JPS61195971A - Formation of wear resisting film - Google Patents

Formation of wear resisting film

Info

Publication number
JPS61195971A
JPS61195971A JP3584585A JP3584585A JPS61195971A JP S61195971 A JPS61195971 A JP S61195971A JP 3584585 A JP3584585 A JP 3584585A JP 3584585 A JP3584585 A JP 3584585A JP S61195971 A JPS61195971 A JP S61195971A
Authority
JP
Japan
Prior art keywords
base material
ions
film
vapor deposition
sputtering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3584585A
Other languages
Japanese (ja)
Inventor
Tsutomu Ikeda
池田 孜
Katsuhiko Inoue
勝彦 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP3584585A priority Critical patent/JPS61195971A/en
Publication of JPS61195971A publication Critical patent/JPS61195971A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To form with high adhesion a film having superior wear resistance by irradiating, under high vacuum conditions, the surface of metallic base material with nitrogen ions under specific conditions and by simultaneously carrying out vapor deposition of metallic vapor. CONSTITUTION:The nitrogen ions and/or carbon ions are irradiated in a high vacuum region (<=about 10<-5>Torr) at a 500eV-10keV energy of a sputtering region on the surface of the base material consisting of metal or ceramic; in addition, vapor deposition of metallic vapor is carried out simultaneously or alternately with this ion irradiation. Further, the vapor deposition speed of metallic particles is higher than the sputtering speed, so that the metallic particles and ions successively combine with nitrogen ions and the like to form the film having superior wear resistance on the base material surface. Excellent adhesion can be obtained owing to sputtering effects as well as cleaning effects of the nitrogen ions and the like.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、切削加工やフライス加工の様な工作加工用と
して使用される金属又はセラミックス製工作機械基材の
表面に、耐摩耗性の優れた金属化合物皮膜を形成する為
の改良技術に関するものである。
Detailed Description of the Invention [Industrial Application Field] The present invention provides a material with excellent wear resistance on the surface of a metal or ceramic machine tool base material used for machining such as cutting or milling. This invention relates to improved technology for forming metal compound films.

[従来の技術] 物理蒸着法(PVD法)や化学蒸着法(CVO法)によ
って高速度工具鋼や超硬工具鋼の表面にチタン等の窒化
物、炭化物、或は炭・窒化物よりなる耐摩耗性皮膜を形
成し、工具の性能を更に高めようとする方法は既に公知
である。
[Prior art] A coating of nitrides such as titanium, carbides, or carbon/nitrides on the surface of high-speed tool steel or cemented carbide tool steel by physical vapor deposition method (PVD method) or chemical vapor deposition method (CVO method). Methods of forming abradable coatings to further improve the performance of tools are already known.

このうち従来の化学蒸着法では、耐摩耗性金属化合物皮
膜形成の為のチタン(この種の用途に適用される金属と
してはこの他周期律表のIVa族。
Among these, the conventional chemical vapor deposition method uses titanium for forming a wear-resistant metal compound film (other metals that can be used for this type of application include IVa group of the periodic table).

Va族、VIa族の金属、或はほう素、珪素、アルミニ
ウム等があるが、以下チタンで代表する)源として四塩
化チタンガスを使用する為、皮膜形成には900〜11
00℃の高温処理を必要とする。その為物理蒸着法に比
べれば母材(基材)との密着性に優れた耐摩耗性皮膜を
形成することができるが、超硬質の母材に適用すると母
材表面に極めて脆弱な脱炭層(例えばw3cOzc等)
が生成する為、特にフライス加工用工具には適用できな
い、また高速度鋼や合金工具鋼等に化学蒸着法を適用す
ると、高温の処理条件で母材が軟質化したり戎は熱変形
を起こす為、特に精密工具用としての適正を欠く。
Since titanium tetrachloride gas is used as a source (Va group, VIa group metals, or boron, silicon, aluminum, etc., represented by titanium below), 900 to 11 is used for film formation.
Requires high-temperature treatment at 00°C. Therefore, compared to the physical vapor deposition method, it is possible to form a wear-resistant film with excellent adhesion to the base material (base material), but when applied to an ultra-hard base material, the decarburized layer is extremely fragile on the surface of the base material. (For example w3cOzc etc.)
is generated, so it cannot be applied to milling tools in particular. Also, when chemical vapor deposition is applied to high-speed steel, alloy tool steel, etc., the base material becomes soft and the tool deforms due to heat under high-temperature processing conditions. , especially unsuitable for precision tools.

