JPH0193402A - Method for purifying hydrogen - Google Patents

Method for purifying hydrogen

Info

Publication number
JPH0193402A
JPH0193402A JP62249992A JP24999287A JPH0193402A JP H0193402 A JPH0193402 A JP H0193402A JP 62249992 A JP62249992 A JP 62249992A JP 24999287 A JP24999287 A JP 24999287A JP H0193402 A JPH0193402 A JP H0193402A
Authority
JP
Japan
Prior art keywords
column
pipe
valve
communication
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62249992A
Other languages
Japanese (ja)
Other versions
JP2600199B2 (en
Inventor
Shiro Kajiyama
梶山 士郎
Hiromi Nakamura
弘巳 中村
Tadahiro Matsuzawa
松沢 忠弘
Takehiko Takahashi
武彦 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP62249992A priority Critical patent/JP2600199B2/en
Publication of JPH0193402A publication Critical patent/JPH0193402A/en
Application granted granted Critical
Publication of JP2600199B2 publication Critical patent/JP2600199B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain purified H2 useful for fine chemical industry, etc., in high purity and yield at a low cost, by introducing a raw material gas containing H2, etc., into a specific column, introducing a gas discharged by pressure equalizing operation into other columns, etc., and treating the gas. CONSTITUTION:A raw material gas containing H2 and one or more impure components, such as CH4, is fed to a column 1 of an H2 purifier by an adsorption column chromatography consisting of the first column 1.sixth column 6, etc., at 10-60 deg.C and 0.1-50cm/sec flow velocity under 3-30kg/cm<2>G and subjected to adsorption operation. The resultant crude purified gas is then fed through a communication pipe 23 to the column 5. On the other hand the column 2 is connected to the column 3 after completing sweeping operation to introduce the discharged gas from the column bottom pipe 32 into the intermediate tray of the column 3 by equalizing operation to carry out vacuum operation. The raw material gas is subsequently fed to the column 2 to carry out sweeping operation. The above-mentioned operations are successively repeated and carried out in the columns 1-4 to provide a crude purified gas, which is then fed to the columns 5 and 6 to successively carry out the operation similar to those described above. Purifying operation is carried out to recover the purified H2 from product pipes 38 and 39.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、各種化学工場より発生するガスから高純度の
水素を効率良く得る方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for efficiently obtaining high-purity hydrogen from gases generated from various chemical factories.

最近エレクトロニクス、ファインセラミックス、ファイ
ンケミカル工業において極めて純度の高い水素が必要と
されている。
Recently, extremely pure hydrogen is required in the electronics, fine ceramics, and fine chemical industries.

(従来の技術) 高純度水素は、スチームリホーマ−、エチレンオフガス
、接触改質装置、アンモニアまたはメタノールの分解ガ
ス等を原料とし、一般に吸着カラムクロマトグラフィー
法により分離、精製して製造される。
(Prior Art) High-purity hydrogen is generally produced by separating and purifying a steam reformer, ethylene off-gas, catalytic reformer, cracked gas of ammonia or methanol, etc. using an adsorption column chromatography method.

この吸着カラムクロマトグラフィー法により高純度水素
を得る方法は、吸着剤を充填したカラムを用い、 (1)加圧下での不純成分の吸着操作 (2)既に再生操作が完了している他のカラムとの均圧
操作 (3)はぼ大気圧への減圧操作 (4)原料ガスによる掃気操作 (5)精製水素による再生操作 (6)原料ガスまたは精製水素による加圧操作の各操作
を1基または並列にならべた複数のカラムで逐次行う方
法が採られる。
This method of obtaining high-purity hydrogen using adsorption column chromatography uses a column packed with an adsorbent. (1) Adsorption of impurity components under pressure (2) Another column that has already undergone regeneration (3) Pressure reduction operation to almost atmospheric pressure (4) Scavenging operation using raw material gas (5) Regeneration operation using purified hydrogen (6) Pressurization operation using raw material gas or purified hydrogen Alternatively, a method can be used in which multiple columns are arranged in parallel.

これらの操作を行う方法は、そのカラム配置と操作順序
などの組合せにより、多くの特許が公開されており、例
えば特公昭39−8204号には、均圧操作を原料ガス
の送入方向と並流に抜き出し、既に掃気操作が完了して
いる他のカラム原料ガスの送入方向と並流に均圧になる
まで導入する方法が記載されてふり、また特公昭45−
2()082号、特公昭55−12295号および特公
昭57−2046号などには、均圧操作を原料ガスの送
入方向と並流に抜き出し既に掃気操作が完了している他
のカラムの原料ガスの送入方向と向流に均圧になるまで
導入する方法が記載されいる。
Many patents have been published on methods for performing these operations, depending on the combination of column arrangement and operation order. For example, Japanese Patent Publication No. 39-8204 describes a method for performing pressure equalization operations in parallel with the feeding direction of raw material gas. It describes a method of extracting the raw material gas from the flow and introducing it in a flow parallel to the feeding direction of other column raw material gases that have already undergone scavenging operations until the pressure is equalized.
2()082, Japanese Patent Publication No. 55-12295, and Japanese Patent Publication No. 57-2046, etc., the pressure equalization operation is carried out in parallel with the feeding direction of the raw material gas, and the scavenging operation has already been completed for other columns. A method is described in which the raw material gas is introduced countercurrently to the feeding direction until the pressure is equalized.

更に特公昭62−1768号には、均圧操作を原料ガス
の送入方向と向流に抜き出し既に再生操作が完了してい
る他のカラムの原料ガスの送入方向と並流に均圧になる
まで導入する方法が記載されている。
Furthermore, in Japanese Patent Publication No. 1768/1983, the pressure equalization operation is carried out in a direction countercurrent to the feeding direction of the raw material gas, and the pressure is equalized in the same flow as the feeding direction of the raw material gas of other columns in which the regeneration operation has already been completed. It describes how to install it.

(発明が解決しようとする問題点) これらの吸着カラムクロマトグラフィー法による水素精
製法は、加熱等の操作が不要で、上記操作により容易に
高純度水素が得られるが、次のような問題点が挙げられ
る。
(Problems to be Solved by the Invention) These hydrogen purification methods using adsorption column chromatography do not require operations such as heating, and high purity hydrogen can be easily obtained by the above operations, but they have the following problems. can be mentioned.

(1)一般に水素の純度を高めようとする程、水素回収
率が極端に低下し、原料ガスの原単位が悪化する。
(1) In general, the higher the purity of hydrogen is attempted, the more the hydrogen recovery rate decreases and the raw material gas consumption rate worsens.

(2)水素回収率を高めるためには、多量の吸着剤を使
用する必要があり、従って装置コストが増大する。
(2) In order to increase the hydrogen recovery rate, it is necessary to use a large amount of adsorbent, which increases the equipment cost.

(3)吸着剤使用量が多いとカラムが大きくなる。(3) If the amount of adsorbent used is large, the column will become large.

大型のカラムでは、カラム内の局部的な偏流、混合、吸
着されたガスの拡散などの問題があり、吸着カラムクロ
マトグラフィー法の性質上、大型化が非常に困難である
Large columns have problems such as local uneven flow within the column, mixing, and diffusion of adsorbed gases, and due to the nature of adsorption column chromatography, it is extremely difficult to increase the size.

(4)このためカラムを多数並列に配置する方法が採ら
れるが、この場合は装置コストが増大すると同時に、制
御が複雑となり運転が困難となる。
(4) For this reason, a method of arranging a large number of columns in parallel is adopted, but in this case, the cost of the equipment increases, and at the same time, control becomes complicated and operation becomes difficult.

