒鉛、ダイヤモンド状カーボン、
ダイヤモンド、六方晶型窒化ホウ素、立方晶型窒化ホウ
素、ウルツ型窒化ホウ素の少なくとも1種からなり(回
転体全体がこれらの物質からなっていてもよいが回転面
にこれらの物質が被覆又は付着した回転体でもよい)、
この被照射試料を500w以上の収束レーザ光によって
蒸発させるとダイヤモンドに近い特性を有するダイヤモ
ンド状カーボン又は無定形カーボン、ダイヤモンド、高
密度相窒化ホウ素に近い特性を有する非晶質窒化ホウ素
、高密度相窒化ホウ素からなる高硬質膜を基材表面に形
成し易くする。
In the method of the present invention, first, the output of the convergent laser beam is 500W or more. This output can be changed depending on the type of sample to be irradiated, so it cannot be determined unambiguously.
Consists of at least one of diamond, hexagonal boron nitride, cubic boron nitride, and Wurtz type boron nitride (the entire rotating body may be made of these substances, but the rotating surface may be coated with or adhered to) It can also be a rotating body),
When this irradiated sample is evaporated with a focused laser beam of 500 W or more, diamond-like carbon or amorphous carbon, which has properties similar to diamond, amorphous boron nitride, which has properties similar to diamond, and high-density phase boron nitride, and high-density phase. To facilitate the formation of a highly hard film made of boron nitride on the surface of a base material.

このような大出力の収束レーザ光は、回転体5の回転面
に接線方向から照射される。このときの照射角度θは2
度以上40度以下に管理される。θが2度より小さい角
度の場合には、照射した収束レーザ光の多くは接線方向
に散逸し照射域Qにおける照射出力密度(11/cm2
)が著しく小さくなってしまい、試料の蒸発が円滑に進
行しない。その結果、成膜速度も小さくなるとともに、
なによりも、緻密で強度も高く、高硬度の被膜が形成し
難くなる。
Such a high-output convergent laser beam is irradiated onto the rotating surface of the rotating body 5 from a tangential direction. The irradiation angle θ at this time is 2
Temperatures are kept above 40 degrees. When θ is less than 2 degrees, most of the irradiated convergent laser light is dissipated in the tangential direction, and the irradiation power density in the irradiation area Q (11/cm2
) becomes significantly smaller, and the evaporation of the sample does not proceed smoothly. As a result, the deposition rate becomes lower and
Above all, it becomes difficult to form a dense, high-strength, and highly hard coating.

逆にθが40度より大きくなると、照射域Qにおける収
束レーザ光の照射出力密度が大きくなりすぎて、照射域
及びその近辺では試料の不均一な蒸発が進み、その結果
1回転体の回転面には不均一な蒸発痕が散在するように
なり、基材への試料の安定な蒸着が不可能になる。すな
わち、基材には均一な硬質膜が形成でき難くなる。
On the other hand, when θ is larger than 40 degrees, the irradiation power density of the focused laser beam in the irradiation area Q becomes too large, and uneven evaporation of the sample progresses in the irradiation area and its vicinity, resulting in the rotation surface of the rotating body Non-uniform evaporation traces become scattered on the substrate, making it impossible to stably deposit the sample onto the substrate. That is, it becomes difficult to form a uniform hard film on the base material.

被照射試料の種類によっても異なるが、照射域テノ照射
出力密度が5X 103〜5X 106W/cm2トな
るように、収束レーザ光の出力、その照射角度を調節す
ることが好ましい。
Although it varies depending on the type of sample to be irradiated, it is preferable to adjust the output of the convergent laser beam and its irradiation angle so that the irradiation area teno irradiation output density is 5X 103 to 5X 106 W/cm2.

[発明の効果] 本発明方法は、被照射試料の形状を軸回転するリング状
、円板状、円筒状、円柱状の回転体とし、収束レーザ光
の試料面への照射方向及び照射角度を規制することによ
り、試料に大出力の収束レーザ光を照射することを可能
にした。その結果、使用できる被照射試料の種類を広げ
、成膜速度も高めることができ、しかも得られた硬質膜
に緻密で高硬度な特性を付与することができる。
[Effects of the Invention] The method of the present invention uses a ring-shaped, disk-shaped, cylindrical, or cylindrical rotating body as the shape of the sample to be irradiated, and adjusts the irradiation direction and irradiation angle of the convergent laser beam onto the sample surface. By regulating this, it became possible to irradiate the sample with high-power focused laser light. As a result, the types of irradiated samples that can be used can be expanded, the film formation rate can be increased, and the resulting hard film can be given dense and highly hard properties.