こうした状況のもとで、母材金属の焼戻し温度(550
℃)以下の低温条件でも耐摩耗性の金属化合物皮膜が形
成される様に開発されたのが物理蒸着法であり、現在実
用機として最も普及しているのはHCD方式イオンブレ
ーティングである。
Under these circumstances, the tempering temperature of the base metal (550
The physical vapor deposition method was developed to form a wear-resistant metal compound film even under low-temperature conditions (°C) or lower, and the HCD ion blating method is currently the most popular in practical use.

[発明が解決しようとする問題点] ところが物理蒸着法では、放電維持用のガスを共存させ
なければならない為1組成比が厳密に調整された高純度
の耐摩耗性皮膜を形成することが困難であり、しかも化
学蒸着法に比べて基材との密着性を十分に高めることが
できないといった問題がある。
[Problems to be solved by the invention] However, in the physical vapor deposition method, it is difficult to form a highly pure wear-resistant film with a strictly controlled composition ratio because a gas for maintaining the discharge must coexist. Moreover, there is a problem that adhesion to the substrate cannot be sufficiently improved compared to chemical vapor deposition.

本発明はこうした状況のもとで、放電維持用ガスを必要
とせず常温の処理条件下で組成比の制御された高純度の
耐摩耗性皮膜を形成することができ、しかも基材との密
着性を十分に高めることのできる技術を確立しようとす
るものである。
Under these circumstances, the present invention is capable of forming a high-purity wear-resistant film with a controlled composition ratio under normal temperature processing conditions without the need for discharge maintenance gas, and which also has good adhesion to the base material. The aim is to establish a technology that can sufficiently enhance sexual performance.

[問題点を解決する為の手段] 基材との密着性を十分高める方法として、本発明者等は
スパッタ現象を有効に利用できる加速エネルギーをイオ
ンに与えることにより、効果的に目的を達成し得る技術
を見出した。すなわち金属又はセラミックスよりなる基
材の表面に、高真空条件のもとで窒素イオン及び/又は
炭素イオンを101eV以下のスパッタ領域のエネルギ
ーで照射し、且つ該イオン照射と同時又は交互に金属蒸
気の蒸着を行なうところに要旨を有するものである。
[Means for Solving the Problems] As a method of sufficiently increasing the adhesion with the base material, the present inventors have effectively achieved the objective by giving ions acceleration energy that can effectively utilize the sputtering phenomenon. I found a technique to obtain it. That is, the surface of a base material made of metal or ceramics is irradiated with nitrogen ions and/or carbon ions at an energy in the sputtering range of 101 eV or less under high vacuum conditions, and simultaneously or alternately with the ion irradiation, metal vapor is irradiated. The gist is that vapor deposition is performed.