(問題点を解決するための手段) 発明者等は、上記の如き問題点を有する吸着カラムクロ
マトグラフィー法に関し吸着剤をできるだけ少な(して
高純度の水素を回収する方法を検討し、先に水素精製操
作である上記の加圧下での不純ガスの吸着操作を二段で
行う二段階の精製工程とすれば、吸着剤が少なくて済み
、しかも高純度の水素を高回収率で得られることを見出
した(特別62−150186号)。
(Means for Solving the Problems) The inventors have investigated a method for recovering highly pure hydrogen using as little adsorbent as possible for the adsorption column chromatography method, which has the problems described above. If the hydrogen purification operation is a two-stage purification process in which the above-mentioned adsorption operation of impure gas under pressure is carried out in two stages, less adsorbent is required and high purity hydrogen can be obtained at a high recovery rate. (Special No. 62-150186).

発明者等は、この高純度の水素を回収する方法について
更に検討した結果、これらの吸着カラムクロマトグラフ
ィー法において、均圧操作で排出するガスを、既に掃気
操作が完了している他のカラム中段に導入すれば、更に
水素回収率が向上することを見出し、本発明に至った。
As a result of further investigation into methods for recovering this high-purity hydrogen, the inventors discovered that in these adsorption column chromatography methods, the gas discharged during the pressure equalization operation is transferred to the middle stage of another column, where the scavenging operation has already been completed. It has been discovered that the hydrogen recovery rate can be further improved by introducing the hydrogen into the hydrogen, leading to the present invention.

即ち本発明は、水素と少なくとも1種類以上の不純成分
を含む原料ガスを吸着カラムクロマトグラフィー法で精
製するに際し、原料ガスの吸着操作と、均圧操作、減圧
操作、掃気操作、加圧操作とに切換えることができる3
基以上のカラムを設置し、均圧操作で排出するガスを既
に掃気操作が完了している他のカラムの中段に導入する
ことを特徴とする水素の精製法である。
That is, the present invention, when purifying a raw material gas containing hydrogen and at least one type of impurity component by adsorption column chromatography, includes an adsorption operation for the raw material gas, a pressure equalization operation, a pressure reduction operation, a scavenging operation, and a pressurization operation. can be switched to 3
This hydrogen purification method is characterized by installing more than one column and introducing the gas discharged during pressure equalization operation into the middle stage of another column where scavenging operation has already been completed.

この方法は、従来の精製工程を一段階で行う場合におい
ても、また先に発明者等が出願したような精製工程を二
段階で行う場合においても適用できる。なおこの精製工
程を二段階で行う場合においては、粗精製工程および精
製工程の両工程の均圧操作で排出するガスを粗精製工程
の既に掃気操作が完了している他のカラムの中段に導入
することができる。
This method can be applied both when a conventional purification process is carried out in one step and when a purification process as previously filed by the inventors is carried out in two stages. In addition, if this purification process is performed in two stages, the gas discharged during the pressure equalization operation of both the rough purification process and the purification process is introduced into the middle stage of another column in the rough purification process where the scavenging operation has already been completed. can do.

本発明の原料ガスには、各種化学工場より発生するガス
が用いられる。このガス中に含まれる不純成分とは、加
圧下で吸着性の高い物質である。
Gases generated from various chemical factories are used as the raw material gas of the present invention. The impure components contained in this gas are substances that are highly adsorbable under pressure.

本発明の原料ガスおよびその不純成分の代表例を挙げれ
ば次の如くである。
Typical examples of the raw material gas of the present invention and its impurity components are as follows.

即ち原料ガスが、スチームリホーマ−ないし部分酸化ガ
スにより発生するガスではCO,Cow、 CH4、エ
チレンオフガスでは、CH4,N2. C2H4,C2
H@が主な不純成分である。また接触改質装置よりのガ
スではC3〜C3の炭化水素、アンモニア分解ガスでは
N、、 NH,、メタノール分解ガスではco、、 c
o、オキソプラントではco、 co□、C1,、スチ
レンオフガスでは芳香族ガス、CO,CD2.C)1.
 、アンモニアパージガスではN2. CH4,Ar、
メタノールパージガスではCO,CD、、 C1,DH
,ブタジェンオフガスではC3〜C4炭化水素、コーク
ス炉ガスではCH,、N2.芳香族ガス、SO3、CO
,CO2,NO,,0,、転炉ガスではCH,、N、、
 CD、 CO。
That is, when the raw material gas is a gas generated by a steam reformer or a partial oxidation gas, it is CO, Cow, CH4, and when the raw material gas is an ethylene off gas, it is CH4, N2. C2H4,C2
H@ is the main impurity component. In addition, the gas from the catalytic reformer contains C3 to C3 hydrocarbons, the ammonia cracked gas contains N, NH, and the methanol cracked gas contains co, c
o, co in oxo plant, co□, C1, aromatic gas in styrene off gas, CO, CD2. C)1.
, N2. for ammonia purge gas. CH4, Ar,
For methanol purge gas, CO, CD, C1, DH
, C3-C4 hydrocarbons in butadiene off gas, CH,, N2., in coke oven gas. Aromatic gases, SO3, CO
,CO2,NO,,0,,CH in converter gas,,N,,
CD, CO.

が主な不純成分である。is the main impurity component.

これらの不純成分を吸着するのに使用される吸着剤には
、合成ゼオライト、活性炭、分子篩カーボン、活性アル
ミナ、シリカゲルなど一般に使用されている吸着剤が用
いられる。
As the adsorbent used to adsorb these impurity components, commonly used adsorbents such as synthetic zeolite, activated carbon, carbon molecular sieve, activated alumina, and silica gel are used.

これらの吸着剤は一般に、原料ガスに含有されている不
純成分の種類、数および量並びに処理温度などに応じそ
れぞれのカラムの条件に適した吸着剤が使用される。
Generally, an adsorbent suitable for the conditions of each column is used depending on the type, number and amount of impurity components contained in the raw material gas, processing temperature, etc.

使用されるカラ人数は3基以上であれば特に制限が無い
が、3〜10基とすることが好ましい。
The number of cars used is not particularly limited as long as it is 3 or more, but it is preferably 3 to 10.

均圧操作では、抜き出したガスを既に掃気操作が完了し
ている他のカラム中段に導入し、抜き出されるカラムと
導入されるカラムの圧力がほぼ等しくなるようにする。
In the pressure equalization operation, the extracted gas is introduced into the middle stage of another column where the scavenging operation has already been completed, so that the pressures of the extracted column and the introduced column are approximately equal.

カラム中段とはカラム高さの中間点を零とし、塔頂$よ
び塔底までの高さをLとした場合、カラム高さの中間点
より上下0.8L以内の位置、好ましくは中間点より上
下0.2L以内の位置である。
The middle column is a position within 0.8 L above or below the midpoint of the column height, preferably from the midpoint, where the midpoint of the column height is zero and the height from the top of the column to the bottom is L. The position is within 0.2L above and below.

均圧操作でのガス抜き出し方向は原料ガスの送入方向と
並流でも、向流でも良く、またカラム中段よりも抜き出
すこともできるが、向流とすることが好ましい。
The gas extraction direction in the pressure equalization operation may be parallel to or countercurrent to the feed direction of the raw material gas, and may be extracted from the middle stage of the column, but countercurrent is preferred.

1回の均圧操作の対象となる既に掃気操作が完了してい
る他のカラムは、1基以上あれば特に制限が無いが1〜
3基とすることが好ましい。
There is no particular restriction on other columns for which scavenging operation has already been completed and that are subject to one pressure equalization operation, but there is no particular restriction as long as there is one or more columns.
It is preferable to use three groups.

吸着カラムの温度および圧力は、各カラムに充填されて
いる吸着剤の種類、原料ガス中に含有されている不純成
分の種類、成分数及びその量によって異なり、それぞれ
適した条件を選択される。
The temperature and pressure of the adsorption column vary depending on the type of adsorbent packed in each column, the type of impurity components contained in the raw material gas, the number of components, and their amounts, and appropriate conditions are selected for each.

温度は通常 10〜60℃、好ましくは室温ないし常温
であり、特に加熱、冷却の必要は無いが、加熱、冷却す
ることを妨げない。
The temperature is usually 10 to 60°C, preferably room temperature to normal temperature, and there is no particular need for heating or cooling, but heating and cooling are not prohibited.

