JPS60191002A - Method for concentrating hydrogen in mixed gas containing at least hydrogen by using adsorption method - Google Patents

Method for concentrating hydrogen in mixed gas containing at least hydrogen by using adsorption method

Info

Publication number
JPS60191002A
JPS60191002A JP59043636A JP4363684A JPS60191002A JP S60191002 A JPS60191002 A JP S60191002A JP 59043636 A JP59043636 A JP 59043636A JP 4363684 A JP4363684 A JP 4363684A JP S60191002 A JPS60191002 A JP S60191002A
Authority
JP
Japan
Prior art keywords
gas
adsorption
adsorption bed
bed
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59043636A
Other languages
Japanese (ja)
Inventor
Shigeo Matsui
松井 滋夫
Masahiko Kumagai
昌彦 熊谷
Yasuto Suzu
鈴 康人
Shuichi Kawagoe
秀一 川越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OSAKA OXGEN IND Ltd
Osaka Oxygen Industries Ltd
Original Assignee
OSAKA OXGEN IND Ltd
Osaka Oxygen Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OSAKA OXGEN IND Ltd, Osaka Oxygen Industries Ltd filed Critical OSAKA OXGEN IND Ltd
Priority to JP59043636A priority Critical patent/JPS60191002A/en
Priority to AU39563/85A priority patent/AU583497B2/en
Priority to GB08505860A priority patent/GB2155805B/en
Publication of JPS60191002A publication Critical patent/JPS60191002A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • B01D53/0476Vacuum pressure swing adsorption
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/102Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/104Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/16Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/24Hydrocarbons
    • B01D2256/245Methane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/102Nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/104Oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/502Carbon monoxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • B01D2257/7022Aliphatic hydrocarbons
    • B01D2257/7025Methane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/80Water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40011Methods relating to the process cycle in pressure or temperature swing adsorption
    • B01D2259/40013Pressurization
    • B01D2259/40015Pressurization with two sub-steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40011Methods relating to the process cycle in pressure or temperature swing adsorption
    • B01D2259/4002Production
    • B01D2259/40022Production with two sub-steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40011Methods relating to the process cycle in pressure or temperature swing adsorption
    • B01D2259/4002Production
    • B01D2259/40024Production with three sub-steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40011Methods relating to the process cycle in pressure or temperature swing adsorption
    • B01D2259/40028Depressurization
    • B01D2259/4003Depressurization with two sub-steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40011Methods relating to the process cycle in pressure or temperature swing adsorption
    • B01D2259/40035Equalization
    • B01D2259/40037Equalization with two sub-steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40011Methods relating to the process cycle in pressure or temperature swing adsorption
    • B01D2259/40043Purging
    • B01D2259/4005Nature of purge gas
    • B01D2259/40052Recycled product or process gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40011Methods relating to the process cycle in pressure or temperature swing adsorption
    • B01D2259/40058Number of sequence steps, including sub-steps, per cycle
    • B01D2259/40064Five
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40011Methods relating to the process cycle in pressure or temperature swing adsorption
    • B01D2259/40058Number of sequence steps, including sub-steps, per cycle
    • B01D2259/40066Six
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40011Methods relating to the process cycle in pressure or temperature swing adsorption
    • B01D2259/40058Number of sequence steps, including sub-steps, per cycle
    • B01D2259/40069Eight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40011Methods relating to the process cycle in pressure or temperature swing adsorption
    • B01D2259/40058Number of sequence steps, including sub-steps, per cycle
    • B01D2259/40071Nine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/404Further details for adsorption processes and devices using four beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/414Further details for adsorption processes and devices using different types of adsorbents
    • B01D2259/4141Further details for adsorption processes and devices using different types of adsorbents within a single bed
    • B01D2259/4145Further details for adsorption processes and devices using different types of adsorbents within a single bed arranged in series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/261Drying gases or vapours by adsorption
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/042Purification by adsorption on solids
    • C01B2203/043Regenerative adsorption process in two or more beds, one for adsorption, the other for regeneration
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/047Composition of the impurity the impurity being carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0475Composition of the impurity the impurity being carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/048Composition of the impurity the impurity being an organic compound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/20Capture or disposal of greenhouse gases of methane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2
    • Y02P20/156Methane [CH4]

Abstract

PURPOSE:To produce a useful mixed gas contg. concd. hydrogen at low cost by using plural adsorption beds wherein the pressure adsorption and desorption of waste gas are alternately carried out, and adsorbing the easily adsorbable components in the mixed gas to take out useful gases such as H2 and N2. CONSTITUTION:A compressed mixed gas contg. H2, N2, etc. is introduced into adsorption beds of >=4, A, B, C, D, etc. wherein an adsorbent such as activated alumina is packed, and the esaily adsorbable components are adsorbed under pressure and removed. The first and the second hardly adsorbable components, H2 and N2, are concentrated and taken out. Each stage such as pressure equalization, desorption of waste gas under reduced pressure, etc. other than said adsorption stage is successively changed over and carried out in said each adsorption bed A, B, C, and D by using a pressure-reducing and air-discharging means 16, etc. consisting of pipings and valves connected to each adsorption bed, a vacuum pump, etc. By said operation, the useful mixed gas contg. H2 and N2 which can be reutilized is concentrated, refined, and recovered at low cost with the convenient device from the raw mixed gas.

Description

【発明の詳細な説明】 本発明は出力変動式吸着分離方法(PSA法)Kよって
石油化学プラント、還元炉、焼鈴炉、等の拮ガス中の少
;/C<ども水素ガスを含む混合ガス中の水素ガスt、
t を生を高めると共に水素以外の1成分を同時に回収
し排ガス中の不純物を吸着除去l−て有用l工混合ガス
として再利用出来る様に行う。また1充棄a機物より発
生する醗酵ガス中の不純物を除去すると共に1177合
ガス中の第1#、吸着性ガスの(tj′=度を高めると
共に第1→)1r、吸着成分に(A;いて流出してくる
第2グ((吸着成分を同HIK回収し、有用な混合ガス
として利用しりる方法に関する。。
DETAILED DESCRIPTION OF THE INVENTION The present invention utilizes a variable output adsorption separation method (PSA method) to reduce the amount of hydrogen gas contained in a mixture containing small amounts of hydrogen gas in petrochemical plants, reduction furnaces, chirping furnaces, etc. Hydrogen gas t in the gas,
This is done in such a way as to increase the production of hydrogen, simultaneously recover one component other than hydrogen, adsorb and remove impurities in the exhaust gas, and reuse it as a useful industrial mixed gas. In addition, it removes impurities in the fermentation gas generated from the 1177 mixture gas, and the adsorbent gas (tj'=increases the degree and the 1st →) 1r, and the adsorbed components ( A: This relates to a method for recovering the adsorbed components from the second gas flowing out through HIK and utilizing them as a useful mixed gas.

11力変動式吸着分離方法により、混合ガスから水素ガ
ス或は/または第1嫂吸木成分のみを吸着分離する方法
は、公知であり古くから色々な方法を用いて実施されて
いる。例えは特公昭38−25969および特公昭39
−208ならびに特公昭43−284および55−1.
2295等匠述べられていZ)が、いづれも高い吸着比
力を用いて吸着分pイを回収をはかつているために、原
料ガスの混合ガスを圧縮するに要する動力エネルギーを
多く消yJ11するため、七のエネルギー回収のために
複雑な工程が考えられ操作がry雑で装置が高価なもの
になる。又偕近、単成分ガスの回収を行ったのち有用な
成分ガスに混合するのではな(、多成分系の混合ガスよ
り不純物を除去し、有用な2成分或は多成分ガスに一縮
したIt: ’j、’E4で利用することが多くなった
。例えば汀(〕11、いに付川−「て)水p7Q、シス
どil2 ガスはアンモニア分j″1ガス(1,+2、
N2、bIH3、N20のF(2と14゜)が多iHt
、 V’−使用されている又水素ガスとト1□ガスをそ
れそf’L:’:i、’ti当な割合で混合し゛C使用
し、使用後は燃オ°1或(゛よj”[l シ”+4させ
て大気に力V出している、この排ガスな不紳1)、ス/
::F ン:、・トjミ去し使用j)刊1田flf K
 il、’4縮して使用するに;f、 +(−なった。
The method of adsorbing and separating only hydrogen gas and/or the first succulent component from a mixed gas using the force variation adsorption separation method is well known and has been practiced for a long time using various methods. For example, Tokuko Sho 38-25969 and Tokuko Sho 39
-208 and Special Publications Showa 43-284 and 55-1.
2295 etc.), all of them use a high adsorption specific force to recover the adsorbed amount p, so that a large amount of the power energy required to compress the mixed gas of the raw material gas is dissipated. , Seven energy recovery requires complicated processes, making the operation complicated and the equipment expensive. In addition, recently, single component gases have been collected and then mixed into useful component gases. It: 'j, 'E4 is often used.For example, the water p7Q, cisdil2 gas is ammonia j″1 gas (1, +2,
F (2 and 14°) of N2, bIH3, N20 is high iHt
, V'-Hydrogen gas and T1□ gas used are mixed in appropriate proportions f'L:':i,'ti and then used. j” [l shi” + 4 and emitting force V to the atmosphere, this exhaust gas is so inconsiderate 1), s/
::F
il, '4 reduced and used ;f, +(-.

よだ廃棄有感物ユリ発生゛する帳l市ガスOい一、t、
−ト水、ti処理場にて発生する[鼠tYガス(11,
2Gtl 4(;02その他)より不純物をlf′i″
去し有用I;cガスの’7”l’V、濃A’:(:使用
1′る様6てなった。
The amount of waste generated by the city gas is 1, t,
- water, ti gas generated at the ti treatment plant (11,
Remove impurities from 2Gtl 4 (;02 others) lf′i″
Removed useful I; c gas '7''l'V, concentrated A': (: used 1' 6).

RIQ:、’ (’) 4’ 、4:’d ’jf’)
”;t i3ンだ、ll’l成分に近い涼Flガスは前
述の如くr数多(の11なh;がa、在する。しかし1
114(l・、・・)ガスの如く多成力系の吸着分離の
誠みは少くない1.本発明は’6XT源哉はエネルギー
の有効利用の・視点、1、り山“1合ガスの[)、il
、iFj Ih力の低下並び匠簡便、/、C装置1′弓
で2しって安価な有用成分ガスの回収法をはかることV
ζある1、また、水素のほかにco−co2゜0114
、N2炭化水素など’?l!−含゛む混合ガスより水素
のみ幌はト1..!、ガスへ5単成分ガスによる高碓度
すなわち、95容滑%を越え多くの場合99容摺%を越
える1111〜分ガス′fX−製4(することは、従来
から行われている。。
RIQ:,'(')4',4:'d'jf')
As mentioned above, there are a large number of r (11 h;) in the cool Fl gas, which is close to the ll'l component. However, 1
The adsorption separation of multi-force systems such as 114 (l.,...) gases is very serious.1. The present invention is based on the '6XT Genya perspective of effective use of energy, 1.
V
ζ is 1, and in addition to hydrogen, co-co2゜0114
, N2 hydrocarbons etc'? l! - Only hydrogen can be removed from the mixed gas containing gas.1. .. ! It has been conventional practice to provide a gas with a high degree of saturation, that is, over 95 volume smoothness, and in many cases over 99 volume smoothness, by using a single component gas.