[作用] 本発明は、高真空領域(一般的には1O−5Torr程
度以下)で被処理基材表面に金属蒸気を蒸−着させなが
ら、同時に或は該金属蒸着処理を交互に別のイオン源に
より発生させた窒素イオン及び/又は炭素イオンを照射
する。言わば1種のイオンビーム蒸着法に属するもので
ある。そして耐摩耗性皮膜の初期過程では、加速された
窒素イオン等が基材表面に照射されることによって、基
材物質元素がスパッタリング効果を受け、この基材物質
元素は蒸発源より加速放出された金属粒又はイオンと衝
突を繰り返しつつ再び基材表層部に取り込まれる。そし
て加速された窒素イオン等の活性エネルギーや連動エネ
ルギーにより蒸発物質との間で化学反応が起こり金属窒
化物等が生成するが、金属粒子の蒸着速度(depo、
rate)がスパッタ速度(*puttsr rate
)に比べて大きい為、基材表面方向へ放出されてきた金
属粒やイオンは順次窒素イオン等と化合して基材表面に
堆積していく、この様にして基材表面には金属窒化物等
とスパッタリングを受けた基材元素との混合層が形成さ
れ、更に該混合層内の余剰の金属元素や結合力の弱い金
属窒化物粒子等は再び加速窒素イオン等の活性エネルギ
ーや運動エネルギーによってスパッタリングを受け、こ
の現象を繰り返すことによって基材表面に密着性の優れ
た耐摩耗性皮膜が形成されていく、また上記の様な耐摩
耗性皮膜が形成される前においては、加速された窒素イ
オン等のエネルギーによって基材表面がクリーニング効
果を受け、更に皮膜自体のクリーニング効果も発揮され
て表面活性が高められる為、卓越した密着性を得ること
ができる。
[Function] The present invention deposits metal vapor on the surface of a substrate to be treated in a high vacuum region (generally about 10-5 Torr or less), while simultaneously or alternately performing the metal vapor deposition process with another ion. irradiation with nitrogen and/or carbon ions generated by a source; In other words, it belongs to a type of ion beam evaporation method. In the initial process of forming the wear-resistant film, accelerated nitrogen ions, etc. are irradiated onto the surface of the base material, resulting in a sputtering effect on the base material elements, and these base material elements are accelerated and released from the evaporation source. It repeatedly collides with metal particles or ions and is taken into the surface layer of the base material again. Then, due to the active energy and interlocking energy of the accelerated nitrogen ions, a chemical reaction occurs with the evaporated substance, producing metal nitrides, etc., but the deposition rate (depo,
rate) is the sputtering rate (*puttsr rate
), the metal particles and ions emitted towards the surface of the base material sequentially combine with nitrogen ions, etc. and deposit on the surface of the base material.In this way, metal nitrides are deposited on the surface of the base material. A mixed layer is formed with the sputtered base material elements, and the excess metal elements and metal nitride particles with weak bonding strength in the mixed layer are again activated by the active energy and kinetic energy of accelerated nitrogen ions, etc. By undergoing sputtering and repeating this phenomenon, a wear-resistant film with excellent adhesion is formed on the surface of the base material, and before the wear-resistant film as described above is formed, accelerated nitrogen The surface of the base material receives a cleaning effect from the energy of ions and the like, and the film itself also has a cleaning effect, increasing its surface activity, so that excellent adhesion can be obtained.

但し窒素イオン等の照射エネルギーが10KeVを超え
ると、スパッタリングの低下とともにイオン基材表面層
に侵入する現象(イオン注入)が優勢となる。完用化さ
れているイオン注入装置で得られるイオン層は高々数%
A程度であり、固体表層の改質用として本格的に使用す
るには不十分である。また上記の様な窒素イオン等によ
るスパッタリング効果を有効に発揮させる為には、照射
エネルギーを500eV以上にするのがよく、より好ま
しい照射エネルギーは1〜5にeVの範囲である。
However, when the irradiation energy of nitrogen ions or the like exceeds 10 KeV, sputtering decreases and the phenomenon of ions penetrating into the surface layer of the base material (ion implantation) becomes dominant. The ion layer that can be obtained with fully utilized ion implantation equipment is only a few percent at most.
It is of the order of A, and is insufficient for full-scale use for modifying the solid surface layer. In order to effectively exhibit the sputtering effect of nitrogen ions and the like as described above, the irradiation energy is preferably 500 eV or more, and the more preferable irradiation energy is in the range of 1 to 5 eV.

本発明が適用される基材物質は、耐摩耗性工具等の基材
として使用し得るものであればその種類の如何を間うも
のではなく、高速度工具鋼や超硬工具鋼、超硬合金或は
この種の用途に適用される各種のセラミックスを使用す
ることができる。また蒸着用の金属としては高硬度で耐
摩耗性の優れた窒化物、炭化物或は炭・窒化物を生成し
得るIVa。
The base material to which the present invention is applied can be any type of material as long as it can be used as a base material for wear-resistant tools, such as high-speed tool steel, cemented carbide tool steel, carbide tool steel, etc. Alloys or various ceramics adapted for this type of application can be used. The metal for vapor deposition is IVa, which can produce nitrides, carbides, or carbon/nitrides with high hardness and excellent wear resistance.