吸着操作時のカラム入口の圧力は、通常3〜30kg/
cm”G 、好ましくは5〜20kg/cm2Gである
The pressure at the column inlet during adsorption operation is usually 3 to 30 kg/
cm"G, preferably 5 to 20 kg/cm2G.

各操作でのガスの見掛けの空塔速度は、特に制限が無い
が、実用上、通常0.1〜50cm/sec、好ましく
は1〜20cm/secである。
The apparent superficial velocity of gas in each operation is not particularly limited, but in practice it is usually 0.1 to 50 cm/sec, preferably 1 to 20 cm/sec.

次に図面により本発明を具体的に説明する。Next, the present invention will be specifically explained with reference to the drawings.

本発明のために使用される精製装置のフローシートの例
を第1図に示す。なおこの図は、先の出願による精製工
程を二段階で行う方法において本発明を適用した場合の
フローシートである。
An example of a flow sheet for a purification apparatus used for the present invention is shown in FIG. Note that this figure is a flow sheet when the present invention is applied to the method of performing the purification process in two stages according to the previous application.

即ちこの装置は、第1カラム1、第2カラム2、第3カ
ラム3、第1カラム4、第5カラム5および第6カラム
6の6基のカラムを有する場合であり、各カラムの塔頂
にはそれぞれ第1塔頂管16、第2塔頂管17、第3塔
頂管18、第1塔頂管19、第5塔頂管20および第6
塔頂管21がある。これらの塔頂管は第1塔頂管16か
ら分岐した塔頂連絡管22によって互いに接続されてい
る。またこれらの塔頂管にはそれぞれ第1塔頂弁59、
第2塔頂弁60、第3塔頂弁61、第1塔頂弁62、第
5堪頂弁63および第6塔頂弁64が設けられており、
塔頂連絡管22には第1塔頂管19と第5塔頂管20が
接続されている間に塔頂連絡弁65が設けられている。
That is, this apparatus has six columns: first column 1, second column 2, third column 3, first column 4, fifth column 5, and sixth column 6, and the top of each column is are respectively a first tower top pipe 16, a second tower top pipe 17, a third tower top pipe 18, a first tower top pipe 19, a fifth tower top pipe 20, and a sixth tower top pipe.
There is a tower top pipe 21. These tower top pipes are connected to each other by a tower top communication pipe 22 branched from the first tower top pipe 16. In addition, each of these tower top pipes has a first tower top valve 59,
A second tower top valve 60, a third tower top valve 61, a first tower top valve 62, a fifth tower top valve 63, and a sixth tower top valve 64 are provided,
The tower top communication pipe 22 is provided with a tower top communication valve 65 between which the first tower top pipe 19 and the fifth tower top pipe 20 are connected.

各カラムの塔底にはそれぞれ第1塔底管31、第2塔底
管32、第3塔底管33、第1塔底管34、第5塔底管
35および第6塔底管36がある。これらの塔底管は第
1塔底管31から分岐した塔底連絡管37によって互い
に接続されている。これらの塔底管にはそれぞれ第1塔
底弁74、第2塔底弁75、第3塔底弁76、第1塔底
弁77、第5塔底弁78および第6塔底弁79が設けら
れている。各カラムの塔底と各塔底弁との間にそれぞれ
第1検出器7、第2検出器8、第3検出器9、第1検出
器10、第7検出器13および第8検出器14が設けら
れている。
At the bottom of each column are a first bottom pipe 31, a second bottom pipe 32, a third bottom pipe 33, a first bottom pipe 34, a fifth bottom pipe 35, and a sixth bottom pipe 36, respectively. be. These tower bottom pipes are connected to each other by a tower bottom communication pipe 37 branched from the first tower bottom pipe 31. These bottom pipes have a first bottom valve 74, a second bottom valve 75, a third bottom valve 76, a first bottom valve 77, a fifth bottom valve 78, and a sixth bottom valve 79, respectively. It is provided. A first detector 7, a second detector 8, a third detector 9, a first detector 10, a seventh detector 13 and an eighth detector 14 are arranged between the bottom of each column and each bottom valve, respectively. is provided.

塔頂連絡管22の第5塔頂管20と第6堪頂管21が接
続されている間の部分と、塔底連絡管37の第5塔底管
35と第6塔底管36が接続されている間の部分とは塔
頂塔底連絡管42で連絡され、塔頂塔底連絡管42には
塔頂塔底連絡弁84および第9検出器15が設けられて
いる。
The part between the fifth tower top pipe 20 and the sixth tower bottom pipe 21 of the tower communication pipe 22 is connected to the fifth tower bottom pipe 35 and the sixth tower bottom pipe 36 of the tower bottom communication pipe 37. The top and bottom communication pipe 42 communicates with the portion between the tower and the bottom, and the top and bottom communication pipe 42 is provided with a tower top and bottom communication valve 84 and a ninth detector 15 .

第5カラム5右よび第6カラム6の塔底にはそれぞれ第
1製品管38および第2製品管39がある。
A first product pipe 38 and a second product pipe 39 are provided on the right side of the fifth column 5 and at the bottom of the sixth column 6, respectively.

これらの製品管にはそれぞれ第1製品弁80および第2
製品弁81が設けられている。また第5カラム5および
第6カラム6には各カラムの塔底と各製品弁との間にそ
れぞれ第5検出器11および第6検出器12が設けられ
ている。
These product pipes each have a first product valve 80 and a second product valve 80.
A product valve 81 is provided. Further, the fifth column 5 and the sixth column 6 are provided with a fifth detector 11 and a sixth detector 12, respectively, between the bottom of each column and each product valve.

また第2製品管39は第1製品弁80の出口の所で第1
製品管38と合流している。第1製品管38の第5検出
器11と第1製品弁800間の部分から第1再生管40
が分岐されている。第2製品管39の第6検出器12と
第2製品弁81の間の部分から第2再生管41が分岐さ
れている。これらの再生管にはそれぞれ第1再生弁82
および第2再生弁83が設けられている。また第2再生
管41は第1再生弁80の出口の所で第1再生管40と
合流している。第1再生管40は第2製品管39との合
流した所の後に第1製品管38と合流している。
Also, the second product pipe 39 is connected to the first product pipe 39 at the outlet of the first product valve 80.
It merges with the product pipe 38. The first regeneration pipe 40 is connected to a portion of the first product pipe 38 between the fifth detector 11 and the first product valve 800.
is branched. A second regeneration pipe 41 is branched from a portion of the second product pipe 39 between the sixth detector 12 and the second product valve 81 . Each of these regeneration pipes has a first regeneration valve 82.
and a second regeneration valve 83 are provided. Further, the second regeneration pipe 41 merges with the first regeneration pipe 40 at the outlet of the first regeneration valve 80. The first regeneration pipe 40 joins the first product pipe 38 after the part where it joins the second product pipe 39 .

第5カラム5および第6カラム6の塔頂にはそれぞれ第
1連絡管23および第2連絡管24がある。
A first communication pipe 23 and a second communication pipe 24 are provided at the top of the fifth column 5 and the sixth column 6, respectively.

これらの連絡管にはそれぞれ第1連絡弁66および第2
連絡弁67が設けられている。また第2連絡管24は第
1連絡弁66の入口の所で第1連絡管23から分岐され
ている。第1連絡管23は第1塔底管31の第1検出器
7と第1.塔底弁74の間の部分で第1塔底管31から
分岐されている。
A first communication valve 66 and a second communication valve 66 are provided in these communication pipes, respectively.
A communication valve 67 is provided. Further, the second communication pipe 24 is branched from the first communication pipe 23 at the entrance of the first communication valve 66 . The first communication pipe 23 connects the first detector 7 of the first tower bottom pipe 31 with the first detector 7 of the first column bottom pipe 31 . It branches off from the first bottom pipe 31 at a portion between the bottom valves 74 .

第5カラム5および第6カラム6の塔頂にはそれぞれ第
3連絡管25および第1連絡管26がある。
A third communication pipe 25 and a first communication pipe 26 are provided at the top of the fifth column 5 and the sixth column 6, respectively.