これらjヤー成分ガスを回j1!する場合、NH3、H
2S、CO8水蒸気等の不純物を除去するためにあらか
じめrlf浄に行われている。
Turn these component gases! If so, NH3, H
RLF cleaning is performed in advance to remove impurities such as 2S and CO8 water vapor.

IP成分ガスを分1趨11回11vする場合、一般に吸
着剤を用い、高い圧力のもとで吸着作用を行l、(い、
i、IL′(品ガス以外のガスの破鍋以π■に打切って
製品ガスのみを高p度に回収する。一般にL業出用吸着
剤は吸着1′1:の弱いガスすなわち姉吸着ガスは吸着
性の%iいガスすなわち易吸着ガスよりも!’4 <吸
着床の入口端より/、10端に向って進む、1又稚吸着
ガスは易吸着ガスにより吸着剤の吸着席を追出され、吸
着床の中にそれぞ牙1のガスについてのl行右の吸着帯
を持つことは公知である。PSA法の吸着装置y1の実
用例としてN2の和製、空気分離罠よる02とト■2 
の1(′(造、炭化水素などのi″%縮回収がある。
When the IP component gas is subjected to 11V 11 times per minute, an adsorbent is generally used and the adsorption effect is performed under high pressure.
i, IL' (after the breakdown of the gas other than the product gas), only the product gas is recovered at a high pH.In general, adsorbents for the L industry have a weaker adsorption of 1'1:, i.e., the older adsorption. The gas is less adsorbable than the easily adsorbed gas!'4 <From the inlet end of the adsorption bed/proceeds toward the 10th end, the young adsorbed gas fills the adsorption seat of the adsorbent with the easily adsorbed gas. It is known that the adsorption bed has one row right adsorption zone for each fang 1 gas.As a practical example of the adsorption device y1 of the PSA method, there is a Japanese-made N2, air separation trap 02. toto■2
1('), there is i''% condensation recovery of hydrocarbons, etc.

これらは吸着、減圧、脱着、パージ工程がIIQ’を次
くり返され少なくども2左11以上の吸着床が使用され
製品ガスロ度が95容員%以上の場合が多く、装置や操
作が複1’lftで非常に多額の費用を要す。従って少
なくともII2.02、co、co2、OH4のうち1
成分以上を含み)易今によってはNH3、H28などの
不純物をごくわずか含んだガスより有用ガス成分のうち
l成分の濃度を50容」d:%、好ましくは7゜容11
1:%を越える濃度ガスを製造することである。
In these processes, the adsorption, depressurization, desorption, and purge steps are repeated after IIQ', at least 2 or more adsorption beds are used, and the product gas flow rate is often 95% or more by volume, requiring multiple equipment and operations. 'lft costs a very large amount of money. Therefore, at least 1 of II2.02, co, co2, OH4
Depending on the situation, the concentration of l component among the useful gas components can be increased to 50% by volume, preferably 7°vol.11.
The goal is to produce a gas with a concentration exceeding 1:%.

711、合ガスの原料ガスとして、たとえば還元炉υト
ガスは1−i2= 50% N2−42% C0−5%
 C02=2%廃棄有(六物lrl!酵ガス&2 00
2−70”o、(3H4=27.7%N2−2.02=
0.3%上記の混合ガス中に(↓NH3、CO8,t(
2S、 H20等の不純物をごくわずか存在している。
711, as raw material gas for combined gas, for example, reduction furnace υ gas is 1-i2 = 50% N2-42% C0-5%
C02 = 2% waste (6 things lrl! Fermented gas & 2 00
2-70”o, (3H4=27.7%N2-2.02=
0.3% in the above mixed gas (↓NH3, CO8,t(
Very small amounts of impurities such as 2S and H20 are present.

このような混合ガスより吸着剤による1を沢吸着性は吸
着剤によって順位は異なるが、−一般Ks )Ie<H
2(C2<N2<CH4くGOくGO2(C2H2・・
・・・・ とされており、左端のHeが他のガスに比べ
て吸着性が悪(、吸着されK りyb(難吸着性ガス)
ので、他の成分を吸着除去することによって有用ガスを
回収することができるとされている。
The adsorption ability of the adsorbent from such a mixed gas differs depending on the adsorbent, but -general Ks)Ie<H
2(C2<N2<CH4 GO GO2(C2H2...
It is said that He on the left side has poor adsorption properties compared to other gases (hardly adsorbed gas).
Therefore, it is said that useful gas can be recovered by adsorbing and removing other components.

本発明によれば、混合ガス中の有用ガスを中心に多成分
ガスを回収するととにある。
According to the present invention, a multi-component gas, mainly useful gases, in a mixed gas is recovered.

第1番目の発明は、 少なくとも、水素或は/または有用ガスを含む混合ガス
中の水素或は/または有用ガスを濃縮する方法において
、該混合ガス中の選択しうる成分・易吸着成分を吸着除
去し、水素或は/または有用ガスと水素よりも吸着しゃ
すい第2難吸着成分を濃縮して製品ガスとしてとりだす
ために該混合ガス中の少なくとも1成分に対して選択性
物質を充填した4つ以上の吸着床を使用しその方法は1
)該混合ガスにより吸着床を加圧する原料ガス加圧工程
、 N)さらに該混合ガスを吸着床に流し、少なくとも1つ
のガス成分の選択吸着を行なわせ、水素ガスのみをとり
だす吸着filll工 程11)吸着(1)終了後さらに該混合ガスを吸着床に
流し、水素および第2#1.吸着成分の割合が所定の割
合になるまで2成分混合物をとりだす吸着(Ill工程
、 lv) 吸着(釦工程終了後、さらに該混合ガスを吸着
床に流し、第2難吸着成分の破過がはじまる直前まで2
成分混合物をとりだ丁吸着佃)工程、V)吸着flit
)工程終J′後、その吸着床と排気パージが終った吸着
床とを連絡し、前者の吸着床内のガスを゛後者の吸着床
に導入し、前者の吸着床内圧力と後者の吸着床内圧力が
ほば等しくなるまで減圧させる均圧工程、なおこの均圧
工程の初期に前高の吸着床の該混合ガス人口1端側より
床内ガスを一部放出する工程を同時に行ってもよい。
The first invention is a method for concentrating at least hydrogen and/or a useful gas in a mixed gas containing hydrogen and/or a useful gas, which adsorbs selectable components and easily adsorbable components in the mixed gas. 4 filled with a substance selective for at least one component in the mixed gas in order to remove hydrogen and/or a useful gas and a second poorly adsorbed component that is more easily adsorbed than hydrogen and extract it as a product gas. The method uses one or more adsorption beds.
) A raw material gas pressurization step in which the adsorption bed is pressurized with the mixed gas; N) An adsorption fill step in which the mixed gas is further passed through the adsorption bed to selectively adsorb at least one gas component and only hydrogen gas is taken out 11) After adsorption (1) is completed, the mixed gas is further passed through the adsorption bed, and hydrogen and the second #1. Adsorption (Ill process, lv) in which a two-component mixture is taken out until the ratio of adsorbed components reaches a predetermined ratio. After the adsorption (button process), the mixed gas is further passed through the adsorption bed, and the breakthrough of the second poorly adsorbed component begins. Until just before 2
The component mixture is taken out and adsorbed (Tsukuda) process, V) adsorption flit
) After the completion of the process, the adsorption bed is connected to the adsorption bed for which exhaust purging has been completed, and the gas in the former adsorption bed is introduced into the latter adsorption bed, and the pressure inside the former adsorption bed and the adsorption bed of the latter are A pressure equalization step in which the pressure in the bed is reduced until it becomes almost equal, and at the beginning of this pressure equalization step, a step in which a portion of the gas in the bed is released from the mixed gas population 1 end of the adsorption bed at the front height is simultaneously carried out. Good too.

vl)均圧工程終了後、吸着床内圧力をさらに大気圧ま
た(′i大気圧付近まで降下させる減圧工程、vii)
 吸着床の吸着剤間空1売に存在するガス並びに吸着剤
に吸着している易吸着成分を6jt、 fJE排気装置
i’;、’=Y用いて4ノ1気脱着させる排気工程、v
itf) M)の減圧工程において流出してくるガスお
よび、(1■)の吸着01)工程において流出してくる
ガスを用いて排気工程においてもなお脱着しない易吸着
成分を減圧Tにおいて脱着さぜるための掃気ガスとして
用いて易11′気着成分を脱着させるJJF気バージエ
桿・ lx) tJl”気パージエ桿が終了した吸着床と(1
)の吸着(It工程中の吸着床とを連絡させ、後者の製
品ガス採取の一部のガスを前者σ1吸着床に導入−(°
る製品ガス加圧工程と同時KMの吸着(]]D工程終了
後の吸着床とを連絡させ後者の吸着床内ガスをWiJ者
の吸着床に導入し、両吸着宋内圧力がはば等しくなるま
で加圧する均圧・製品ガス加圧工程 からなり、定期的に流れを変えて、上記の操作を繰返す
ことを特徴とした方法KH+J−5−る、第2番目の発
明は第1番目の発明とはより″(1v)が削除されてお
る。第2番目の発明の工程は次の通りである。
vl) After the pressure equalization step, a depressurization step in which the pressure inside the adsorption bed is further lowered to atmospheric pressure or ('i) near atmospheric pressure, vii)
An evacuation step in which the gas existing in the adsorbent space of the adsorption bed and the easily adsorbed components adsorbed on the adsorbent are desorbed using the JE exhaust device i';,'=Y, v
itf) Using the gas flowing out in the pressure reduction step M) and the gas flowing out in the adsorption step 01) in (1■), desorb easily adsorbable components that are not yet desorbed in the exhaust step at reduced pressure T. The JJF air purge rod is used as a scavenging gas to desorb the adsorbed components.
) is connected to the adsorption bed in the It process, and part of the gas from the product gas collection of the latter is introduced into the former σ1 adsorption bed - (°
The product gas pressurization process and simultaneous KM adsorption (]) are connected with the adsorption bed after the completion of the D process, and the gas in the latter adsorption bed is introduced into the WiJ adsorption bed, so that both adsorption pressures are equal. The second invention is characterized by comprising a pressure equalization and product gas pressurization step of pressurizing the product gas until it reaches ``(1v) is deleted from the invention.The steps of the second invention are as follows.