Va、Via族の金属、或はほう素、珪素、アルミニウ
ム等すべての金属を使用することができる。これら蒸着
用元素の蒸発機構としては、電子ビーム加熱や抵抗加熱
等の何れを使用してもよく、また蒸発元素の反応性を更
に増大させる為蒸発源近傍にバイアスプローブ等を設け
、イオン化率を上げることによって活性化を進めること
も有効である。
All metals such as Va, Via group metals, or boron, silicon, aluminum, etc. can be used. As the evaporation mechanism for these evaporation elements, either electron beam heating or resistance heating may be used. In order to further increase the reactivity of the evaporation elements, a bias probe or the like is installed near the evaporation source to increase the ionization rate. It is also effective to promote activation by increasing the amount of energy.

この様に本発明は高真空領域で反応性蒸着を可能とする
イオンビーム蒸着法の1種として位置付けられるもので
あり、基材を高温に加熱する必要がないので熱劣化や熱
歪等を生ずることがなく、またプラズマ法の様に放電維
持用ガスを使用する必要がないので高純度の高耐摩耗性
皮膜を得ることができ、且つ前述の様に窒素イオン等の
クリーニング効果及びスパッタリング効果により卓越し
た密着性が保障される。
As described above, the present invention is positioned as a type of ion beam evaporation method that enables reactive evaporation in a high vacuum region, and there is no need to heat the base material to a high temperature, which may cause thermal deterioration or thermal distortion. Furthermore, since there is no need to use a discharge sustaining gas like in the plasma method, a highly pure and highly abrasion resistant film can be obtained. Excellent adhesion is guaranteed.

[実施例] 電子ビーム溶解機構を備えたイオンブレーティング装置
に、金属蒸気(又は金属イオン)及び窒素イオンビーム
が同時に照射可能な位置にイオン銃を設置する。基板ホ
ルダーは均一な皮膜を形成し得る如く回転可能に構成し
、該ホルダーに高速度鋼チップを取り付ける。装置内を
5xto−s丁arrに保持し、高速度鋼チップに向け
てチタンをイオンブレーティングすると共に、窒素イオ
ンビームをI KeVのエネルギーで照射し、耐摩耗性
の窒化チタン皮膜を形成した。また比較の為従来の反応
性イオンブレーティング法に準じて上記と同様の高速度
鋼チップの表面に窒化チタン皮膜を形成した。これら2
種の成膜条件を第1表に示す。
[Example] An ion gun is installed in an ion brating apparatus equipped with an electron beam melting mechanism at a position where metal vapor (or metal ions) and a nitrogen ion beam can be irradiated simultaneously. The substrate holder is configured to be rotatable to form a uniform coating, and a high speed steel chip is attached to the holder. The inside of the apparatus was maintained at 5xto-s, and titanium was ion-blated toward the high-speed steel tip, and a nitrogen ion beam was irradiated with an energy of I KeV to form a wear-resistant titanium nitride film. For comparison, a titanium nitride film was formed on the surface of a high-speed steel chip similar to the one described above according to the conventional reactive ion blating method. These 2
Table 1 shows the seed film forming conditions.

第1表 上記で得た各窒化チタン皮膜について、オージェを使用
し同一測定条件で窒化チタン膜と基材の境界面における
皮膜物質の濃度分布を調べた。
Table 1 For each of the titanium nitride films obtained above, the concentration distribution of the film substance at the interface between the titanium nitride film and the substrate was investigated using an Auger under the same measurement conditions.

結果を第1図に示す、厚膜のオージェ分析ではスパッタ
深さが深くなるにつれてエツジ効果が現われてくる為境
界面を正確に求めることはできないが、第1図からも明
らかな様に同一測定条件で比較すると、本発明で形成さ
れる[窒化チタン+鉄層]は従来のイオンブレーティン
グ法に比べて大幅に増大していることが分かる。これは
1本発明法の場合窒素イオンビームの照射による前述の
様なスパッタリング効果が有効に発揮された為と考えら
れる。
The results are shown in Figure 1. In Auger analysis of thick films, the edge effect appears as the sputtering depth increases, so it is not possible to accurately determine the boundary surface, but as is clear from Figure 1, the same measurement Comparing the conditions, it can be seen that the [titanium nitride + iron layer] formed by the present invention is significantly increased compared to the conventional ion blating method. This is considered to be because, in the case of the method of the present invention, the above-mentioned sputtering effect due to irradiation with the nitrogen ion beam was effectively exhibited.