特に、500W以上という大出力の収束レーザ光を使用
し、被照射試料である回転体への照射角度を調整するこ
とによって黒鉛、ダイヤモンド状カーボン、ダイヤモン
ド、六方晶型窒化ホウ素、立方晶型窒化ホウ素、ウルツ
型室化ホウ素からなる回転体を蒸発させ、この蒸発した
粒子を工具鋼、超硬合金、サーメット、又はセラミック
スからなる基材表面に高硬度な被膜として堆積させた、
被覆材料が得られる。こうして得た硬JA膜被覆材料は
、高硬度で耐剥離性に優れていることから耐摩耗用材料
、切削工具用材料等の工具用材料として利用することが
できる。又、回転体が収束レーザ光の照射によって熱割
れし易い材料の場合は、回転体の周辺に予熱ヒータを設
けて回転体を加熱して熱割れを防いだり、更に基材周辺
に予熱ヒータを設けて基材を加熱しながら硬質膜を形成
したり、あるいは硬質膜を被覆した基材を容器から取り
出した後に熱処理することによって硬質膜と基材との耐
剥離性の効果を高めることもできる。
In particular, by using a focused laser beam with a high output of 500 W or more and adjusting the irradiation angle to the rotating body that is the sample to be irradiated, we can produce graphite, diamond-like carbon, diamond, hexagonal boron nitride, cubic boron nitride. , a rotating body made of Wurtz-type boron chloride is evaporated, and the evaporated particles are deposited as a highly hard coating on the surface of a substrate made of tool steel, cemented carbide, cermet, or ceramics.
A coating material is obtained. The thus obtained hard JA film coating material has high hardness and excellent peeling resistance, and therefore can be used as a wear-resistant material, a cutting tool material, and other tool materials. In addition, if the rotating body is made of a material that is susceptible to thermal cracking when irradiated with focused laser light, a preheater may be installed around the rotating body to heat the rotating body and prevent thermal cracking, or a preheating heater may be installed around the base material. It is also possible to increase the peel resistance effect between the hard film and the base material by forming a hard film while heating the base material, or by heat-treating the base material coated with the hard film after taking it out of the container. .

ここで使用する容器内は、10−3〜104Torrの
真空雰囲気にすることが望ましいが硬質膜の形成と硬質
膜と基材との密着性を高めるために炭化水素ガス、窒素
ガス、不活性ガス等のガス雰囲気にすることもできる。
It is desirable that the inside of the container used here be in a vacuum atmosphere of 10-3 to 104 Torr, but in order to form a hard film and improve the adhesion between the hard film and the base material, gas such as hydrocarbon gas, nitrogen gas, or inert gas may be used. It is also possible to create a gas atmosphere such as

[発明の実施例] 実施例1 図示したレーザ装置で、回転体5として外径30mmの
六方晶型窒化ホウ素の回転体を用い、基材9として炭化
タングステン−コバルト焼結合金を用いた。容器4内を
 IX 1(1’ Torrの真空として回転体5を2
Orpmで回転した0回転体5と基材9との距離は 1
00m1+、回転体5を600℃に予熱し、基材9を5
00℃に加熱した。
[Embodiments of the Invention] Example 1 In the illustrated laser device, a rotating body of hexagonal boron nitride having an outer diameter of 30 mm was used as the rotating body 5, and a tungsten carbide-cobalt sintered alloy was used as the base material 9. The interior of the container 4 is set to a vacuum of IX 1 (1' Torr) and the rotating body 5 is
The distance between the zero-rotating body 5 rotated by Orpm and the base material 9 is 1
00m1+, preheat the rotating body 5 to 600°C, and heat the base material 9 to 5
Heated to 00°C.

ついで、回転体5の回転面に100OWの0wC02レ
ーザ光を照射した。0は10度、照射域での出力密度は
50000W/Cm2であった。
Then, the rotating surface of the rotating body 5 was irradiated with 100 OW of 0wC02 laser light. 0 was 10 degrees, and the power density in the irradiation area was 50,000 W/Cm2.