少なくとも、水素或は/または有用ガスを含む混合ガス
中の水素或は/または有用ガスを涙縮する方法において
、該混合ガス中の選択し5る成分・易吸着成分を吸着除
去し、水素或は/または有用ガスと水素よりも吸着しや
すい第2雌吸着成分を濃縮して製品ガスとしてとりだす
ために該混合ガス中の少なくともl成分に対して選択性
物質な充」iした4つ以」ユの吸着床を使用しその方法
は1)該混合ガスにより吸着床な加圧する原料ガス加I
I工程、 11)さもに詳混合ガスを吸着床に流し、少なくとも1
つのガス成分の、歯板吸着を行なわせ、水素ガスの−”
hをとりだ−jrI&治(1)工程、111)吸、青[
);i’;了後さらに該混合ガスを吸着床に流し、水素
および第2 Ml#吸着成分の割合が所定の7.1」合
になろ:1:で2成分混合物をとりだす吸着fill工
、1)゛、 1■)1橡オ′j(器上4′「終了後、その吸着床と排
気パージが終った吸)?j床とケ連絡し、前者の吸着床
内のガスを後者の吸’IW t+、!で導入し、前者の
吸着床内圧力と抜にの吸着床内圧力がほぼ等しくなるま
で減圧させる均圧工程、なおこの均圧工程の初期K H
il1者の吸着床の1該混ばガス人(1端側より宋内ガ
スW一部)N出する工程を同時に行ってもよ(1,。
At least, in a method of condensing hydrogen and/or useful gas in a mixed gas containing hydrogen and/or useful gas, selected components and easily adsorbable components in the mixed gas are adsorbed and removed, and hydrogen or or/or a substance selective to at least one component in the mixed gas in order to concentrate the useful gas and the second female adsorptive component, which is more easily adsorbed than hydrogen, and take it out as a product gas. The method is as follows: 1) pressurizing the adsorption bed with the mixed gas;
Step I, 11) The detailed mixed gas is passed through the adsorption bed, and at least 1
The two gas components are adsorbed on the tooth plate, and hydrogen gas is
Take h-jrI&ji (1) process, 111) Suction, blue [
); i'; After that, the mixed gas is further flowed through the adsorption bed, and when the ratio of hydrogen and the second Ml# adsorbed component reaches a predetermined ratio of 7.1:1, an adsorption fill process is carried out in which a two-component mixture is taken out; 1) ゛, 1■) 1 ゛゛゛゛, 1■) 1 ゛゛゛゛゛゛゛゛゛゛゛゛゛゛゛゛゛゛゛゛゛゛゛゛゛゛゛゛゛゛゛゛゛゛゛゛゛゛゛゛゛゛゛, 1■) A pressure equalization step in which suction is introduced at IW t+,! and the pressure is reduced until the pressure inside the former adsorption bed and the pressure inside the adsorption bed become almost equal, and the initial K H of this pressure equalization step is
The step of discharging the mixed gas (some of the Songnai gas W from the first end side) from the adsorption bed may be performed at the same time (1,.

い Iす圧−〔桿ハ′≦r後、吸着床内圧力をさらに大
気圧またレエ大気圧付近まで降下させる減圧工程、vl
) 吸着床の吸着〜1間空隙に存在するガス並びに吸着
剤に吸着している易吸着成分を減圧排気装置を用いて排
気脱着させる排気工程、 vll) Mの減圧工程において吸着床より排出される
ガスを用いて排気工程中においてもなお脱着し細い易吸
着成分を減圧下において脱着させるための掃気ガスとし
て用いて易吸着成分ン脱着させる4J1気パージエ桿、 1時 排気、(−ジ工程が終了した吸着床と(li)の
吸着(1)工程中の吸着床とを連絡させ、後者の製品ガ
ス採取の一部のガスな前者の吸着床に導入する製品ガス
加圧工程と同時にMの吸着(III)工程終了後の吸着
床とを連絡させ後者の吸着床内ガスを前者の吸着床に導
入し、両吸着床内圧力かはぼ等しくなるまで加圧する均
圧・製品ガス加圧工程 からなり、定期的に流れを変えて、上記の操作を繰返す
ことを特徴とした方法に関する。
I Pressure - After the adsorption bed pressure is lowered to atmospheric pressure or near atmospheric pressure, vl
) Adsorption in the adsorption bed - an exhaust step in which gas existing in the voids and easily adsorbed components adsorbed on the adsorbent are exhausted and desorbed using a vacuum evacuation device; 4J1 gas purge rod used as scavenging gas to desorb thin easily adsorbed components under reduced pressure even during the exhaust process. The adsorption bed of (li) is connected to the adsorption bed during the adsorption (1) process, and part of the gas from the latter product gas is introduced into the former adsorption bed at the same time as the product gas pressurization process. (III) From the pressure equalization/product gas pressurization step, which connects the adsorption bed after the process is completed, introduces the gas in the latter adsorption bed into the former adsorption bed, and pressurizes the internal pressures of both adsorption beds until they are approximately equal. The present invention relates to a method characterized by repeating the above operations while changing the flow periodically.

第3番目の発明は第1番目の発明とは工程(vlが削除
され工程1viilにおける掃気ガスのうち工程(vi
lの減圧工、1y4!部のガスが削除されてオdす、m
3番目の発明の工程は次の通りである。
The third invention is different from the first invention in that the step (vl is deleted and the scavenging gas in the step 1viil is replaced by the step (viil).
l's decompression work, 1y4! The gas in the part is deleted, m
The steps of the third invention are as follows.

4>なくとも、水素或は/lたは有用ガスを含む混合ガ
ス中の水素或は/または有用ガスを濃縮する方法におい
て、該混合ガス中のべ択しうる成分・易吸着成分を吸7
.・j除去し、水素或は/または有用ガスと水素、しり
も吸着しやすい第2難吸着成分をIH’4縮して製品ガ
スとしてとっだ丁ために該混合ガス中の少なくとも1成
分に対して選択注物賃を充填した4つ以−ヒの吸着床な
使用しその方法は1)該混合ガスにより吸着床な加圧す
る原料ガス加圧工程、 1:)さらに該混合ガスケ吸着宋に流し、少なくとも1
つのガス成分の選択吸着を行なわせ、水素ガスのみをと
りだす吸着(1)工程。
4> At least, in a method of concentrating hydrogen and/or a useful gas in a mixed gas containing hydrogen or /l or a useful gas, a method that absorbs selectable components and easily adsorbable components in the mixed gas
..・IH'4 to remove hydrogen and/or a useful gas and a second difficult-to-adsorb component that easily adsorbs hydrogen, and to condense it into a product gas for at least one component in the mixed gas. The method is as follows: 1) Pressurizing the raw material gas to pressurize the adsorption bed with the mixed gas; 1:) Further flow the mixed gas into the adsorption bed. , at least 1
Adsorption (1) step in which selective adsorption of two gas components is performed and only hydrogen gas is extracted.

1(1)吸着(1)終了後さらに該混合ガスを吸着床に
流11、水素および第2難吸着成分の割合が所定の割合
にブ、仁るまで2成分混合物をとりだす吸着(In]二
稈、 lv) 吸着l11)工程終了後、さらに鶴混合ガスを
吸着床に流し、第2難吸着成分の破過プ)tはじまる直
前まで2成分混合物をとりだす吸着(110工程、■)
吸着C110工程終了俵、吸着床内圧力をさらに大気圧
または大気圧付近まで降下させる減圧工程、vl)吸着
床の吸着剤量空隙に存在するガス並びに吸着剤に吸着し
ている易吸着成分を減圧Jji気装置を用いて排気脱着
させる排気工程、 vlD (lv)の吸着(冊工程において流出してくる
ガスを用いてtJl気工@においてもなお脱着しない易
吸着成分な減圧下において脱着させるための掃気ガスと
して用いて易吸着成分を脱ツ、゛1させる排気パージ工
程、 1×)排気パージ工程が終了した吸着床と(1)の吸着
(1)工程中の吸着床とを連絡させ、後者の製品ガス採
取の一部のガスを前者の吸着床に導入する製品ガス加圧
工程と同時に(■)の吸着C冊工桟終了後の吸着床とを
連絡させ後者の吸着床内ガスを前者の吸着床に導入し、
両吸着床内圧力かほば等しくなるまで加圧する均圧・製
品ガス加圧工程、 からなる、。
1 (1) After adsorption (1) is completed, the mixed gas is further flowed into the adsorption bed (11), and the two-component mixture is taken out until the ratio of hydrogen and the second poorly adsorbed component reaches a predetermined ratio. Culm, lv) Adsorption After the completion of the 11) process, the Tsuru mixed gas is further flowed into the adsorption bed, and the two-component mixture is taken out until just before the breakthrough of the second poorly adsorbed component begins. Adsorption (110 process, ■)
Adsorption C110 process completed Bales, depressurization step to further lower the pressure inside the adsorption bed to atmospheric pressure or near atmospheric pressure, vl) Amount of adsorbent in the adsorption bed Depressurize the gas existing in the voids and the easily adsorbed components adsorbed on the adsorbent. Exhaust process for exhaust desorption using Jji gas equipment, adsorption of VLD (lv) (using the gas flowing out in the book process to desorb under reduced pressure, which is an easily adsorbed component that is still not desorbed even in tJji gas equipment). An exhaust purge step in which easily adsorbable components are removed using scavenging gas, At the same time as the product gas pressurization step in which a part of the gas from the product gas collection is introduced into the former adsorption bed, the gas in the latter adsorption bed is transferred to the former adsorption bed by communicating with the adsorption bed after the completion of the adsorption C block in (■). introduced into the adsorption bed of
It consists of a pressure equalization and product gas pressurization process in which the pressures in both adsorption beds are increased until they are almost equal.

イ〈発明で使用される吸着剤は活はアルミナ、シリカゲ
ル、活1り1:炭系物質および三次元構造を有する天然
)したは合成ゼオライト系物質(例えばA、N、X)j
l、lモレキュラシーブ(M、S、)、モルデナイト型
、等)かr)I′7i!ばれる。0離されるべき不純物
成分によって、吸着床下部に活性アルミナ、および/よ
!、−(・よシリカゲルを充噛し、吸着床上部に活は炭
系物′1′↓或はゼオライト系物質との組合せ、活性ア
ル(′す或は/またはシリカゲルと活性炭系物質とゼオ
ライト系物質の3種類以上の組合せのいづれのIル様で
あってもよい。
(a) The adsorbent used in the invention is active material such as alumina, silica gel, carbonaceous material and natural zeolite material having a three-dimensional structure, or synthetic zeolite material (e.g. A, N, X).
l, l molecular sieve (M, S, ), mordenite type, etc.) or r) I'7i! It will be revealed. 0 Depending on the impurity components to be separated, activated alumina is added to the bottom of the adsorption bed, and/or! ,-(・The silica gel is fully packed, and the upper part of the adsorption bed is a combination of active carbon-based material '1'↓ or zeolite-based material, activated alkaline material ('1') or silica gel, activated carbon-based material, and zeolite-based material). It may be any type of combination of three or more substances.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

本発明においては、少なくとも水素或は/または有用ガ
スを含む混合ガス(例えば還元炉排ガスノH2、N2、
C01cO2、NH3,、、、n 棄有機’lt’ZI
 削aW カスノ02、N2、OH4、cO2、NH3
、N2s・・・等の各種排ガス)中の・北択しうる成分
・易吸着成分を吸着除去し、水素或はまたは有用ガスと
水素より、も吸着しやすい第2 trl吸着成分の混合
ガスを吸着法により濃縮または精製するに際し、原料混
合ガスの少なくとも1成分に対して選択吸着(1′、を
示し分子価作用を有゛fる吸着tlt″4′泥へ(例え
ば三次元)jl4造を有する天然または合成ゼオライト
等)I/ζより構成される吸着r1ミを所定の加圧下に
保持する加圧下1v、。
In the present invention, a mixed gas containing at least hydrogen and/or a useful gas (for example, reduction furnace exhaust gas H2, N2,
C01cO2, NH3,,,n
Cut aW Kasuno02, N2, OH4, cO2, NH3
, N2s, etc.) in various exhaust gases), and removes hydrogen or a mixed gas of a useful gas and a second adsorbable component that is easier to adsorb than hydrogen. When concentrating or purifying by an adsorption method, it is necessary to form a (for example, three-dimensional) adsorbent into an adsorbent tlt''4' mud that exhibits selective adsorption (1') and has a molecular value effect on at least one component of the raw material mixed gas. Under pressure 1v, which holds the adsorption r1mi composed of I/ζ (natural or synthetic zeolite, etc.) under a predetermined pressure.