これらの連絡管にはそれぞれ第3連絡弁68および第1
連絡弁69が設けられている。また第1連絡管26は第
3連絡弁68の入口の所で第3連絡管25から分岐され
ている。第3連絡管25は第2塔底管32の第2検出器
8と第2塔底弁75の間の部分で第2塔底管32から分
岐されている。
These communication pipes are provided with a third communication valve 68 and a first communication valve, respectively.
A communication valve 69 is provided. Further, the first communication pipe 26 is branched from the third communication pipe 25 at the entrance of the third communication valve 68. The third communication pipe 25 is branched from the second bottom pipe 32 at a portion of the second bottom pipe 32 between the second detector 8 and the second bottom valve 75 .

第5カラム5および第6カラム6の塔頂にはそれぞれ第
5連絡管27および第6連絡管28がある。
A fifth communication pipe 27 and a sixth communication pipe 28 are provided at the tops of the fifth column 5 and the sixth column 6, respectively.

これらの連絡管には第5連絡弁70および第6連絡弁7
1が設けられている。また第6連絡管28は第5連絡弁
70の入口の所で第5連絡管27から分岐されている。
A fifth communication valve 70 and a sixth communication valve 7 are connected to these communication pipes.
1 is provided. Further, the sixth communication pipe 28 is branched from the fifth communication pipe 27 at the entrance of the fifth communication valve 70.

第5連絡管27は第3塔底管33の第3検出器9と第3
塔底弁76の間の部分で第3塔底管33から分岐されて
いる。
The fifth connecting pipe 27 connects the third detector 9 of the third tower bottom pipe 33 with the third
It is branched from the third bottom pipe 33 at a portion between the bottom valves 76 .

第5カラム5および第6カラム6の塔頂にはそれぞれ第
7連絡管29および第8連絡管30がある。
A seventh connecting pipe 29 and an eighth connecting pipe 30 are provided at the tops of the fifth column 5 and the sixth column 6, respectively.

これらの連絡管には第7連絡弁72および第8連絡弁7
3が設けられている。また第8連絡管30は第7連絡弁
72の入口の所で第7連絡管29から分岐されている。
A seventh communication valve 72 and an eighth communication valve 7 are connected to these communication pipes.
3 is provided. Further, the eighth communication pipe 30 is branched from the seventh communication pipe 29 at the entrance of the seventh communication valve 72.

第7連絡管29は第1塔底管34の第1検出器10と第
1塔底弁77の間の部分で第1塔底管34から分岐され
ている。
The seventh communication pipe 29 is branched from the first bottom pipe 34 at a portion of the first bottom pipe 34 between the first detector 10 and the first bottom valve 77 .

第1カラム1、第2カラム2、第3カラム3、および第
1カラム4の中段にはそれぞれ第1均圧管43、第2均
圧管44、第3均圧管45および第1均圧管46がある
。これらの均圧管にはそれぞれ第1均圧弁85、第2均
圧弁86、第3均圧弁87および第1均圧弁88が設け
られている。またこれらの均圧管は第1均圧連絡管51
によって互いに接続されている。
A first pressure equalizing pipe 43, a second pressure equalizing pipe 44, a third pressure equalizing pipe 45, and a first pressure equalizing pipe 46 are provided in the middle stages of the first column 1, the second column 2, the third column 3, and the first column 4, respectively. . These pressure equalizing pipes are provided with a first pressure equalizing valve 85, a second pressure equalizing valve 86, a third pressure equalizing valve 87, and a first pressure equalizing valve 88, respectively. Moreover, these pressure equalizing pipes are the first pressure equalizing connecting pipe 51
are connected to each other by.

第1塔底管31、第2塔底管32、第3塔底管33およ
び第1塔底管34の各検出器と各塔底弁の間からそれぞ
れ第1塔底分岐管47、第2塔底分岐管48、第3塔底
分岐管49および第1塔底分岐管50が分岐されている
。これらの分岐管にはそれぞれ第1塔底分岐弁89、第
2塔底分岐弁90、第3塔底分岐弁91および第1塔底
分岐弁92が設けられている。
The first bottom branch pipe 47, the second bottom branch pipe 47, the second bottom pipe 47, A bottom branch pipe 48, a third bottom branch pipe 49, and a first bottom branch pipe 50 are branched. These branch pipes are provided with a first bottom branch valve 89, a second bottom branch valve 90, a third bottom branch valve 91, and a first bottom branch valve 92, respectively.

またこれらの均圧管は第1均圧連絡管51によって互い
に接続されている。
Further, these pressure equalizing pipes are connected to each other by a first pressure equalizing connecting pipe 51.

第1均圧管43、第2均圧管44、第3均圧管45およ
び第1均圧管46の各均圧弁の入口の所からそれぞれ第
1均圧分岐管53、第2均圧分岐管54、第3均圧分岐
管55および第1均圧分岐管56が分岐されている。第
5塔底管35および第6塔底管36の各検出器と各塔底
弁の間からそれぞれ第5均圧分岐管57および第6均圧
分岐管58が分岐されている。これらの均圧分岐管には
それぞれ第1均圧分岐弁93、第2均圧分岐弁94、第
3均圧分岐弁95、第1均圧分岐弁96、第5均圧分岐
弁97および第6均圧分岐弁98が設けられている。ま
たこれらの均圧分岐管は第2均圧連絡管52によって互
いに接続されている。
The first pressure equalizing branch pipe 53, the second pressure equalizing branch pipe 54, the first pressure equalizing branch pipe 54, the second pressure equalizing branch pipe 54, A third pressure equalizing branch pipe 55 and a first pressure equalizing branch pipe 56 are branched. A fifth pressure equalizing branch pipe 57 and a sixth pressure equalizing branch pipe 58 are branched from between each detector and each tower bottom valve of the fifth tower bottom pipe 35 and the sixth tower bottom pipe 36, respectively. These pressure equalizing branch pipes include a first pressure equalizing branch valve 93, a second pressure equalizing branch valve 94, a third pressure equalizing branch valve 95, a first pressure equalizing branch valve 96, a fifth pressure equalizing branch valve 97, and a third pressure equalizing branch valve 97, respectively. 6 pressure equalizing branch valve 98 is provided. Further, these pressure equalizing branch pipes are connected to each other by a second pressure equalizing connecting pipe 52.

依って第1カラム1、第2カラム2、第3カラム3およ
び第1カラム4は並列に接続され、同様に第5カラム5
および第6カラム6は並列に接続され、更に第1カラム
1、第2カラム2、第3カラム3 および第1カラム4
は第5カラム5および第6カラム6と直列に接続され、
二段階の精製が行われる。また均圧操作での対象カラム
は、第1カラム1、第2カラム2、第3カラム3 およ
び第1カラム4となる。
Therefore, the first column 1, the second column 2, the third column 3 and the first column 4 are connected in parallel, and the fifth column 5 is connected in parallel.
and the sixth column 6 are connected in parallel, and further the first column 1, the second column 2, the third column 3 and the first column 4
is connected in series with the fifth column 5 and the sixth column 6,
Two stages of purification are carried out. Further, target columns in the pressure equalization operation are the first column 1, the second column 2, the third column 3, and the first column 4.

なお各カラムの塔底の検出器としてはζ例えば熱伝導度
検出器、膜電極検出器および赤外線式ガス分析計などを
それぞれ使用することができる。
As the detector at the bottom of each column, for example, a thermal conductivity detector, a membrane electrode detector, an infrared gas analyzer, etc. can be used.

またこれらの測定器に代えて、予め実験的に求められた
タイムスケジュールによっても弁を開閉させることがで
きる。
Further, instead of using these measuring instruments, the valves can also be opened and closed according to a time schedule determined experimentally in advance.

次にこの装置を使用して、粗精製工程および精製工程か
らなる二段階の精製工程により、高純度水素を連続的に
得る方法を説明する。
Next, a method for continuously obtaining high-purity hydrogen using this apparatus through a two-stage purification process consisting of a crude purification process and a purification process will be described.