成膜速度は0.2JL41I+inであった。この膜の
ヌープ硬さは 4500kg/履履2であり、X線回折
にかけたところ非晶質構造であった。
The film formation rate was 0.2JL41I+in. The Knoop hardness of this film was 4,500 kg/footwear 2, and when subjected to X-ray diffraction, it was found to have an amorphous structure.

実施例2 基材が、PLO用超用台硬合金成る5NPA432型の
チップ(Hv1800)を用い1回転体5は外径50m
mの六方晶型窒化ホウ素のリングを用いた。
Example 2 The base material is a 5NPA432 type tip (Hv1800) made of super hard alloy for PLO, and the rotating body 5 has an outer diameter of 50 m.
A ring of hexagonal boron nitride of m was used.

真空容器4内を IX 10’ Tartの真空として
回転体5を 1Orpmで回転した。回転体5と基材9
との距離は100mm、回転体5を500℃に予熱し、
基材9をeoo℃に加熱した。
A vacuum of IX 10' Tart was applied to the inside of the vacuum container 4, and the rotating body 5 was rotated at 1 Orpm. Rotating body 5 and base material 9
The distance between the
Substrate 9 was heated to eoo°C.

ついで、回転体5の回転面に 1500Wのcwco2
レーザ光を照射した。θは5度、照射域での出力密度は
50000W/am2であった。
Next, a 1500W cwco2 is applied to the rotating surface of the rotating body 5.
irradiated with laser light. θ was 5 degrees, and the power density in the irradiation area was 50,000 W/am2.

成膜速度は 0.2に層/sinであった。この膜のヌ
ープ硬さは4300であり、X線回折にかけたところ非
晶質構造であった。
The deposition rate was 0.2 layers/sin. The Knoop hardness of this film was 4300, and when subjected to X-ray diffraction, it was found to have an amorphous structure.

つぎに、得られたチップで5480#lの外周旋削を行
なった。切削速度100m/win、切り込み量1.5
+a+w 、送り量0.4ms+/revの条件で15
分間旋削したのちに、チップ逃げ面の平均摩耗量を測定
した結果0.15腸履であった。
Next, outer circumferential turning of 5480#l was performed using the obtained chip. Cutting speed 100m/win, depth of cut 1.5
+a+w, 15 under the condition of feed rate 0.4ms+/rev
After turning for a minute, the average amount of wear on the flank surface of the chip was measured and found to be 0.15 mm.

比較のために、六方晶型窒化ホウ素で被覆しないチップ
についても同様にその逃げ面の平均摩耗量を測定したと
ころ0.43mmであった。
For comparison, the average wear amount of the flank surface of a chip not coated with hexagonal boron nitride was similarly measured and found to be 0.43 mm.

実施例3 容器4の真空度がIX 1O−5Torrであったこと
、レーザ光出力が 1300Wであったこと、θが15
度、照射出力密度がlX105wlCI112であった
こと、基材が5PP422のハイスチップであったこと
、回転体予熱温度が400℃であったこと、基材加熱温
度が700℃であったこと、レーザ光照射時間が30分
であったこと、を除いては実施例1と同様にして厚み1
.5gmの膜を形成した。成膜速度0.3 pLm/s
in 、ヌープ硬さは4000であった。
Example 3 The vacuum degree of the container 4 was IX 1O-5 Torr, the laser light output was 1300W, and θ was 15
degree, the irradiation output density was 1X105wlCI112, the base material was a 5PP422 high-speed steel chip, the rotating body preheating temperature was 400°C, the base material heating temperature was 700°C, the laser beam A thickness of 1 was obtained in the same manner as in Example 1, except that the irradiation time was 30 minutes.
.. A film of 5 gm was formed. Film deposition rate 0.3 pLm/s
in, the Knoop hardness was 4000.

このチップを用いて、実施例2と同様に348C綱の外
周旋削を行なった。チップ逃げ面の平均摩耗量は0.2
1m層であった。
Using this tip, the outer circumference of 348C steel was turned in the same manner as in Example 2. The average wear amount on the chip flank surface is 0.2
It was a 1m layer.