か匁る状態の吸着床に該混合ガスを通すことにより、不
純物成分を選択的シ(吸着除去し5、N2またはN2と
■]2よりも吸光−しやすい第2磐吸着成分例えばN2
の1117合ガスを濃紺lし製品ガスとfる或はQ%l
酵ガスの場合Co2濃度を吸着もてより減少させ、02
、N2、CH4の混合ガスを濃縮し製品ガスとして吸着
床よりとりだす吸着工程であり、本発明においては通常
0.05〜5バールの吸着圧力の範囲で実施さ罎]2ろ
が、好ましくは吸着1末を加圧するにリノする動力の経
済性、均圧時に放出される製品ガスのガス成分の再利用
ならびに吸着床のべ択吸着t!i:。
By passing the mixed gas through the adsorption bed in a groaning state, impurity components are selectively removed (by adsorption and removal with N2 or N2).
The 1117 combined gas is dark blue and is combined with the product gas or Q%l.
In the case of fermentation gas, the Co2 concentration is reduced by adsorption, and 02
This is an adsorption process in which a mixed gas of , N2, and CH4 is concentrated and taken out from the adsorption bed as a product gas, and in the present invention, it is usually carried out at an adsorption pressure in the range of 0.05 to 5 bar. The economy of power for pressurizing the powder, the reuse of the gas components of the product gas released during pressure equalization, and the selective adsorption of the adsorption bed! i:.

よりみて0.5〜2バールである。吸着工程の終点は第
2何(吸着成分が排出してくる前であっても良(また、
第2r11吸着成分の濃度が最大になり第3娯吸着成分
が検出が始まるまであるいは始まる以前の適当7.c位
置で吸着工程(1)rl)を終了させてもよい。原+・
ト・混合ガス成分ならびに製品ガス成分組成の態様によ
って異ならせてもよい。
Approximately 0.5 to 2 bar. The end point of the adsorption process may be at the second point (before the adsorbed components are discharged).
7. at an appropriate point until or before the concentration of the second adsorbed component reaches its maximum and the detection of the third adsorbed component begins. The adsorption step (1) rl) may be completed at position c. Hara +・
It may be varied depending on the mixed gas components and the product gas component composition.

本発明の吸着II■)工程は任意であり、吸着器工程を
行う場合吸着f[111工程で得られたガスをパージガ
スとしてトシ・出してもよい。上記の吸着(11(IT
I工程で製品ガスをとりだした後の吸着床内には原料・
混合ガスよりもN2或は/または有用ガスとN2よりも
吸着しゃ−[い第2鮒吸着成分に富んだ成分が可成り多
く含まれている、この部分の回収な他塔に実施する。す
ノエわち、均圧または均圧放圧工程では上記使用中の吸
着床と濃縮系を構成している吸着床であって既に製品ガ
スによる加圧工程を終了した吸着床とを連絡して前者の
吸着床より好ましくは並流方向に流出してくるガスを後
者の吸着床の加圧用として回収する。いわゆる吸着床間
の圧力の平均化を実施する。この場合、菌床の圧力の平
均化と同時に吸着(111或はft1ll工程の終った
吸着床下部の原料ガス入口端より床内ガスの一部を放出
でる均圧減圧工程を行なってもよい。入口端より床内ガ
スを一部放出させるのは出1’I] i’Jより均圧ガ
スを流出させると床内の吸着帯のゾーン移jlT7Iが
でき、入口端側の不純物成分が出[」端へ移動する。。
The adsorption II (2) step of the present invention is optional, and when performing the adsorption step, the gas obtained in the adsorption f[111 step] may be discharged as a purge gas. The above adsorption (11 (IT
After the product gas is taken out in the I process, there are raw materials and
This fraction, which contains a considerable amount of N2 or/or a useful gas and a component rich in the second crucian adsorption component rather than N2, is recovered in another column. In other words, in the pressure equalization or pressure equalization release process, the adsorption bed in use is connected to the adsorption bed that constitutes the concentration system and has already completed the pressurization process with the product gas. Preferably, the gas flowing out of the former adsorption bed in the cocurrent direction is recovered for pressurizing the latter adsorption bed. A so-called pressure averaging between the adsorption beds is carried out. In this case, at the same time as equalizing the pressure of the bacterial bed, an equalization and depressurization step may be performed in which a part of the gas in the bed is released from the raw gas inlet end at the bottom of the adsorption bed after the adsorption (111 or ft1ll step) has been completed. Part of the gas in the bed is released from the inlet end at exit 1'I] When the pressure equalized gas is released from i'J, a zone shift of the adsorption zone in the bed occurs, and the impurity components at the inlet end are released. ”Move to the edge.

この移動並びに原料ガス組成を宋外に放出するためであ
る。
This is to release this movement and the raw material gas composition outside the Song Dynasty.

均圧放圧工程を終了した吸着床は再生のために向流方向
の減圧工程を実施する。本工程は減圧排気工程へ入る前
の予備段階であり、均圧終了時の吸着床内圧力を機械的
に減圧し大気圧付近に保持する操作であるこのときの朗
スは濃縮系外に放出され濃縮系への回収は行なわなくて
もよい。また減圧排気中のパージガスとして利用しても
よい。
After completing the pressure equalization and pressure release process, the adsorption bed undergoes a countercurrent pressure reduction process for regeneration. This process is a preliminary step before entering the depressurization and exhaust process, and is an operation in which the pressure inside the adsorption bed is mechanically reduced at the end of pressure equalization and maintained near atmospheric pressure.The advantage of this process is that it is released outside the concentration system. and there is no need to collect it into a concentration system. It may also be used as a purge gas during evacuation.

次に吸着床向火向流−h向の減fE枡気を真空ポンプ、
エゼクタ−、ブロワ−等の城用排気装置を用いて実施す
るが、終了時の吸着床内の減圧(真空)はそれほど高真
空に保持する必要性はなく少なくとも300 T+ar
r以下に保持されておればN2或は/または有用ガスと
N2よりも吸着しやすい第2灯吸着成分の混合ガスの製
品ガスを高い回収で得ることが可能である7、上記値以
上の低真空の吸着床の再生は製品ガスの回収が真空度の
低下ととも匠著しく低下するので好ましくない。好まl
−い真空度は吸着床の再生からより50〜15 Q T
orrである。当然吸着床の真空度により、吸着床内に
残留する不純成分の存在量も異なってくる。。
Next, the reduced fE mass air in the direction of the adsorption bed and the direction of fire and the direction of -h is pumped through a vacuum pump.
Although this is carried out using an evacuation device such as an ejector or a blower, the reduced pressure (vacuum) in the adsorption bed at the end does not need to be maintained at a very high vacuum, at least 300 T+ar.
If the temperature is maintained below r, it is possible to obtain a product gas of N2 or/or a mixed gas of a useful gas and a component adsorbed in the second lamp that is more easily adsorbed than N2 with high recovery. Regeneration of a vacuum adsorption bed is undesirable because the recovery of product gas deteriorates significantly as the degree of vacuum decreases. I like it
- The degree of vacuum is 50 to 15 Q T from the regeneration of the adsorption bed.
It is orr. Naturally, the amount of impurity components remaining in the adsorption bed varies depending on the degree of vacuum of the adsorption bed. .

次いで、吸着床に吸着法)工程のガスを使用して減圧υ
1気工程において吸着剤粒子間に残留・脱着しきれない
でいる易吸着成分または不純成分を脱着させるた?!′
)に減圧下において、上記ガスを用いて吸着床の製品ガ
ス出口端側より導入して行う。
Then, the adsorption method) process gas is used to reduce the pressure υ to the adsorption bed.
Is it possible to desorb easily adsorbed components or impure components that remain between adsorbent particles or cannot be completely desorbed in the 1-gas step? ! ′
), the above gas is introduced from the product gas outlet side of the adsorption bed under reduced pressure.

脱着しにくい吸着成分の脱着には減圧下のパージガスに
よる同伴脱着効果を開用し、少数のノで一ジガスで有効
に脱着が行われる。減圧工程と排気工程により吸着法ガ
スのすべてを完全に除去されることはないが減圧下での
・g−ジガス使用により、より脱着効果が上る。このパ
ージガスを減圧工程で流出するガスを用いてもよく、よ
り効果を上げるために製品ガスの1部を使用してもよい
For desorption of adsorbed components that are difficult to desorb, the entrainment desorption effect of purge gas under reduced pressure is utilized, and desorption can be effectively carried out with a small number of gases and one gas. Although the depressurization step and the exhaust step do not completely remove all of the adsorption method gas, the use of .g-digas under reduced pressure improves the desorption effect. This purge gas may be the gas that flows out during the pressure reduction step, or a portion of the product gas may be used to improve the effect.

排気・ξ−ジ工程が終了した吸着床の製品ガスの出口端
より吸′f1fl)工程の製品ガスを導入し吸着床内の
吸着帯域をきれいに生成するために減圧下でパー:しン
ン行った圧力よりも高い適当な圧力(大気圧以下または
大気IIE、w上でもよい)まで加圧する製品ガス加圧
工程が行なわれる。上記の状態にある吸着床へ製品ガス
による自流方向の加圧を実施することによって不純成分
による吸し;へ帯はより吸M宋の原木゛1ヅfス入自端
付近に移11ib jるととbに、これの不規則拡散が
防止される効果示ある。この工程において吸着床の下部
よr]吸尤工4HHを終了した吸着床と連絡(−1後者
の吸M床内の原ネ・1混合ガスを吸着床間の圧力が平均
になるまで実施してもよい。
The product gas of the suction process was introduced from the outlet end of the product gas of the adsorption bed where the exhaust/ξ-di process had been completed, and purification was performed under reduced pressure in order to cleanly generate the adsorption zone within the adsorption bed. A product gas pressurization step is performed in which the product gas is pressurized to a suitable pressure higher than the pressure (which may be below atmospheric pressure or above atmospheric pressure IIE, w). By pressurizing the adsorption bed in the above state in the flow direction with the product gas, the impurity components are absorbed; and and b show the effect of preventing irregular diffusion. In this process, the lower part of the adsorption bed is connected to the adsorption bed that has completed the adsorption process 4HH (-1) The raw hydrogen and 1 mixed gas in the latter adsorption bed are connected until the pressure between the adsorption beds becomes average. It's okay.