上記で得た各皮膜形成を使用し、円筒端面に4か所の溝
を形成した被削材(50M415.’He230〜26
0)の切削試験を行なった。第2図に被削材の切削長と
工具の逃げ面摩耗量の関係を示す、第2図からも明らか
な様に本発明法で形成した皮膜の耐摩耗性は極めて優れ
ており、例えば切削長80mにおける逃げ面摩耗量を比
較した堝合、本発明により窒化チタン皮膜を形成した高
速度鋼チップは無処理のものに比べて9.5倍の寿命を
発揮し、また従来の反応性イオンブレーティング法で皮
膜形成を行なったものと比べても2.4倍の耐摩耗性が
得られている。
Using each film formation obtained above, the workpiece material (50M415.'He230~26
0) cutting test was conducted. Figure 2 shows the relationship between the cutting length of the work material and the amount of flank wear of the tool.As is clear from Figure 2, the wear resistance of the coating formed by the method of the present invention is extremely excellent. Comparing the amount of flank wear at a length of 80 m, the high-speed steel chips on which the titanium nitride film was formed according to the present invention exhibited a lifespan 9.5 times longer than those without treatment, and the life of the high-speed steel chips on which the titanium nitride film was formed according to the present invention was 9.5 times that of the untreated chips. Even compared to the film formed by the brating method, the wear resistance is 2.4 times higher.

[発明の効果] 本発明は以上の様に構成されており、その効果を要約す
れば次の通りである。
[Effects of the Invention] The present invention is configured as described above, and its effects can be summarized as follows.

■基材を高温に加熱する必要がないので基材が熱劣化を
起こしたり熱歪を生じる恐れがない。
■There is no need to heat the base material to high temperatures, so there is no risk of thermal deterioration or thermal distortion of the base material.

従ってあらゆる材質の基材にも支障なく適用することが
でき、また精密工具にも容易に適用することができる。
Therefore, it can be applied to base materials of all kinds of materials without any problems, and can also be easily applied to precision tools.

■プラズマ法の様に放電維持の為のガスを使用する必要
がないので、耐摩耗性の優れた高純度の皮膜を得ること
ができる。
■Unlike the plasma method, there is no need to use gas to maintain the discharge, so a high-purity film with excellent wear resistance can be obtained.

■窒素イオンや炭素イオンのクリーニング効果及びスパ
ッタリング効果が有効に発揮される結果、基材と皮膜の
境界部に両成分の混合層が形成される為、皮膜の密着度
を著しく高めることができる。
■As a result of the effective cleaning and sputtering effects of nitrogen ions and carbon ions, a mixed layer of both components is formed at the boundary between the base material and the film, so the adhesion of the film can be significantly increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は皮膜形成実験で得たオージェ分析結果を示す図
、第2図は耐摩耗性試験結果を示すグラフである。
FIG. 1 is a diagram showing the results of Auger analysis obtained in the film formation experiment, and FIG. 2 is a graph showing the results of the abrasion resistance test.

Claims (1)

【特許請求の範囲】[Claims] 金属又はセラミックスよりなる基材の表面に耐摩耗性の
金属化合物皮膜を形成する方法において、高真空条件の
もとで上記基材の表面に窒素イオン及び/又は炭素イオ
ンを500eV〜10KeVのスパッタ領域のエネルギ
ーで照射し、且つ該イオン照射と同時又は交互に金属蒸
気の蒸着を行なうことを特徴とする耐摩耗性皮膜の形成
方法。
In a method of forming a wear-resistant metal compound film on the surface of a base material made of metal or ceramics, nitrogen ions and/or carbon ions are sputtered at a range of 500 eV to 10 KeV on the surface of the base material under high vacuum conditions. 1. A method for forming a wear-resistant film, which comprises irradiating with an energy of 200 ml of ions, and depositing metal vapor simultaneously or alternately with the ion irradiating.
JP3584585A 1985-02-25 1985-02-25 Formation of wear resisting film Pending JPS61195971A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3584585A JPS61195971A (en) 1985-02-25 1985-02-25 Formation of wear resisting film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3584585A JPS61195971A (en) 1985-02-25 1985-02-25 Formation of wear resisting film