まず粗精製工程は、第1カラム1、第2カラム2、第3
カラム3および第1カラム4のうち常に3基を使用し、
次の5操作を連続的に行う。
First, the rough purification process consists of the first column 1, the second column 2, and the third column.
Always use three of column 3 and first column 4,
Perform the following five operations consecutively.

(1)吸着剤を充填したカラムに加圧状態で原料ガスを
供給し、不純成分を吸着させる吸着操作(2)吸着操作
後、既に掃気操作が完了している他のカラム中段に接続
し均圧にする均圧操作(3)カラム内の圧力をほぼ大気
圧まで減圧する減圧操作 (4)原料ガスによる掃気操作 (5)均圧操作で一部加圧したカラムを吸着操作と同じ
圧力まで原料ガスで加圧する加圧操作なお第1カラム1
が吸着操作にある時は、第2カラム2、第3カラム3ま
たは第1カラム4の内の1基で均圧操作、減圧操作、掃
気操作を逐次行なう。第2カラム2が均圧操作、減圧操
作、掃気操作を逐次行っている時は、第3カラム3また
は第1カラム4の内の1基が第2カラム2の均圧操作の
対象となり、第3カラム3が均圧操作の対象とした時は
、第3カラム3ではその後の加圧操作を行う。
(1) An adsorption operation in which raw material gas is supplied under pressure to a column filled with adsorbent to adsorb impurity components. (2) After the adsorption operation, the column is connected to the middle stage of another column that has already completed the scavenging operation for equalization. (3) Pressure reduction operation to reduce the pressure inside the column to almost atmospheric pressure (4) Scavenging operation with raw material gas (5) Bring the partially pressurized column to the same pressure as the adsorption operation in the pressure equalization operation The first column 1 is pressurized with raw material gas.
When in adsorption operation, one of the second column 2, third column 3, or first column 4 performs pressure equalization operation, pressure reduction operation, and scavenging operation in sequence. When the second column 2 is performing pressure equalization operation, pressure reduction operation, and scavenging operation sequentially, one of the third column 3 or the first column 4 is subject to the pressure equalization operation of the second column 2, and When the third column 3 is subjected to pressure equalization operation, the third column 3 performs the subsequent pressurization operation.

つまり第1カラム1が吸着操作、第2カラム2が均圧操
作、減圧操作、掃気操作を逐次行ない、第3カラム3が
均圧操作の対象カラムで、その後加圧操作にある時は第
1カラム4は精製工程での均圧操作の対象カラムとなる
In other words, the first column 1 performs the adsorption operation, the second column 2 performs the pressure equalization operation, pressure reduction operation, and scavenging operation sequentially, and the third column 3 is the target column for the pressure equalization operation. Column 4 is a target column for pressure equalization operation in the purification process.

第1カラム1を吸着操作とするには、第1塔頂弁59を
開け、第2塔頂弁60、第3塔頂弁61、第1塔頂弁6
2、塔頂連絡弁65、第1塔底弁74、第1均圧弁85
、第1塔底分岐弁89および第1均圧分岐弁93を閉め
、原料ガスを第1塔頂管16から第1カラム1に供給す
る。粗精製されたガスは、第1連絡弁66または第2連
絡弁67を開けることにより第1連絡管23から精製工
程の第5カラム5または第6カラム6に供給される。
In order to perform adsorption operation on the first column 1, the first column top valve 59 is opened, the second column top valve 60, the third column top valve 61, and the first column top valve 6 are opened.
2. Tower top communication valve 65, first tower bottom valve 74, first pressure equalization valve 85
, the first column bottom branch valve 89 and the first pressure equalization branch valve 93 are closed, and the raw material gas is supplied to the first column 1 from the first column top pipe 16. The crudely purified gas is supplied from the first communication pipe 23 to the fifth column 5 or sixth column 6 in the purification process by opening the first communication valve 66 or the second communication valve 67.

一方吸着操作が終了して加圧状態にある第2カラム2で
は、まず第2塔底分岐弁90および第3均圧弁87を開
け、第2塔底管32、第2塔底分岐管48、第1均圧連
絡管51および第3均圧管45へと、既に掃気操作が完
了している第3カラム3と均圧操作を行う。
On the other hand, in the second column 2 which is in a pressurized state after the adsorption operation is completed, the second column bottom branch valve 90 and the third pressure equalization valve 87 are first opened, and the second column bottom pipe 32, second column bottom branch pipe 48, A pressure equalization operation is performed on the first pressure equalization communication pipe 51 and the third pressure equalization pipe 45 with the third column 3, which has already undergone a scavenging operation.

次に第2カラム2では第2塔底分岐弁90を閉め、第2
塔底弁75を開け、第2塔底管32、塔底連絡管37及
び第1塔底管31へと、均圧状態のガスをほぼ大気圧ま
で減圧する減圧操作を行う。
Next, in the second column 2, the second bottom branch valve 90 is closed, and the second
The bottom valve 75 is opened, and a pressure reduction operation is performed to reduce the pressure of the gas in an equal pressure state to approximately atmospheric pressure to the second bottom pipe 32, the bottom communication pipe 37, and the first bottom pipe 31.

次に第2塔頂弁60を開け、第2塔頂管17より原料ガ
スを供給し、掃気操作を行う。
Next, the second tower top valve 60 is opened, raw material gas is supplied from the second tower top pipe 17, and a scavenging operation is performed.

第2検出器8で原料ガスと同じ組成になった時点で、直
ちに第2塔頂弁60および第2塔底弁75を閉める。こ
れで第2カラム2での掃気操作が完了する。
Immediately when the second detector 8 shows that the gas has the same composition as the raw material gas, the second tower top valve 60 and the second tower bottom valve 75 are closed. This completes the scavenging operation in the second column 2.

一方第2カラム2での均圧操作の対象カラムである第3
カラム3では、均圧操作終了後、第3均圧弁87を閉め
、第3塔頂弁61を開け、第3塔頂管18より原料ガス
を供給し、吸着操作と同じ圧まで加圧する加圧操作を行
う。これで第3カラム3での吸着操作の準備が完了する
On the other hand, the third column, which is the target column for the pressure equalization operation in the second column 2,
In the column 3, after the pressure equalization operation is completed, the third pressure equalization valve 87 is closed, the third tower top valve 61 is opened, and the raw material gas is supplied from the third tower top pipe 18, and the pressure is increased to the same pressure as the adsorption operation. Perform operations. This completes the preparation for the adsorption operation in the third column 3.

なお上記の場合、第1カラム4は精製工程での均圧操作
の対象カラムとなる。
In the above case, the first column 4 is the target column for the pressure equalization operation in the purification process.

第1カラム1での吸着操作において、時間の経過と共に
不純成分の吸着が蓄積し、第1検出器7で不純成分が検
出され始めた時、速やかに第1連絡弁66または第2連
絡弁67を閉め、更に第1塔頂弁59を閉める。上記方
法により第1カラム1で、均圧操作、減圧操作、掃気操
作を逐次行い、第2カラム2では第1カラム1の均圧操
作の対象カラム、その後加圧操作、第3カラム3では吸
着操作を行う。
In the adsorption operation in the first column 1, when the adsorption of impure components accumulates over time and the first detector 7 starts to detect impure components, the first communication valve 66 or the second communication valve 67 is closed, and the first tower top valve 59 is further closed. By the above method, pressure equalization operation, pressure reduction operation, and scavenging operation are performed sequentially in the first column 1, the second column 2 is used as the target column for the pressure equalization operation of the first column 1, and then pressurization is performed, and the third column 3 is used for adsorption. Perform operations.

次に精製工程について説明する。精製工程は、第5カラ
ム5および第6カラム6を使用し、次の6つの操作を連
続的に行う。
Next, the purification process will be explained. The purification process uses the fifth column 5 and the sixth column 6 and continuously performs the following six operations.