この製品加圧工程を実施する目的は吸着床内の不純物は
排気パージ工程を行っても完全に脱才1・再生が終って
いないため吸着剤に不純物成分の吸着帯を吸着床の原料
・混合ガス入口端側に押し下げるために行う。
The purpose of carrying out this product pressurization process is that the impurities in the adsorption bed are not completely desorbed and regenerated even after the exhaust purge process, so the adsorption band of impurity components is mixed with the adsorption bed raw material on the adsorbent. This is done to push down to the gas inlet end side.

公知のPSA法は前述し6た如く「吸着−減圧一説着パ
ージ(常圧)−加圧」の4工程を基本として減圧工程で
放出されるガスを有効に回収するシステム・が色々と開
発されているが、本発明の減圧工程は千に1販着[4、
白のガスを1)1気するのみで1役着を半、の減111
1、!Iぐ’、1 ’a: 減ITE ’51i f’
i (真Q Hz 7 、)、x V x フタ−1フ
゛Bワー1部月+l?ンブく・?)を用いて実施1−る
ための1−1・1′、「丈1ye−,である。しかしこ
の減/E放出ガスを排気パー・7′上411θ)・クー
 ジどし一〇使用してもよい5、−4た八!: fI 
I″1気・9−ジを行うのは次の理由妊よるもので/・
+ ’?、1 o ’一般に吸尤処塀抜の床内の減圧処
理し、[吸2’f土イ“11に上って吸)盲剤に吸着・
附尤゛シlと易吸着成分および吸着剤間σ゛空隙ガスの
排出のみで原イ1混自ガスから1成分以上の易吸着成分
な除去するには製品ガス或は製品ガスに似た成分ガスを
用い、脱/7ff、I::力を大気圧刊近で行うよりも
減圧真空下を利1−1]−1−ることにより吸着剤1[
」生のためσ)/ξ−ジガス昂げ、ゆi:c: <てよ
い。1なわち吸着剤A′〜、子の細孔内(y)ガス5)
T−は拡散のみOでよる粒子外への移、1ifIJ現象
の脱拾ではなく、粒子中心部からのガス流に伴う脱区;
f、あるいはi〃換であることが減圧排気パージによ−
)で再生を畑時間で、かつ小量のノξ−ジガスト−Iで
冗丁−jる要因となっている。
As mentioned above, the known PSA method is based on the four steps of "adsorption - depressurization, purge (normal pressure) - pressurization", and various systems have been developed to effectively recover the gas released in the depressurization process. However, the depressurization process of the present invention is sold only 1 in 1,000 [4,
1) White gas 1) Just 1 ki will halve 1 role, which is a reduction of 111
1,! Igu', 1'a: Reduced ITE '51i f'
i (True Q Hz 7,), x V Mbuku? ) to carry out 1-1, 1', length 1ye-,. However, this reduction/E released gas is exhausted by exhaust par 7' above 411θ) Kuji and 10. 5, -4 tahachi!: fI
I''The reason for performing 1 ki and 9-ji is due to pregnancy.
+'? , 1 o 'Generally, the pressure inside the floor of the suction room is reduced, and the blinding agent is adsorbed.
In addition, it is possible to remove one or more easily adsorbed components from the raw mixed gas by simply discharging the silica, easily adsorbed components, and void gas between the adsorbent and the product gas or components similar to the product gas. Using a gas, the adsorbent 1[
``For life σ)/ξ-jigas exaltation, Yui:c: <Teiyo. 1, that is, adsorbent A'~, child pore (y) gas 5)
T- is transferred to the outside of the particle by O only by diffusion, not by the 1ifIJ phenomenon, but by the gas flow from the center of the particle;
It is determined by the reduced pressure exhaust purge that the change is f or i.
), which causes the regeneration to take place in the field, and the small amount of ξ-digast I to be redundant.

(ソ、下水発明の代表的な具体例である還元炉]ノドガ
ス中のN2とNZ の混合ガスを濃縮・4.′1.il
り・分子ill;回収する方法にもとづいて、本発明の
詳細な説明するが本発明の方法は、これらの具体例に限
定されるものではない。
(G, Reduction furnace which is a typical example of sewage invention) Concentrating the mixed gas of N2 and NZ in the nodule gas 4.'1.il
The present invention will be described in detail based on the method of recovering molecules; however, the method of the present invention is not limited to these specific examples.

第1図は吸着法により連続的に還元炉排ガス H2、N
2、C01(ン02、NH3・・・から、第一難吸着成
分であるN2 と第2a吸着成分のN2以外の成分の易
吸着成分を選択的に吸着剤に吸着させ、N2とN2の混
合ガスを濃縮・精製・分離回収するフローシートである
Figure 1 shows the continuous reduction furnace exhaust gas H2, N
2. From C01 (n02, NH3...), N2, which is the first poorly adsorbed component, and easily adsorbed components other than N2, which are the second a adsorbable components, are selectively adsorbed on the adsorbent, and N2 and N2 are mixed. This is a flow sheet for concentrating, purifying, separating and recovering gas.

吸着床A、B、G、Dは)I2とN2以外の易吸着成分
を選択的に吸着する吸着剤が収納されている。
Adsorption beds A, B, G, and D) contain adsorbents that selectively adsorb easily adsorbable components other than I2 and N2.

吸着床A、、B、C,Dを減圧排気装置(真空ポンプ、
ブロワ−1水刊工ジエクター等αG)を用いて吸着床入
ロ端ノ之ルズ(7A) (7B) (7G) (7D)
 を開にし、減圧排気な3 Q OTorr以下、好ま
しくは150〜50 Torrの適当な圧力で行う。
Adsorption beds A, B, C, and D are vacuum pumped (vacuum pump,
Using a blower (1 water pump, etc. αG), insert the lower end nozzle into the adsorption bed (7A) (7B) (7G) (7D)
The reaction is carried out at an appropriate pressure of 3 Q O Torr or less, preferably 150 to 50 Torr, such as vacuum evacuation.

原料・混合ガスを圧縮機によって所要圧力2ノ之−ルに
昇圧した後、配管fAlを通って吸着床(A+の底部へ
供給される8、昇圧した該混合ガスの一部は加圧1.型
lpパルプ(11)と入口端パルプ(IA)を開にする
ことによって行なわれる。この時パルプ(II)と(I
A)以外はすべて閉である吸着床(B)(C)0))は
、このステップはまだ真空状態である1、吸着床fAl
は吸着圧力2バールまで昇圧後、バルブ(IA)は閉じ
、ノ之ルブ(2A)(3AX4)を開圧し、原料混合ガ
ス中の選択的に吸着しうる成分が吸着剤罠少な(とも一
つの成分が吸着し、排出端から難吸着成分である製品ガ
スのN2どN2が排出が行なわれる。
After the raw material/mixed gas is pressurized to the required pressure of 2 nore by the compressor, it is supplied to the bottom of the adsorption bed (A+) through the pipe fAl. This is done by opening the type lp pulp (11) and the inlet end pulp (IA).At this time, the pulps (II) and (I
The adsorption bed (B) (C) 0)) which is all closed except A) is still under vacuum at this step 1, the adsorption bed fAl
After increasing the adsorption pressure to 2 bar, the valve (IA) is closed and the pressure of the valve (2A) (3AX4) is opened. The components are adsorbed, and the product gas N2, which is a component that is difficult to adsorb, is discharged from the discharge end.

この吸着工程では吸着床内のガス流は一つの成分ガスの
吸着帯域が形成され、順次各成分ととに吸着帯域が排出
端側に移動する。第1難吸着ガスF(2の吸着(1)工
程に続いてN2と第2姉吸着ガスのN2濃度或は/また
はN2濃度を検知測定するかあらかじめ計幻された時間
あるいはガス量によって製品ガスのH2とN2の混合ガ
スを回収する。必要濃度のガス量が通過するとノζルブ
(4)は閑となり吸着+11)工程を終了さらに第2離
吸着ガスのN2#度比の多い排気/l′lレージの、1
−ジガスとして使用する吸着(Ill)工程として排気
パージガス流聞゛調j1iノζルゾ或はオリフィスを通
って排気パージエ耀中の吸着床へ流出される。この吸着
011)工程は原料・混合ガスの1ill類・不純ガス
成分00a類寸によって吸着fll)工程のガスを使用
し、吸着(曲工程を14”lJ用しな(てもよい。吸着
(■D工程が終了″「ればバルブ(2A)(3A)は閉
じ、ノζルゾ(5A)と(7A)を開にし、吸着床(A
)の床内圧力な抽゛気lξ−ジ終了の吸着床(0’)へ
ゆっくりと均圧放出さ−Uる。このとき吸着床(λ)の
原料ガス入口端側パルプ(8A)も同時にし入[1端側
の不純物成分のガスを一部放出させ4)uこの放IJ暑
ま短時間で均圧放圧工程の/3〜/4程1.(%でよい
。吸着床fA)とfc)の床内圧力がほぼ等しくなるま
で放圧される。このとき吸2ff床C)の均圧ガス導入
側の反対側より製品ガスの導入を同lL:1’ K行う
、。
In this adsorption step, an adsorption zone for one component gas is formed in the gas flow within the adsorption bed, and the adsorption zone for each component sequentially moves toward the discharge end. Following the adsorption (1) step of the first poorly adsorbed gas F (2), the N2 concentration and/or N2 concentration of the N2 and second sister adsorbed gas is detected and measured, or the product gas is Collect the mixed gas of H2 and N2.When the required concentration of gas has passed through, the nozzle valve (4) becomes quiet and the adsorption +11) process is completed.Furthermore, the second separated adsorbed gas has a high N2# ratio of exhaust gas/l. 'lage's 1
- As an adsorption (Ill) step, the exhaust purge gas is discharged through a flow tube or orifice to an adsorption bed in the exhaust purge facility. This adsorption (011) step uses the adsorption full) step gas depending on the size of the raw material, mixed gas, and impure gas component 00a, and the adsorption (curved step may be performed without using 14"lJ). Adsorption (■ If step D is completed, valves (2A) and (3A) are closed, valves (5A) and (7A) are opened, and the adsorption bed (A
) The pressure inside the bed is slowly discharged to the adsorption bed (0') at an equal pressure. At this time, the pulp (8A) on the raw material gas inlet end side of the adsorption bed (λ) is also introduced at the same time. Steps 1.3 to 4 of the process. (% may be sufficient.) The pressure is released until the internal pressures of the adsorption beds fA) and fc) become approximately equal. At this time, the product gas is introduced from the side opposite to the equal pressure gas introduction side of the suction 2ff bed C) at the same rate of 1L:1'K.