実施例4.5 真空度が2X 1O−5Torrであったこと、レーザ
光出力が 1070Wであったこと、015度、照射出
力密度が70000w/Cm2であったこと、回転体予
熱温度が 800℃であったこと、基材加熱温度が65
0℃であったこと、レーザ光照射時間が35分であった
こと、そして、基材が■、TiN−TiC−N1−Go
−N。
Example 4.5 The degree of vacuum was 2X 1O-5 Torr, the laser light output was 1070 W, 015 degrees Celsius, the irradiation output density was 70000 W/Cm2, and the rotating body preheating temperature was 800 degrees Celsius. The base material heating temperature was 65
The temperature was 0°C, the laser beam irradiation time was 35 minutes, and the base material was ■, TiN-TiC-N1-Go.
-N.

系のサーメットを主成分とする5NPA432型チツプ
、■、■のチップの表面に予めTiNx(0,6≦X≦
0.8)を 0.3p鵬コーテイングしたもの、の2種
類のチップであったこと、を除いては実施例1と同様に
各チップの表面に厚み 1.27i+sの窒化ホウ素膜
を形成した。成膜速度はいずれも0.25p m/si
n * これらの膜はいずれもヌープ硬さ3800であ
った。
TiNx (0,6≦X≦
A boron nitride film having a thickness of 1.27i+s was formed on the surface of each chip in the same manner as in Example 1, except that there were two types of chips: 0.8) coated with a 0.3p coating. The film formation rate is 0.25 p m/si in both cases.
n* All of these films had a Knoop hardness of 3800.

ついで、2個のチップでそれぞれチルド鋳鉄(Hs 8
0)を切削した。切削条件は、切削速度EIOa+/+
*in、 9Jり込み量 1.2mm、送り量0.3m
m/revであった・ 切削開始10分後の逃げ面平均摩耗量は、■のものが0
.12m層、■のものが0.08m層であった。なお、
基材そのものは欠損により使用不能となった。
Next, two chips were each made of chilled cast iron (Hs 8
0) was cut. The cutting conditions are cutting speed EIOa+/+
*in, 9J penetration amount 1.2mm, feed amount 0.3m
m/rev・The average amount of flank wear 10 minutes after the start of cutting was 0 for ■.
.. The layer was 12m thick, and the layer (■) was 0.08m thick. In addition,
The base material itself became unusable due to damage.

実施例6 真空度が3.5X 104Torrであったこと、レー
ザ光出力が20001であったこと、010度、照射出
力密度がIX 105W/c腸2であったこと、回転体
予熱温度が800℃であったこと、基材加熱温度が40
0℃であったこと、基材がSi3N4焼結体の5NPA
432型チツプであったことを除いては、実施例1と同
様にして厚み2uLlの窒化ホウ素膜を形成した。膜の
硬さはヌープ硬さで4100であった。
Example 6 The degree of vacuum was 3.5X 104Torr, the laser light output was 20001, 010 degrees, the irradiation output density was IX 105W/c2, and the rotating body preheating temperature was 800℃ The substrate heating temperature was 40
The temperature was 0°C, and the base material was 5NPA of Si3N4 sintered body.
A boron nitride film having a thickness of 2 μLl was formed in the same manner as in Example 1, except that a 432-type chip was used. The hardness of the film was 4100 on the Knoop hardness.

このチップを用いてSCM21侵炭焼人網(HRC65
)を切削した。切削条件は、切削速度100m/win
、切り込み量0.2s+m、送り量0.12mm/re
vであった。切削開始30分後のチップ逃げ面平均摩耗
量は0.13mmであった。なお、未処理のチップのそ
れは 5分切削後に摩耗が大きくて寿命となった。
Using this chip, SCM21 carburizing net (HRC65)
) was cut. Cutting conditions are cutting speed 100m/win
, depth of cut 0.2s+m, feed amount 0.12mm/re
It was v. The average amount of wear on the flank surface of the chip 30 minutes after the start of cutting was 0.13 mm. In addition, the untreated tip had so much wear that it reached the end of its life after 5 minutes of cutting.