(1)吸着剤を充填したカラムに加圧状態で粗精製工程
よりのガスを供給し、不純成分を吸着させる最終吸着操
作 C)最終吸着操作の後、既に掃気操作が完了している粗
精製工程のカラム中段に接続し均圧にする均圧操作 (3)カラム内の圧力をほぼ大気圧まで減圧する減圧操
作 (3)原料ガスによる掃気操作 (4)精製された水素による再生操作 (5)精製された水素により最終吸着操作と同じ圧力ま
で加圧する加圧操作 なお第5カラム5が最終吸着操作である時は、第6カラ
ム6において均圧操作、減圧操作、掃気操作、再生操作
および加圧操作を逐次行い、第6カラム6が最終吸着、
操作である時は、第5カラム5において均圧操作、減圧
操作、掃気操作、再生操作および加圧操作を逐次行う。
(1) Final adsorption operation in which the gas from the crude purification step is supplied under pressure to a column packed with adsorbent to adsorb impurity components C) Crude purification in which scavenging operation has already been completed after the final adsorption operation Pressure equalization operation by connecting to the middle stage of the column in the process to equalize the pressure (3) Depressurization operation to reduce the pressure inside the column to almost atmospheric pressure (3) Scavenging operation using raw material gas (4) Regeneration operation using purified hydrogen (5) ) A pressurization operation in which purified hydrogen is used to pressurize to the same pressure as in the final adsorption operation. When the fifth column 5 is in the final adsorption operation, the sixth column 6 performs pressure equalization operation, pressure reduction operation, scavenging operation, regeneration operation, and The pressurization operation is performed sequentially, and the sixth column 6 performs the final adsorption.
During operation, pressure equalization operation, pressure reduction operation, scavenging operation, regeneration operation, and pressurization operation are sequentially performed in the fifth column 5.

ここで粗精製工程は、第1カラム1で吸着操作、第2カ
ラム2で均圧操作、減圧操作あるいは掃気操作、第3カ
ラム3で第2カラム2での均圧操作あ対象カラムあるい
は加圧操作、第1カラム4で精製工程での均圧操作の対
象カラムあるいは加圧操作を行い、精製工程は、第5カ
ラム5で最終吸着操作、第6カラム6で均圧操作、減圧
操作、掃気操作、再生操作および加圧操作を行う場合に
ついて説明する。
Here, the crude purification process consists of adsorption operation in the first column 1, pressure equalization operation, depressurization operation or scavenging operation in the second column 2, pressure equalization operation in the second column 2 and pressurization in the third column 3. Operation, the first column 4 performs pressure equalization operation or pressurization operation in the purification process, and the purification process includes final adsorption operation in the fifth column 5, pressure equalization operation, pressure reduction operation, and scavenging operation in the sixth column 6. The case of performing operation, regeneration operation, and pressurization operation will be explained.

第5カラム5での最終吸着操作は、第1連絡弁66およ
び第1製品弁80を開け、第5塔頂弁63、第2連絡弁
67、第3連絡弁68、第5連絡弁70、第7連絡弁7
2、第5塔底弁78、第2製品弁81、第1再生弁82
、第2再生弁83および第5均圧分岐弁97を閉め、第
1カラム1で粗精製された粗精製ガスを第1連絡管23
から第5カラム5に供給する。精製された水素ガスは、
第1製品管38を通り系外に出される。
In the final adsorption operation in the fifth column 5, the first communication valve 66 and the first product valve 80 are opened, and the fifth column top valve 63, the second communication valve 67, the third communication valve 68, the fifth communication valve 70, 7th communication valve 7
2. Fifth tower bottom valve 78, second product valve 81, first regeneration valve 82
, the second regeneration valve 83 and the fifth pressure equalization branch valve 97 are closed, and the crude gas crudely purified in the first column 1 is transferred to the first communication pipe 23.
to the fifth column 5. Purified hydrogen gas is
It passes through the first product pipe 38 and is taken out of the system.

一方最終吸着操作終了後加圧状態にある第6カラム6で
は、まず第1均圧分岐弁96および第6均圧分岐弁98
を開け、第6塔底管36、第6均圧分岐管58、第2均
圧連絡管52、第1均圧分岐管56および第1均圧管4
6を使用し、既に粗精製工程での掃気操作が完了してい
る第1カラム4と接続し、均圧操作を行う。
On the other hand, in the sixth column 6 which is in a pressurized state after the final adsorption operation, first the first pressure equalizing branch valve 96 and the sixth pressure equalizing branch valve 98
, the sixth tower bottom pipe 36 , the sixth pressure equalizing branch pipe 58 , the second pressure equalizing connecting pipe 52 , the first pressure equalizing branch pipe 56 and the first pressure equalizing pipe 4
6 is connected to the first column 4, which has already undergone the scavenging operation in the rough purification step, and the pressure equalization operation is performed.

次に第6カラム6では第6均圧分岐弁98を閉め、第6
塔底弁79を開け、第6塔底管36、塔底連絡管37オ
よび第1塔底管31へと加圧状態のガスをほぼ大気圧ま
で減圧する減圧操作を行う。
Next, in the sixth column 6, the sixth pressure equalizing branch valve 98 is closed, and the sixth
The bottom valve 79 is opened and a pressure reduction operation is performed to reduce the pressure of the pressurized gas to the sixth bottom pipe 36, the bottom connecting pipe 37o, and the first bottom pipe 31 to approximately atmospheric pressure.

続いて塔頂塔底連絡弁84を閉め、第6塔頂弁64およ
び塔頂連絡弁65を開け、塔頂連絡管22および第6堪
頂管21を通し原料ガスを供給し掃気操作を行う。第8
検出器14で原料ガスと同じ組成になった時点で直ちに
塔頂連絡弁65および第6塔底弁79を閉め、塔頂塔底
連絡弁84および第2再生弁83を開け、第1再生管4
0、第2再生管41および第2製品管39を通る精製さ
れた水素を供給し再生操作を行う。第6カラム6に供給
された水素はカラムに残存している不純成分と共に第6
塔頂管21、塔頂連絡管22、塔頂塔底連絡管42、塔
底連絡管37および第1塔底管31を通り系外に出され
る。第9検出器15で不純成分が検出されなくなった時
点で直ちに第6塔頂弁64および塔頂塔底連絡弁84を
閉め、最終吸着操作と同じ圧力まで加圧する加圧操作を
行う。加圧操作終了後第2再生弁83を閉め、これで第
6カラム6での最終吸着操作の準備が完了する。
Subsequently, the tower top/bottom communication valve 84 is closed, the sixth tower top valve 64 and the tower top communication valve 65 are opened, and raw material gas is supplied through the tower top communication pipe 22 and the sixth top pipe 21 to perform a scavenging operation. . 8th
Immediately when the detector 14 shows the same composition as the raw material gas, the tower top communication valve 65 and the sixth tower bottom valve 79 are closed, the tower top and bottom communication valve 84 and the second regeneration valve 83 are opened, and the first regeneration pipe is opened. 4
0, purified hydrogen is supplied through the second regeneration pipe 41 and the second product pipe 39 to perform a regeneration operation. The hydrogen supplied to the sixth column 6 together with the impurity components remaining in the column
It passes through the tower top pipe 21, tower top communication pipe 22, tower top/bottom communication pipe 42, tower bottom communication pipe 37, and first tower bottom pipe 31 and is taken out of the system. Immediately when the ninth detector 15 no longer detects impurity components, the sixth column top valve 64 and the top/bottom communication valve 84 are closed, and a pressurization operation is performed to increase the pressure to the same pressure as the final adsorption operation. After the pressurization operation is completed, the second regeneration valve 83 is closed, and preparation for the final adsorption operation in the sixth column 6 is thus completed.

第5カラム5の最終吸着工程において時間の経過と共に
第5検出器11で不純成分が検出され始めた時、速やか
に第1連絡弁66および第1製品弁80を閉める。続い
て第5カラム5で均圧操作、減圧操作、掃気操作、再生
操作および加圧操作を逐次行い、第6カラム6では最終
吸着操作を行う。
When impurity components begin to be detected by the fifth detector 11 over time in the final adsorption step of the fifth column 5, the first communication valve 66 and the first product valve 80 are immediately closed. Subsequently, in the fifth column 5, a pressure equalization operation, a pressure reduction operation, a scavenging operation, a regeneration operation, and a pressurization operation are sequentially performed, and in the sixth column 6, a final adsorption operation is performed.