均圧放圧工程が終了すれはパルプ(5A)と(7A)は
閉とし、このとき床内圧力はは3−″0.3バールとな
る。さらに床内圧力を大気圧伺近まで減圧させるために
ノ之ルプ(6A)を開にし、吸着剤間の空隙のガス(こ
のガスは原料混合ガスの不純物成分は吸着剤にP着され
第1轢吸着ガスH2と第2昨吸着ガスN2とその他の混
合ガス)を排気工程が終了した吸着床([萄の・ξ−ジ
ガスに利用しながら減圧する。吸着床(八)が大気上付
近となるとパルプ(6A)を閉じ、バルブ(9A) ’
tj圀罠し吸着床内の残留ガスと吸Xイ剤に吸着してい
る不純物成分の減圧排気装置(例えヲ、)Il、“1空
・+<ンプ、ブロワ−等)を用いて減用ワ)・気を:(
0(’) Tr+rr jQ下好ましくは150Tor
rより50 ’1.’orIの適当プ↓[E力で行う、
減圧排気工程が終了すチ]2はバルブ(6D)と(5A
)を開にし、減圧111′気で脱着しきれないで残留し
ている不純物成分を減圧排気を行いながら減圧工程中の
ガスを使用t2てパージを行う。排気パージは減圧排気
圧力よりやL (11い土力で行なわれる。この減圧工
程中のガスは原料・混合ガスの枠類に・よっては使用し
なくてもよい。減)モ工程中のガス利用が終了すね、ば
奔光いてt敗危(11)或は/まプこし1吸着(1m]
二程のガスを使用するため排気パージガス流量調整jル
ブ或を1またはオリフィスθ4)を通しパルプ(IIA
)を開にし、不純物成分の脱着工程を行う。
When the pressure equalization and pressure release process is completed, pulps (5A) and (7A) are closed, and at this time, the pressure in the bed becomes 0.3 bar.The pressure in the bed is further reduced to near atmospheric pressure. Therefore, the nozzle (6A) is opened, and the gas in the gap between the adsorbents (this gas is the impurity component of the raw material mixed gas is deposited on the adsorbent and becomes the first adsorbed gas H2 and the second adsorbed gas N2). Other mixed gases) are depressurized while being utilized for the adsorption bed ([Tano/ξ-digas) that has completed the exhaust process. When the adsorption bed (8) is near the atmosphere, the pulp (6A) is closed and the valve (9A) is '
Reducing residual gas in the adsorption bed and impurity components adsorbed on the X-absorbing agent using a vacuum exhaust device (e.g., 1 empty pump, blower, etc.) Wa)・Ki: (
0(') Tr+rr jQ lower preferably 150 Tor
50'1 from r. 'orI as appropriate ↓ [Do it with E force,
When the decompression exhaust process is completed] 2 is the valve (6D) and (5A
) is opened, and the remaining impurity components that have not been completely desorbed by the reduced pressure 111' are evacuated under reduced pressure, and the gas during the depressurization process is used t2 to purge. Exhaust purge is performed at a pressure lower than the evacuation pressure.The gas during this depressurization process may not be used depending on the frame of the raw material/mixed gas. When the use is over, it flashes and it is defeated (11) or / Mapkoshi 1 adsorption (1m)
In order to use two volumes of gas, the exhaust purge gas flow rate is adjusted by adjusting the flow rate of the pulp (IIA) through the valve or orifice θ4).
) and perform the desorption process of impurity components.

祠、気パージが終了°jれば(IIA)と(9A)Y閉
じ製品ガス(■(2とN2 の混合ガス)による吸着床
の加圧を行い、排気・ξ−ジによつ′(もなおかつ完全
に脱着しき罎1ない不純物成分の吸着帯をD2料・混合
ガス導入E (1111へ押しやる支11品ガスCてよ
る加圧のためV″(り品ガス加圧’6j、1整バルブ或
は/またはオリフィス(11を辿しパルプ(IoA)を
1″i、l Itこ1”るど同時W製品ガス加圧側の反
対側より均圧工程のガスを】4>入するために吸着工程
終了後の吸着床fil内ガスを回収でるために吸着床f
ilと吸着床(Alとの連結パイプのパルプ(5C)と
(7A)を開にして行う。この均圧工程ガスの回収を行
わない場合、製品ガス加圧は300 Torr以上大気
圧迄の適当な圧力まで行う。この加圧は大気圧を超える
圧力まで行ってもさしつかえない。
When the gas purge is completed (IIA) and (9A), the adsorption bed is pressurized with the product gas (■ (mixed gas of 2 and N2), and then exhausted and However, the adsorption zone of impurity components that cannot be completely desorbed is introduced into the D2 material/mixed gas E (1111). 4> To enter the pulp (IoA) through the valve or orifice (11) through the same time as the pressure equalization process gas from the opposite side of the product gas pressurization side. In order to recover the gas inside the adsorption bed fil after the adsorption process is completed, the adsorption bed f
Pulp (5C) and (7A) of the connecting pipe between IL and adsorption bed (Al) are opened. If this pressure equalization process gas is not recovered, the product gas is pressurized at an appropriate pressure of 300 Torr or more to atmospheric pressure. This pressurization can be carried out to a pressure that exceeds atmospheric pressure.

製品ガス加圧工程並びに均圧工程が終了てれげバルブ(
IOA)、(5C)と(7A)を閉じ、次いでパルプ(
IA)を開にし、原料・混合ガス加圧工程に入る。以上
の操作を吸着床fB)、(C3、(D)においても行う
。吸着床4 j、[の場合のサイクル構成例は次の通り
である。
After the product gas pressurization process and pressure equalization process are completed, the rege valve (
IOA), (5C) and (7A), then pulp (
IA) and enter the raw material/mixture gas pressurization process. The above operation is also performed on the adsorption beds fB), (C3, and (D). An example of the cycle configuration for the adsorption beds 4j and [ is as follows.

次に本発明の実施例について述べる。Next, embodiments of the present invention will be described.

(実施例1) 精製工程として既述の如く[原料ガス加圧−吸/7’f
(I)−(nl−(Ill−均圧放圧一減圧放圧一排気
一排気パージー製品ガス加圧/均圧加圧」のサイクルに
もとづいて実施した。吸着床にはそれぞれ下部より水分
吸着Illに活性化した活性アルミナ30kg、CO2
除去用活性炭30ゆ、ゼオライト(ゼオハープZE−5
02大阪酸素工業KK藺品名)を150kg充填した鋼
製の吸着床(L6Bx3.Om)を用いlこ。
(Example 1) As described above, the purification process [raw material gas pressurization-suction/7'f
The experiment was carried out based on the cycle of (I) - (nl - (Ill - equalization pressure release - depressurization release - exhaust - exhaust purge product gas pressurization/equal pressure pressurization). Each adsorption bed adsorbs water from the bottom. 30 kg of activated alumina activated to Ill, CO2
Activated carbon for removal 30ml, zeolite (Zeoharp ZE-5
A steel adsorption bed (L6B x 3.0m) filled with 150kg of Osaka Sanso Kogyo KK 02 (Osaka Sanso Kogyo KK) was used.

実験条゛件 ’A′を元炉排ガス組成 H2= 65.5% N2=32% U O= 0.5% Co2−2.Q% CH4= 0.05% NH3= 6001”l■ cos= 20011111 吸着圧力・・・3.0バール 真空排気・・・l OOTorr 、e−ジ排気 120 Tcrr 供給原料ガス100n+3に対し製品混合ガス(H2=
80%N2=20%)’t52m3回収することができ
た。H2ガス回収率で63.5%で製品混合ガス中の不
純成分としてC○十C○2−0.2%NH3=10四以
下、ωs−1卿以下であった。また排気、。
Experimental condition 'A' was changed to main furnace exhaust gas composition H2 = 65.5% N2 = 32% U O = 0.5% Co2-2. Q% CH4 = 0.05% NH3 = 6001"l■ cos = 20011111 Adsorption pressure...3.0 bar Vacuum evacuation...l OOTorr, e-evacuation 120 Tcrr Product mixed gas ( H2=
80%N2=20%)'t52m3 could be recovered. The H2 gas recovery rate was 63.5%, and the impurity components in the product mixed gas were C○1C○2-0.2%NH3=104 or less, and ωs-1 or less. Also the exhaust.

−ジに使用したガスは5■13 であった。The amount of gas used for -di was 5*13.

(実施例2) 和製工程どして既述の如く「原料ガス加圧−吸着m−吸
着m−均圧一減圧一抽気パー:)*+、Q品ガス加圧・
均圧」のサイクルを用いて、吸着床にはそれぞれ下部よ
り水分吸着用に活性アルミナ、上部匠活性炭を充填した
充填床からなり、有機物戻ガスのCH4濃度を上げ、ガ
スのカロリーアップのためKco2のe着除去を行った
。有機物廃ガス組成は下記の通りであった。。
(Example 2) In the Japanese manufacturing process, as described above, "raw material gas pressurization - adsorption m - adsorption m - equalization pressure - depressurization - extraction per:) * +, Q product gas pressurization /
Using the "pressure equalization" cycle, each adsorption bed consists of a packed bed filled with activated alumina from the bottom for moisture adsorption and activated carbon from the top to increase the CH4 concentration of the organic return gas and Kco2 to increase the gas calorie. The e-adhesion was removed. The organic waste gas composition was as follows. .

成分 含有割合 cH,27,7% (ン02 70.0% 02 0.3% t’2 2.0% このカスを吸着床なj1n過することによってo 2 
<u 2 <(用4 < cO2〕t(Fivc co
zカi 強< 吸着帽−1177) テ02、N 2 
cH41j、 ス/L’ f Co 2(’)re過を
必要Fj度で停止させることによって、CH4とCo2
の製品Ifスが得られる。
Component Content ratio cH, 27.7% (n02 70.0% 02 0.3% t'2 2.0% By passing this residue through an adsorption bed, o 2
<u 2 <(Fivc co
Z Kai Strong< Suction cap-1177) Te02, N2
CH41j, S/L' f Co2(')re By stopping the passage at the required Fj degree, CH4 and Co2
The product Ifs is obtained.

1八着床後の製品ガス溜での製品ガス濃度は下記の通り
であった3、 成分 含有割合(%) CH46Q% Co2 35 02 07 N2 4.3 吸着工程の終了?、た、その内部に残存しているCO□
 ?パージするために真空排気を行ないながら製品ガス
の一部を吹込み・ξ−ジガスとして使用した。
18 The concentration of product gas in the product gas reservoir after landing was as follows3. Component Content ratio (%) CH46Q% Co2 35 02 07 N2 4.3 End of adsorption process? , the CO remaining inside it
? A portion of the product gas was used as ξ-digas while evacuation was performed for purging.

以上のように、この発明によれば、各種tlIO&)ガ
ス中のトI2或は/または有用ガスを含有する有用な燃
料などとして利用できるので省資源および省エネルギー
に寄与するところは大きい。
As described above, according to the present invention, it can be used as a useful fuel containing tI2 and/or useful gases in various tlIO&) gases, and therefore greatly contributes to resource and energy saving.