実施例7 黒鉛からなる円柱状の回転体とCIS規格P30相当の
超硬合金からなる5NP432型チツプの基材を容器内
にセットし、この容器内を2 X 10” Torrの
真空にした。次いで、基材は700℃に加熱し、回転体
は30rpmで回転させながら回転体の被照射面である
外周面に対して15度の方向から収束レーザ光を照射し
て黒鉛を蒸発させ、この蒸発した粒子を基材表面に堆積
させて被覆材料を得た。ここで使用したレーザ光の種類
及び出力は、実施例1と同条件であった。
Example 7 A cylindrical rotating body made of graphite and a base material of a 5NP432 type chip made of a cemented carbide equivalent to CIS standard P30 were set in a container, and the inside of the container was evacuated to 2 x 10” Torr. The base material was heated to 700°C, and the rotating body was rotated at 30 rpm, and a convergent laser beam was irradiated from a direction of 15 degrees to the outer peripheral surface of the rotating body to evaporate the graphite. The particles were deposited on the surface of the base material to obtain a coating material.The type and output of the laser beam used here were the same as in Example 1.

こうして得た被覆材料の膜厚を金属顕微鏡で測定したと
ころ約5終厘であり、この膜質をX線回折によって解析
したところ、結晶の回折線が検出されなかった。次に被
覆材料の硬さを測定したところ、6800ヌープであっ
た。
The film thickness of the thus obtained coating material was measured using a metallurgical microscope and was found to be about 5 thick.When the film quality was analyzed by X-ray diffraction, no crystalline diffraction lines were detected. Next, the hardness of the coating material was measured and found to be 6,800 Knoop.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明方法で用いるレーザ装置の1例の概念図であ
る。 l−レーザ光 2−集光レンズ 3−透過窓 4−真空容器 5−回転体 6−予熱ヒータ 7−基材 8−ヒータ 指定代理人 等々力 達 復代理人 津 国 肇 第1頁の続き @発明者安永 暢男 0発 明 者 樽 見 昇 @発 明 者 小 原 明 ■発明者池1)正幸 @発明者 佐原 純− 〇発明者渋木 邦夫 茨城県新治郡桜村梅園1丁目1番4号 工業技術院電子
技横浜市神奈用区神大寺町603−1
The figure is a conceptual diagram of an example of a laser device used in the method of the present invention. l - Laser light 2 - Condensing lens 3 - Transmission window 4 - Vacuum container 5 - Rotating body 6 - Preheater 7 - Base material 8 - Heater designated agent Todoroki Tatsufu agent Hajime Tsu Kuni Continuation of 1st page @ invention Nobuo Yasunaga 0 Inventor Noboru Tarumi Inventor Akira Ohara Inventor Ike 1) Masayuki Inventor Jun Sahara - Inventor Kunio Shibuki Agency of Industrial Science and Technology, 1-1-4 Umezono, Sakuramura, Niihari-gun, Ibaraki Prefecture Denshi Gi 603-1 Jindaiji-cho, Kanayo-ku, Yokohama City

Claims (1)

【特許請求の範囲】 1、容器内で軸回転する回転体の回転面に接線方向から
収束レーザ光を照射して該回転体から蒸発した粒子を基
材表面に堆積させてなる被覆材料の製造方法において、 該収束レーザ光の出力が500W以上であり、かつ。 該収束レーザ光の照射域への照射角度が、該照射域にお
ける接線方法に対し2〜40度であることを特徴とする
硬質膜被覆材料の製造方法。 2、該回転体が、黒鉛、炭素、ダイヤモンド状カーボン
、ダイヤモンド、金属ホウ素、六方晶型窒化ホウ素、立
方晶型窒化ホウ素又はウルツ型窒化ホウ素の群から選ば
れる少なくとも1種からなる特許請求の範囲第1項記載
の硬質膜被覆材料の製造方法。 3、該基材が、工具鋼、超硬合金、サーメット又はセラ
ミックスのいずれかである特許請求の範囲第1項又は第
2項記載の硬質膜被覆材料の製造方法。
[Claims] 1. Manufacture of a coating material by irradiating a convergent laser beam from a tangential direction onto the rotating surface of a rotating body that rotates on its axis in a container, and depositing particles evaporated from the rotating body on the surface of a base material. In the method, the output of the focused laser beam is 500W or more, and. A method for producing a hard film coating material, characterized in that the irradiation angle of the focused laser beam onto the irradiation area is 2 to 40 degrees with respect to a tangent to the irradiation area. 2. Claims in which the rotating body is made of at least one member selected from the group consisting of graphite, carbon, diamond-like carbon, diamond, metallic boron, hexagonal boron nitride, cubic boron nitride, and Wurtz-type boron nitride. 2. A method for producing a hard film coating material according to item 1. 3. The method for producing a hard film coating material according to claim 1 or 2, wherein the base material is any one of tool steel, cemented carbide, cermet, or ceramics.
JP4926784A 1984-03-16 1984-03-16 Production of hard film-coated material Granted JPS60194066A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4926784A JPS60194066A (en) 1984-03-16 1984-03-16 Production of hard film-coated material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4926784A JPS60194066A (en) 1984-03-16 1984-03-16 Production of hard film-coated material