一方第6カラム6での均圧操作の対象カラムである粗精
製工程の第1カラム4では均圧操作終了後、第1均圧弁
88を閉め、第1塔頂弁62を開け、第1塔頂管19よ
り原料ガスを供給し、粗精製工程の吸着操作と同じ圧力
まで加圧する加圧操作を行う。これで第1カラム4での
吸着操作の準備が完了する。
On the other hand, in the first column 4 in the crude purification process, which is the target column for the pressure equalization operation in the sixth column 6, after the pressure equalization operation is completed, the first pressure equalization valve 88 is closed, the first column top valve 62 is opened, and the first column The raw material gas is supplied from the top pipe 19, and a pressurization operation is performed to increase the pressure to the same pressure as the adsorption operation in the rough purification step. This completes the preparation for the adsorption operation in the first column 4.

(実施例) 次に実施例により本発明を更に具体的に説明する。しか
しながら本発明はこれらの実施例によって限定されるも
のでは無い。
(Example) Next, the present invention will be explained in more detail with reference to Examples. However, the present invention is not limited to these examples.

実施例 H290%、CH9,5%、CH,0,45%、CO2
0,05%からなる原料ガスを第1図に示した装置を用
いて精製した。4基の竪型円筒カラム(径30mm、高
さ2000mm)に、吸着剤として合成ゼオライト (
和光純薬工業■製)を1027gずつ各カラムに充填し
た。
Example H290%, CH9.5%, CH,0.45%, CO2
A raw material gas containing 0.05% was purified using the apparatus shown in FIG. Synthetic zeolite (
(manufactured by Wako Pure Chemical Industries, Ltd.)) was packed into each column in an amount of 1027 g.

装置全体の温度は30℃であった。検出器は全て赤外線
式ガス分析計(島原製作所製)を使用した。
The temperature of the entire apparatus was 30°C. All detectors used were infrared gas analyzers (manufactured by Shimabara Seisakusho).

まず粗精製工程では、原料ガスを第1塔頂管16より第
1カラム1に供給し、吸着操作を行った。
First, in the rough purification step, the raw material gas was supplied to the first column 1 from the first tower top pipe 16, and an adsorption operation was performed.

原料ガスの供給量は1,7788m’/Hr 、供給圧
力は15kg/cm”6であり、第1カラム1での見掛
けの空塔速度は約0.05n+/secであった。第1
カラム1の塔底からの粗精製ガスは、第1連絡管23よ
り第5カラム5に供給した。
The feed rate of the raw material gas was 1,7788 m'/Hr, the supply pressure was 15 kg/cm''6, and the apparent superficial velocity in the first column 1 was about 0.05 n+/sec.
The crude gas from the bottom of the column 1 was supplied to the fifth column 5 through the first connecting pipe 23.

一方策1カラム1で吸着操作を行っている間に第2カラ
ム2では、第2塔底管32、第2塔底分岐管48、第1
均圧連絡管51および第3均圧管45を使用して既に掃
気操作が完了している第3カラム3と接続し、吸着操作
終了後の加圧状態のガスを約7、5kg/cm2Gに減
少する均圧操作を行った。これに要した時間は約2.0
分であった。
On the other hand, while the adsorption operation is being carried out in the first column 1, in the second column 2, the second column bottom pipe 32, the second column bottom branch pipe 48, the first
The pressure equalizing pipe 51 and the third pressure equalizing pipe 45 are used to connect to the third column 3 where the scavenging operation has already been completed, and the pressurized gas after the adsorption operation is reduced to approximately 7.5 kg/cm2G. A pressure equalization operation was performed. The time required for this is approximately 2.0
It was a minute.

次に均圧状態のガスを約0.1kg/cm2Gまで減圧
する減圧操作を第2塔底管32、塔底連絡管37および
第1塔底管31を使用して行った。これに要した時間は
約2.0分であった。
Next, a pressure reduction operation was carried out to reduce the pressure of the pressure-equalized gas to about 0.1 kg/cm2G using the second tower bottom pipe 32, the tower bottom communication pipe 37, and the first tower bottom pipe 31. The time required for this was approximately 2.0 minutes.

続いて第2塔頂弁60を開は原料ガスを供給し、掃気操
作を行った。第2検出器8での検出により、掃気操作開
始後約3分で第2塔頂弁60および第2塔底弁75を閉
め掃気操作を終了した。
Subsequently, the second tower top valve 60 was opened to supply raw material gas and perform a scavenging operation. Based on the detection by the second detector 8, the second tower top valve 60 and the second tower bottom valve 75 were closed approximately 3 minutes after the start of the scavenging operation to complete the scavenging operation.

更に第2カラム2の均圧操作の対象カラムである第3カ
ラム3では均圧操作終了後、第3均圧弁87を閉め、第
3塔頂弁18より原料ガスを供給し、加圧操作へ移行し
た。加圧操作の所要時間は約1分であった。これで第3
カラム3での吸着操作の準備が完了した。
Furthermore, in the third column 3, which is the target column for the pressure equalization operation of the second column 2, after the pressure equalization operation is completed, the third pressure equalization valve 87 is closed, the raw material gas is supplied from the third column top valve 18, and the pressure operation begins. It has migrated. The time required for the pressurization operation was about 1 minute. This is the third
Preparation for adsorption operation in column 3 was completed.

吸着操作を行っている第1カラム1では、第1検出器7
の検出により、吸着操作終了後約10.2分で吸着操作
を終了とし第1塔頂弁59および第1連絡弁66を閉め
、更に第3塔頂弁61を開け、第3カラム3での吸着操
作を開始した。なお第1カラム1では、均圧操作、減圧
操作、掃気操作及び加圧操作を逐次行った。更に第2カ
ラム2では第1カラム1の均圧操作の対象カラムとし、
その後加圧操作を行った。
In the first column 1 where the adsorption operation is performed, the first detector 7
Upon detection of this, the adsorption operation is terminated approximately 10.2 minutes after the end of the adsorption operation, the first tower top valve 59 and the first communication valve 66 are closed, and the third tower top valve 61 is further opened to stop the adsorption operation in the third column 3. Adsorption operation was started. In addition, in the first column 1, a pressure equalization operation, a pressure reduction operation, a scavenging operation, and a pressurization operation were sequentially performed. Furthermore, the second column 2 is a target column for the pressure equalization operation of the first column 1,
After that, a pressurizing operation was performed.

次に精製工程について説明する。粗精製ガスは第1連絡
管23より第5カラム5に供給し、最終吸着操作を行っ
た。第5カラム5での見掛けの空塔速度は約0.04m
/secであった。第5カラム5の塔底よりの精製水素
は、第1製品管38を通り系外に出した。この精製水素
量は平均1.44Nm’/llrであり、その純度は9
9.9999%以上であった。この結果水素の回収率は
90.0%であり、単位時間に精製された水素量当りの
吸着剤全使用量は、4280g−吸着剤、Hr/Nm’
となる。
Next, the purification process will be explained. The crudely purified gas was supplied to the fifth column 5 through the first communication pipe 23, and a final adsorption operation was performed. The apparent superficial velocity in the fifth column 5 is approximately 0.04 m
/sec. The purified hydrogen from the bottom of the fifth column 5 was discharged to the outside of the system through the first product pipe 38. The amount of purified hydrogen is 1.44Nm'/llr on average, and its purity is 9.
It was 9.9999% or more. As a result, the hydrogen recovery rate was 90.0%, and the total amount of adsorbent used per amount of hydrogen purified per unit time was 4280 g - adsorbent, Hr/Nm'
becomes.