Publications (1)

Publication Number Publication Date
JPS61195971A true JPS61195971A (en) 1986-08-30

Family

ID=12453323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3584585A Pending JPS61195971A (en) 1985-02-25 1985-02-25 Formation of wear resisting film

Country Status (1)

Country Link
JP (1) JPS61195971A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62199763A (en) * 1986-02-25 1987-09-03 Matsushita Electric Works Ltd Formation of tin film
JPS6473069A (en) * 1987-09-10 1989-03-17 Nissin Electric Co Ltd Production of aluminum nitride film
JPH01215966A (en) * 1988-02-23 1989-08-29 Nissin Electric Co Ltd Manufacture of high-hardness tin film
JPH01225767A (en) * 1988-03-07 1989-09-08 Nissin Electric Co Ltd Production of silicon nitride film
JPH02129359A (en) * 1988-11-09 1990-05-17 Nippon Steel Corp Formation of thin film having excellent adhesion
JPH02159362A (en) * 1988-12-13 1990-06-19 Mitsubishi Heavy Ind Ltd Method and apparatus for production of thin film
JPH04182375A (en) * 1990-11-16 1992-06-29 Toshiba Corp Production of wear resistant ceramics

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62199763A (en) * 1986-02-25 1987-09-03 Matsushita Electric Works Ltd Formation of tin film
JPH0551661B2 (en) * 1986-02-25 1993-08-03 Matsushita Electric Works Ltd
JPS6473069A (en) * 1987-09-10 1989-03-17 Nissin Electric Co Ltd Production of aluminum nitride film
JPH01215966A (en) * 1988-02-23 1989-08-29 Nissin Electric Co Ltd Manufacture of high-hardness tin film
JPH01225767A (en) * 1988-03-07 1989-09-08 Nissin Electric Co Ltd Production of silicon nitride film
JPH02129359A (en) * 1988-11-09 1990-05-17 Nippon Steel Corp Formation of thin film having excellent adhesion
JPH02159362A (en) * 1988-12-13 1990-06-19 Mitsubishi Heavy Ind Ltd Method and apparatus for production of thin film
JPH04182375A (en) * 1990-11-16 1992-06-29 Toshiba Corp Production of wear resistant ceramics

Similar Documents

Publication Publication Date Title
JPS6334227B2 (en)
SE453403B (en) ALSTER COVERED WITH HIGH QUALITY MATERIAL, PROCEDURE FOR ITS MANUFACTURING AND USE OF THE ALSTRET
KR20170138444A (en) A coated cutting tool and a method for coating the cutting tool
RU2370570C1 (en) Method of ion-plasma treatment of steel and hard alloy parts
JP3480086B2 (en) Hard layer coated cutting tool
WO1991005075A1 (en) Surface-coated hard member for cutting and abrasion-resistant tools
JPS61195971A (en) Formation of wear resisting film
JP4427729B2 (en) Cutting tool made of surface-coated cubic boron nitride based sintered material with excellent chipping resistance with hard coating layer
Grant et al. Ion beam techniques for material modification
JPH0356675A (en) Coating of ultrahard alloy base and ultrahard tool manufactured by means of said coating
KR880001381B1 (en) Surface coated high speed steel member
JP2773092B2 (en) Surface coated steel products
JPH04221057A (en) Formation of wear resistant hard coating film
JPS5918475B2 (en) coated high speed steel
JPS6242995B2 (en)
JP2624561B2 (en) Amorphous hard carbon film coated diamond tool
Novikov et al. Superhard iC coatings used in complex processes of surface strengthening of tools and machine parts
JPH0250983B2 (en)
JPH06248420A (en) Hard film coated member
JPS5918474B2 (en) coated cemented carbide
JPH116056A (en) Target containing intermetallic compound, and manufacture of hard covered member using it
JPH07150337A (en) Production of nitride film
JPH0250948A (en) Conjugated super hard material
JP2590349B2 (en) Wear-resistant coating method
JPS6224501B2 (en)