Publications (2)

Publication Number Publication Date
JPS60194066A true JPS60194066A (en) 1985-10-02
JPS6338427B2 JPS6338427B2 (en) 1988-07-29

Family

ID=12826054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4926784A Granted JPS60194066A (en) 1984-03-16 1984-03-16 Production of hard film-coated material

Country Status (1)

Country Link
JP (1) JPS60194066A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63227766A (en) * 1986-10-27 1988-09-22 Hitachi Ltd Formation of superfine-grained film
US5450434A (en) * 1992-05-26 1995-09-12 Sumitomo Electric Industries, Ltd. Method to work cubic boron nitride article

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005019103A1 (en) * 2003-08-20 2007-10-04 日本電気株式会社 Nanocarbon production apparatus and method for producing nanocarbon

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57158377A (en) * 1981-03-27 1982-09-30 Ishikawajima Harima Heavy Ind Co Ltd Plating device for inside surface of pipe utilizing laser beam

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57158377A (en) * 1981-03-27 1982-09-30 Ishikawajima Harima Heavy Ind Co Ltd Plating device for inside surface of pipe utilizing laser beam

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63227766A (en) * 1986-10-27 1988-09-22 Hitachi Ltd Formation of superfine-grained film
JPH0524988B2 (en) * 1986-10-27 1993-04-09 Hitachi Ltd
US5450434A (en) * 1992-05-26 1995-09-12 Sumitomo Electric Industries, Ltd. Method to work cubic boron nitride article

Also Published As

Publication number Publication date
JPS6338427B2 (en) 1988-07-29

Similar Documents

Publication Publication Date Title
Voevodin et al. Nanocrystalline WC and WC/a-C composite coatings produced from intersected plasma fluxes at low deposition temperatures
JP5237124B2 (en) Coating using carbon nitride and products coated with carbon nitride
US5620754A (en) Method of treating and coating substrates
US5731046A (en) Fabrication of diamond and diamond-like carbon coatings
US6274206B1 (en) Method of coating a silicon or silicide substrate
EP0474369B1 (en) Diamond-like carbon coatings
JP2005526905A (en) A method for forming a diamond coating on an iron-based substrate and the use of such an iron-based substrate for applying a CVD diamond coating.
JPS60194066A (en) Production of hard film-coated material
JP3448884B2 (en) Artificial diamond coating
WO1995031584A1 (en) Surface treatment techniques
JPS6338428B2 (en)
JP4701386B2 (en) High hardness material
JPS61195971A (en) Formation of wear resisting film
US5001001A (en) Process for the fabrication of ceramic monoliths by laser-assisted chemical vapor infiltration
JP5232942B2 (en) Cutting tool surface treatment method
JP4133150B2 (en) Method for producing diamond film-coated member
Novikov et al. Superhard iC coatings used in complex processes of surface strengthening of tools and machine parts
Tkachev et al. Structure and Frictional Properties of Ultrahard AlMgB14 Thin Coatings. Nanomaterials 2023, 13, 1589
JP2004211136A (en) Hard coating superior in adhesiveness, and manufacturing method therefor
JP2000129420A (en) Hard film for high temperature sliding member
JP3787586B2 (en) Amorphous boron nitride thin film-coated sliding member and method for manufacturing the sliding member
Fenker et al. Deposition of CVD diamond onto ion beam modified ASP 23 cutting tools
JPH11124665A (en) Frictional sliding member and its manufacture
RU2092610C1 (en) Method of manufacturing amorphous coatings
JPS62256964A (en) Ceramics-coated member

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term