7/7/

【図面の簡単な説明】 図は本発明を実施でる好ましい装置のフローシートであ
る。 !tケrr’rti刊rj人 大阪酸素工業株式会社代
1![(人 弁理士湯浅恭−・ヒ′1−一−・U (外4名)
BRIEF DESCRIPTION OF THE DRAWINGS The figure is a flow sheet of a preferred apparatus for carrying out the invention. ! Published by tkerrti rj person Osaka Sanso Kogyo Co., Ltd. 1! [(Patent attorney Kyo Yuasa-Hi'1-1-U (4 others)

Claims (3)

【特許請求の範囲】[Claims] (1)少なくとも、H2或は/または有用ガスを含む混
合ガス中のl■2或は/または有用ガスを濃縮する方法
において、該混合ガス中の選択し5る成分・易吸着成分
を吸着除去し、■(2或は/または有用ガスとH2より
も吸着1.やすい第2難吸着成分を濃縮して製品ガスと
してとりだすために該混合ガス中の少なくとも1成分に
対して選択1gl物if4を充jfiした4つ以上の吸
着床を使用しその方法は1)該混合ガスにより吸着床を
加圧する原料ガス加圧工程 11)さらに該混合ガスを吸着床に流し、少なくとも1
つのガス成分の選択吸着を行なわせ、水素ガスのみをと
りだす吸着(1)工程 111)吸;F/f(If終了後さらに該混合ガスを吸
着床に流し、水素二F・9よび第2難吸着成分の割合が
所定の割合に1.cるまで2成分混合物をとりだす吸着
III工程 IV) 吸着(It)工程終了後、さらに該混合ガスを
吸着床に流し、第2か11吸着成分の破過がはじま金的
前まで2成分混合物をとりだす吸着(11)工程V)吸
着(11?)Zr、程終了後、その吸着床とpr気・ξ
−ジが終った吸着床とを連絡し、前者の吸着床内のガス
を後者の吸着床に導入し、前者の吸着床内圧力と後者の
吸着床内圧力がほぼ等しくなるまで減圧させる均圧工程
、なおこの均圧工程の初期に前者の吸着床の該混合ガス
入口端側より床内ガスを一部放出する工程を同時罠行っ
てもよい vl) 均圧工程終了後、吸着床内圧力をさらに大気圧
または大気圧付近まで降下さぜる減圧工程v11)吸着
床の吸着剤間空隙忙存在するガス並びに吸着剤に吸着l
−ている易吸着成分を減圧排気装置を用いて排気脱着さ
せる排気工程 viiD Mlの減圧工程において吸着床より排出さ幻
、るガスおよび(1ν)の吸着(IID工程において流
出し、てくるガスを用いて排気工程においてもなお脱着
しない易吸着成分を減圧下において脱着させるための4
.?t ’j’Ivガスとして用いて易吸着成分を、脱
着さぜるjノ「気パージエ桿 lx) J、IIII−ジ工程が終了した吸着床と11
1)の吸着(1)工作中の1.1!k %’i’ if
とを連絡させ、後者の製品ガス採取の一部のガスな前者
の吸着床に導入する製品ガス加圧工程と同時に(v)の
吸着(rlD工程終了後の吸着床とを連絡させ後者の吸
着床内ガス欠前渚の吸着床に導入し、両吸着床内圧力が
ほぼ′、τトシクなるまで加圧する均圧・製品ガス加圧
工程 かもなり、定期的に流れケ変えて、上記の操作をに+’
#y ;に−丁ことを特徴とした方法。
(1) At least in a method of concentrating l2 and/or useful gas in a mixed gas containing H2 and/or useful gas, selected components and easily adsorbable components in the mixed gas are adsorbed and removed. (2) or 1 g of a selected substance if4 is added to at least one component in the mixed gas in order to concentrate the second, less adsorbable component, which is more easily adsorbed than H2, and extract it as a product gas. The method uses four or more adsorption beds filled with 1) raw material gas pressurization step of pressurizing the adsorption bed with the mixed gas; 11) further flowing the mixed gas through the adsorption bed,
Adsorption (1) step 111) in which selective adsorption of two gas components is performed and only hydrogen gas is extracted Adsorption III step (IV) in which the two-component mixture is taken out until the ratio of the adsorbed components reaches a predetermined ratio of 1.c. After the adsorption (It) step, the mixed gas is further passed through the adsorption bed to destroy the second or eleventh adsorbed component. Adsorption (11) Step V) Adsorption (11?) Zr, in which the two-component mixture is taken out from the beginning until the metal stage
- Connect the adsorption bed that has been treated with the adsorption bed, introduce the gas in the former adsorption bed into the latter adsorption bed, and reduce the pressure until the pressure inside the former adsorption bed and the pressure inside the latter adsorption bed are almost equal. In addition, at the beginning of this pressure equalization step, a step of partially releasing the gas in the bed from the mixed gas inlet end side of the former adsorption bed may be performed at the same time. 11) A depressurization process in which the gas is further lowered to atmospheric pressure or near atmospheric pressure.
- Exhaust step in which the easily adsorbed components are desorbed by exhaust using a vacuum evacuation device viiD. 4 to desorb easily adsorbable components that are not desorbed even during the exhaust process under reduced pressure.
.. ? t'j'Iv gas is used to desorb easily adsorbed components.
1) Adsorption (1) 1.1 during work! k %'i' if
At the same time as the pressurizing process of the product gas introduced into the adsorption bed of the former, part of the product gas of the latter is connected to the adsorption bed after the adsorption (rlD process) of the latter. There is also a pressure equalization/product gas pressurization step in which the gas is introduced into the adsorption bed at the front shore where the gas in the bed is depleted, and the pressure is increased until the pressure in both adsorption beds becomes approximately ′, τ. ni+'
A method characterized by #y;
(2)少な(とも、H2或は/または有用ガスを含む混
合ガス中のY12或は/または有用ガスを濃縮−rる方
法において、該混合ガス中の選択し5る成分・易吸着成
分を吸着除去し、H2或は/または有用ガスとH2より
も吸着しやすい第2難吸着成分を濃縮して製品ガスとし
てとりだすために該混合ガス中の少なくともl成分に対
して選択1i1′物7(を充與した4つ以上の吸着床を
使用しその方法911)該混合ガスにより吸−/′I4
宋を加圧するJg(・・)ガス加圧工程、 11)さらに該混合ガスを吸着床に流し、少なくとも1
つのガス成分の選択吸着を行なわ・毬、水素ガスのみを
とりだ一1吸着CI+工程。 111)吸着(I)終了後さらに該混合ガスを吸着床に
流し、水素および第2難吸着成分の;1合が所定の割合
になるまで2成分混合物をとりだ′1″吸着()I)工
程、 lv) 吸着ill工程終了後、その吸着床と排気パー
ジが終った吸着床とを連絡し、前者の吸着床内のガスを
後者の吸着床に導入し、前者の吸着床内圧力と後者の吸
着床内圧力がほぼ等しくなるまで減圧させる均圧工程、
なおこの均圧工程の′初期に前者θ・吸着床の該混合ガ
ス入口端側より床内ガフ、を一部放出する工程を同時に
行ってもよ(′11 ■)均圧工程終了後、吸着床内圧力をさらに大気F[伺
近まで目1さVる減、汗一工程、vl) 吸X団σ)吸
着剤量空隙に存仔するガス並びに吸% i”l’l匠吸
♀′目−ている易吸着成分を減圧Vビa装置I□昌・用
いて(−1ト気71!’i’、miさせる排気工作、v
+:) Mの(11,,11:、工作(でおいて吸着床
よりjjp出されるガスる・月1いC活気工程中におい
てもなお脱rしつ゛);い易吸譜、成分な減LI下にお
いて脱XJさせるたと゛)のも(V気)ガスと1−て用
い℃易吸着成分を脱着さ・II−で、」jl気パー ジ
工程、 viii) 抽気バージ土fφが終了した吸着床と(1
1)の@着(I)1作中σ月l+2着床とを連絡させ、
後者の製品ガス採取の−111(のガスを前者の吸着床
に2序人する製品ガス加圧工程と同時にfv)の吸着f
llD I程終了1糺の吸着床とな連絡させ後者の吸着
床内ガスン前者の吸着床に導入し、両吸着庄内IF力が
ほぼ等しくなるまで加圧する均圧・製品ガス加圧工程、 からt(2す、定期的に流れを変え゛こ、上記の操作な
K・)・・klことを9徴とした方法。
(2) In a method of concentrating Y12 and/or useful gas in a mixed gas containing a small amount of H2 and/or useful gas, the selected component/easily adsorbed component in the mixed gas is In order to adsorb and remove H2 and/or a useful gas and a second poorly adsorbed component that is more easily adsorbed than H2, and extract it as a product gas, a selected 1i1' substance 7 ( 911) Using four or more adsorption beds filled with
Jg (...) gas pressurization step for pressurizing Song, 11) Furthermore, the mixed gas is passed through the adsorption bed, and at least 1
Selective adsorption of two gas components is carried out, and only hydrogen gas is taken out in the 1st adsorption CI+ step. 111) After the completion of adsorption (I), the mixed gas is further passed through the adsorption bed, and the two-component mixture is taken out until a predetermined ratio of hydrogen and the second poorly adsorbed component is reached. Adsorption ()I) Step lv) After the adsorption ill step is completed, the adsorption bed is connected to the adsorption bed for which exhaust purging has been completed, and the gas in the former adsorption bed is introduced into the latter adsorption bed, and the pressure inside the former adsorption bed and the latter are a pressure equalization step in which the pressure inside the adsorption bed is reduced until it becomes almost equal;
In addition, at the beginning of this pressure equalization process, the former θ and gaff in the bed may be partially discharged from the mixed gas inlet end of the adsorption bed. The pressure in the bed is further reduced to the atmosphere F [decreased by 1 V to the nearest point, one step of sweat, vl) Adsorbent amount σ) Amount of adsorbent Gas present in the void and % i''l'l Master suction♀' Using the depressurized V-via device I□masa, the easily adsorbed components that we are looking at (-1 to 71! 'i', exhaust work to make mi, v
+:) M's (11,,11:, work) (The gas emitted from the adsorption bed still desorbs even during the monthly C activation process); Easy suction, component reduction LI After XJ was carried out at the bottom, the components easily adsorbed at ℃ were desorbed using the (V gas) gas, and the adsorption bed after the bleed barge soil fφ was removed. and (1
1) Contact @ arrival (I) σ month l + 2 arrival in 1 work,
Adsorption of -111 (fv) of the latter product gas collection at the same time as the product gas pressurization step of transferring the gas to the former adsorption bed
End of Step I 1 Pressure equalization/product gas pressurization process, in which the gas in the latter adsorption bed is introduced into the former adsorption bed and pressurized until the IF forces in both adsorption beds become almost equal. (2) Change the flow periodically and perform the above operations.
(3)少tc くとも、IjK素或は/−1:たけ有用
ガスな含む混合ガス中の水素或は/または有用ガスを濃
縮する方法において、該混合ガス中の選択しうる成分・
易吸着成分を吸着除去し、水素或は/または有用ガスと
水素よりも吸着しやすい第2 #!r、吸着成分を濃縮
して製品ガスとしてとっだ丁ために該混合ガス中の少な
くともl成分に対して選択注物l′↓を充」週した4つ
以上の吸着床を使用しその方法は1)該混合ガスにより
吸着床を加[Eする原料ガス加圧工程、 11)さらに該混合ガスを吸着床に流し、少なくとも1
つのガス成分の選択吸着を行なわせ、水素ガスのみをと
りだす吸着(11工程、 111)吸着m終了後さらに該混合ガスを吸着床に流し
、水素および第2難吸着成分の割合が所にの割合になる
まで2成分混合物をとりだす吸着([1工程、 lv) 吸着(11)工程終了後、さらに該混合ガスを
吸着床に流し、第2#1.吸着成分の破過がはじまる直
前まで2成分混合物をとりだす吸着(IO工程、■)吸
着(I[)工程終了後、吸着床内圧力をさらに大気圧ま
たレエ大気圧付近まで降下させる減圧工程vl) 吸着
床の吸第1剤間空隙に存在するガス並びに吸着+’i’
、lに吸着している易吸着成分を減圧〃r気装置1″、
“を用い’−CJ、II気脱7+”fさせろ排気工程、
v:+) (Mの吸λi(曲工程において流出してくる
ガスを用いて〕Jト気上程においてもなお脱着しない易
吸着成分を減圧下において脱着させるための掃気ガスと
して用いて易吸着成分な脱着させる排気パージ工程、 vtii) 4′J+気パージ工程終了後、(11)の
吸着m工程中のガスの1部を用いて吸着床の加圧を行う
製品ガス加1上工、1呈、 からブエリ、定期的に流れを変えて、上記の操作を繰返
すことを特徴とした方法。
(3) In a method for concentrating hydrogen and/or a useful gas in a mixed gas containing at least an IjK element or/-1: as much as a useful gas, selectable components in the mixed gas
The second #, which adsorbs and removes easily adsorbable components and adsorbs hydrogen and/or useful gases more easily than hydrogen! r, the method uses four or more adsorption beds filled with a selective injection l'↓ for at least l components in the mixed gas in order to concentrate the adsorbed components and store them as product gas; 1) A step of pressurizing the adsorption bed with the mixed gas, 11) Furthermore, flowing the mixed gas through the adsorption bed,
Adsorption (Step 11, 111) in which selective adsorption of two gas components is performed and only hydrogen gas is extracted Adsorption ([1st step, lv) in which a two-component mixture is taken out until the adsorption (11) step is completed. After the adsorption (11) step, the mixed gas is further passed through the adsorption bed, and the second #1. Adsorption (IO step, ■) in which the two-component mixture is taken out until just before the breakthrough of the adsorbed components begins; After the adsorption (I[) step, the pressure inside the adsorption bed is further lowered to atmospheric pressure or near atmospheric pressure vl). Gas and adsorption +'i' existing in the gap between the first adsorption agent of the adsorption bed
, the easily adsorbed components adsorbed on the air tank 1″,
Use “-CJ, II degassing 7+” f evacuation process,
v: +) (M absorption λi (using the gas flowing out in the bending process)) Easy adsorption components are used as scavenging gas to desorb under reduced pressure the easily adsorbed components that are not yet desorbed even in the upper stage of J. After completing the 4'J+ gas purge step, pressurize the adsorption bed using part of the gas in the adsorption m step of (11). , to Bueri, a method characterized by periodically changing the flow and repeating the above operations.
JP59043636A 1984-03-07 1984-03-07 Method for concentrating hydrogen in mixed gas containing at least hydrogen by using adsorption method Pending JPS60191002A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP59043636A JPS60191002A (en) 1984-03-07 1984-03-07 Method for concentrating hydrogen in mixed gas containing at least hydrogen by using adsorption method
AU39563/85A AU583497B2 (en) 1984-03-07 1985-03-06 Process for separating hydrogen gas and less adsorbable gas from feed gas
GB08505860A GB2155805B (en) 1984-03-07 1985-03-07 Gas separation process and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59043636A JPS60191002A (en) 1984-03-07 1984-03-07 Method for concentrating hydrogen in mixed gas containing at least hydrogen by using adsorption method

Publications (1)

Publication Number Publication Date
JPS60191002A true JPS60191002A (en) 1985-09-28

Family

ID=12669350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59043636A Pending JPS60191002A (en) 1984-03-07 1984-03-07 Method for concentrating hydrogen in mixed gas containing at least hydrogen by using adsorption method

Country Status (3)

Country Link
JP (1) JPS60191002A (en)
AU (1) AU583497B2 (en)
GB (1) GB2155805B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0193402A (en) * 1987-10-05 1989-04-12 Mitsubishi Gas Chem Co Inc Method for purifying hydrogen
JPH05193904A (en) * 1991-02-20 1993-08-03 L'air Liquide Method for preparing oxygen by adsorption

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60176901A (en) * 1984-02-20 1985-09-11 Osaka Oxgen Ind Ltd Method for concentrating and purifying hydrogen, etc. in mixed gas containing at least hydrogen by using adsorption
US4696680A (en) * 1985-10-03 1987-09-29 The United States Of America As Represented By The United States Department Of Energy Method and apparatus for the selective separation of gaseous coal gasification products by pressure swing adsorption
ATE95720T1 (en) * 1986-06-12 1993-10-15 Ici Plc ADSORPTION PROCESS.
EP0314040B1 (en) * 1987-10-24 1995-03-08 Saibu Gas Co.,Ltd. Method for removing carbon dioxide gas and moisture in a city gas production
FR2633847B1 (en) * 1988-07-08 1991-04-19 Air Liquide PROCESS FOR TREATING A GAS MIXTURE BY ADSORPTION
CA2102774C (en) * 1992-11-16 1999-02-16 Ravi Kumar Adsorption process with mixed repressurization and purge/equalization
CA2102775C (en) * 1992-11-16 1999-01-19 Ravi Kumar Extended vacuum swing adsorption process
US5294247A (en) * 1993-02-26 1994-03-15 Air Products And Chemicals, Inc. Adsorption process to recover hydrogen from low pressure feeds
GB9703989D0 (en) * 1997-02-26 1997-04-16 Boc Group Plc Gas separation
GB9703959D0 (en) * 1997-02-26 1997-04-16 Boc Group Plc Air separation
US6340382B1 (en) * 1999-08-13 2002-01-22 Mohamed Safdar Allie Baksh Pressure swing adsorption process for the production of hydrogen
US7618478B2 (en) * 2006-04-03 2009-11-17 Praxair Technology, Inc. Process and apparatus to recover medium purity carbon dioxide
US7740688B2 (en) 2006-09-26 2010-06-22 Praxair Technology, Inc. Process and apparatus for carbon dioxide recovery
JP2010527755A (en) 2007-05-18 2010-08-19 エクソンモービル リサーチ アンド エンジニアリング カンパニー Method for removing target gas from a mixture of gases by thermal swing adsorption
US8545602B2 (en) 2007-05-18 2013-10-01 Exxonmobil Research And Engineering Company Removal of CO2, N2, and H2S from gas mixtures containing same
AU2008254535B2 (en) 2007-05-18 2012-05-31 Exxonmobil Upstream Research Company Temperature swing adsorption of CO2 from flue gas using a parallel channel contactor
US8444750B2 (en) 2007-05-18 2013-05-21 Exxonmobil Research And Engineering Company Removal of CO2, N2, or H2S from gas mixtures by swing adsorption with low mesoporosity adsorbent contactors
US8529663B2 (en) 2007-05-18 2013-09-10 Exxonmobil Research And Engineering Company Process for removing a target gas from a mixture of gases by swing adsorption
US7959720B2 (en) 2007-05-18 2011-06-14 Exxonmobil Research And Engineering Company Low mesopore adsorbent contactors for use in swing adsorption processes
US8529662B2 (en) 2007-05-18 2013-09-10 Exxonmobil Research And Engineering Company Removal of heavy hydrocarbons from gas mixtures containing heavy hydrocarbons and methane
US8535417B2 (en) 2008-07-29 2013-09-17 Praxair Technology, Inc. Recovery of carbon dioxide from flue gas
US7927573B2 (en) 2008-09-26 2011-04-19 Praxair Technology, Inc. Multi-stage process for purifying carbon dioxide and producing acid
RU2466928C2 (en) * 2009-12-24 2012-11-20 Федеральное государственное унитарное предприятие "Научно-исследовательский физико-химический институт им. Л.Я. Карпова" Method of isolating hydrogen from gas mixture
CN105056697B (en) * 2015-07-20 2017-07-07 江苏智道工程技术有限公司 A kind of recovery low concentration, multicomponent, the devices and methods therefor of low pressure refinery tail gas
CN110639328A (en) * 2019-09-16 2020-01-03 新疆大全新能源股份有限公司 Method for removing trace carbon impurities in tail gas recovery hydrogen treatment process

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1437600A (en) * 1972-05-17 1976-05-26 Boc International Ltd Gas separation
JPS5922625A (en) * 1982-07-27 1984-02-04 Osaka Oxgen Ind Ltd Method for removing gaseous nitrogen contained in gaseous carbon monoxide or gaseous mixture of carbon monoxide and carbon dioxide by adsorption method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0193402A (en) * 1987-10-05 1989-04-12 Mitsubishi Gas Chem Co Inc Method for purifying hydrogen
JPH05193904A (en) * 1991-02-20 1993-08-03 L'air Liquide Method for preparing oxygen by adsorption

Also Published As

Publication number Publication date
AU583497B2 (en) 1989-05-04
GB2155805A (en) 1985-10-02
GB8505860D0 (en) 1985-04-11
GB2155805B (en) 1987-10-07
AU3956385A (en) 1985-09-12

Similar Documents

Publication Publication Date Title
JPS60191002A (en) Method for concentrating hydrogen in mixed gas containing at least hydrogen by using adsorption method
US5735938A (en) Method for production of nitrogen using oxygen selective adsorbents
US6475265B1 (en) Pressure swing adsorption method for production of an oxygen-enriched gas
AU646704B2 (en) Hydrogen and carbon monoxide production by hydrocarbon steam reforming and pressure swing adsorption purification
KR100254295B1 (en) Pressure swing adsorption process with a single adsorbent bed
US5176722A (en) Pressure swing adsorption method for separating gaseous mixtures
US5232474A (en) Pre-purification of air for separation
EP1078674A2 (en) Pressure swing adsorption process and apparatus
JP3902416B2 (en) Gas separation method
JPS6137968B2 (en)
JP2002191925A (en) Pressure swing adsorption method for separating feed gas
JPH0587286B2 (en)
US6045603A (en) Two phase pressure swing adsorption process
JPH0420643B2 (en)
JPH06104176B2 (en) Rapid adiabatic pressure swing adsorption method for multi-component gas separation and its equipment
JPH01104325A (en) Adsorption molecular sieve for pressure swing of auxiliary bed
EP1175934A2 (en) Improved oxygen production
WO2002051524A1 (en) Method for separating hydrogen gas
AU691058B2 (en) Pressure swing adsorption process for fractionating a multi-component mixture
JPS60176901A (en) Method for concentrating and purifying hydrogen, etc. in mixed gas containing at least hydrogen by using adsorption
KR102018322B1 (en) Adsorber system for adsorption process and method of separating mixture gas using its adsorption process
JP2994843B2 (en) Recovery method of low concentration carbon dioxide
JPH10272332A (en) Gas separation device and its operation method
JP7004690B2 (en) Improved carbon molecule sieving adsorbent
Ray Pressure swing adsorption: a review of UK patent literature