一方策5カラム5で最終吸着操作を行っている間に第6
カラム6では、第6塔底管36、第6均圧分岐管58、
第2均圧連絡管52、第1均圧分岐管56および第1均
圧管46を使用し、既に粗精製工程での掃気操作が完了
している第1カラム4と接続し、既に最終吸着操作終了
後の加圧状態のガスを約7、5kg/cm”Gまで減圧
する均圧操作を行った。これに要した時間は約2.0分
であった。
On the other hand, while performing the final adsorption operation in column 5,
In the column 6, a sixth bottom pipe 36, a sixth pressure equalizing branch pipe 58,
The second pressure equalization connecting pipe 52, the first pressure equalization branch pipe 56, and the first pressure equalization pipe 46 are used to connect the first column 4, which has already undergone the scavenging operation in the rough purification process, and has already undergone the final adsorption operation. After completion, a pressure equalization operation was performed to reduce the pressure of the pressurized gas to about 7.5 kg/cm"G. The time required for this was about 2.0 minutes.

次に均圧状態のガスを約0.1kg/cm”Gまで減圧
する減圧操作を第6塔底管36、塔底連絡管37および
第1塔底管31を使用して行った。これに要した時間は
約2.0分であった。
Next, a pressure reduction operation was performed to reduce the pressure of the gas in an equal pressure state to approximately 0.1 kg/cm"G using the sixth tower bottom pipe 36, the tower bottom communication pipe 37, and the first tower bottom pipe 31. The time required was approximately 2.0 minutes.

続いて塔頂塔底連絡弁84を閉め、第6塔頂弁64およ
び塔頂連絡弁65を開は原料ガスを供給し、掃気操作を
行った。第8検出器14での検出により、掃気操作開始
後約3分で塔頂連絡弁65および第6塔底弁79を閉め
掃気操作を終了した。
Subsequently, the tower top/bottom communication valve 84 was closed, and the sixth tower top valve 64 and tower top communication valve 65 were opened to supply raw material gas and perform a scavenging operation. Based on the detection by the eighth detector 14, the top communication valve 65 and the sixth tower bottom valve 79 were closed about 3 minutes after the start of the scavenging operation to complete the scavenging operation.

次に塔頂塔底連絡弁84および第2再生弁83を開け、
第1再生管40、第2再生管41および第2製品管39
より精製水素を供給し、再生操作を行った。
Next, open the tower top and bottom communication valve 84 and the second regeneration valve 83,
First regeneration pipe 40, second regeneration pipe 41 and second product pipe 39
Purified hydrogen was supplied and regeneration operation was performed.

第6カラム6に供給された水素は、カラムに残存してい
る不純成分と共に塔頂管21、塔頂連絡管22、塔頂塔
底連絡管42、塔底連絡管37および第1塔底管31を
通り系外に出された。再生操作開始後約3分で第9検出
器15の検出により再生操作を終了した。次に第6塔頂
弁64フよび塔頂塔底連絡弁84を閉め、加圧操作へ移
行した。加圧操作の所要時間は約1分であった。これで
第6カラム6での最終吸着操作の準備が完了した。
The hydrogen supplied to the sixth column 6, together with the impurity components remaining in the column, is transferred to the top pipe 21, the top connecting pipe 22, the top bottom connecting pipe 42, the bottom connecting pipe 37, and the first tower bottom pipe. 31 and was taken out of the system. Approximately 3 minutes after the start of the regeneration operation, the regeneration operation was terminated by detection by the ninth detector 15. Next, the sixth column top valve 64 and the column top/bottom communication valve 84 were closed, and a shift was made to pressurization operation. The time required for the pressurization operation was about 1 minute. Preparations for the final adsorption operation in the sixth column 6 are now complete.

最終吸着操作を行っている第5カラム5では、第5検出
器11の検出により、最終吸着操作開始後約200分で
最終吸着操作を終了とし第1連絡弁66および第1製品
弁80を閉め、更に第2連絡弁67および第2製品弁8
1を開け、第6カラム6での最終吸着操作を開始した。
In the fifth column 5 where the final adsorption operation is being performed, the fifth detector 11 detects that the final adsorption operation is completed approximately 200 minutes after the start of the final adsorption operation, and the first communication valve 66 and the first product valve 80 are closed. , furthermore, a second communication valve 67 and a second product valve 8
1 was opened, and the final adsorption operation in the sixth column 6 was started.

なお第5カラム5では、均圧操作、減圧操作、掃気操作
、再生操作及び加圧操作を逐次行った。
Note that in the fifth column 5, pressure equalization operation, pressure reduction operation, scavenging operation, regeneration operation, and pressurization operation were sequentially performed.

更に第6カラム6での均圧操作の対象カラムである粗精
製工程の第1カラム4では均圧操作終了後、第1均圧弁
88を閉め、第1塔頂弁62を開け、第1塔頂管19よ
り原料ガスを供給し、粗精製工程の加圧操作へ移行した
。加圧操作の所要時間は約1.0分であった。これで第
1カラム4での吸着操作の準備が完了した。
Furthermore, in the first column 4 in the crude purification process, which is the target column for the pressure equalization operation in the sixth column 6, after the pressure equalization operation is completed, the first pressure equalization valve 88 is closed, the first tower top valve 62 is opened, and the first column Raw material gas was supplied from the top pipe 19, and the process proceeded to the pressurization operation of the crude purification process. The time required for the pressurization operation was about 1.0 minute. Preparations for the adsorption operation in the first column 4 are now complete.

比較例 第1図における均圧操作で排出するガスの回収を行わな
いものとした第2図に示す装置を用いて、実施例と同じ
ガス組成および量のガスを精製した。
Comparative Example Using the apparatus shown in FIG. 2 in which the gas discharged during the pressure equalization operation in FIG. 1 was not recovered, gas having the same gas composition and amount as in the example was purified.

この装置は、第1カラム1、第2カラム2、第3カラム
3、第1カラム4、第5カラム5および第6カラム6の
6基のカラムを有しており、各カラムの吸着剤とその充
填量およびそれらの操作条件は、実施例と同一とした。
This device has six columns: a first column 1, a second column 2, a third column 3, a first column 4, a fifth column 5, and a sixth column 6. The filling amount and their operating conditions were the same as in the example.

この装置においては、各カラムの塔頂にそれぞれ第1塔
頂管16、第2塔頂管17、第3塔頂管18、第1塔頂
管19、第5塔頂管20および第6塔頂管21がある。
In this apparatus, a first tower top pipe 16, a second tower top pipe 17, a third tower top pipe 18, a first tower top pipe 19, a fifth tower top pipe 20, and a sixth tower top pipe are provided at the top of each column. There is a top tube 21.

これらの塔頂管は、第1堪頂管16から分岐した塔頂連
絡管22によって互いに接続されている。またこれらの
塔頂管にはそれぞれ第1塔頂弁43、第2塔頂弁44、
第3塔頂弁45、第1塔頂弁46、第5塔頂弁47およ
び第6塔頂弁48が設けられており、塔頂連絡管22に
は第1塔頂管19と第1塔頂管20が接続されている間
に塔頂連絡弁49が設けられている。
These tower top pipes are connected to each other by a tower top communication pipe 22 branched from the first top pipe 16 . In addition, these tower top pipes each have a first tower top valve 43, a second tower top valve 44,
A third tower top valve 45, a first tower top valve 46, a fifth tower top valve 47, and a sixth tower top valve 48 are provided, and the tower top communication pipe 22 is provided with a first tower top pipe 19 and a first tower top valve 48. A top communication valve 49 is provided while the top pipe 20 is connected.

各カラムの塔底にはそれぞれ第1塔底管31、第2塔底
管32、第3塔底管33、第1塔底管34、第5堪底管
35および第6塔底管36がある。これらの塔底管は第
1塔底管31から分岐した塔底連絡管37によって互い
に接続されている。またこれらの塔底管にはそれぞれ第
1塔底弁58、第2堪底弁59、第3堪底弁60、第1
塔底弁61、第5塔底弁62および第6塔底弁63が設
けられている。また各カラムの塔底と各塔底弁との間に
それぞれそれぞれ第1検出器7、第2検出器8、第3検
出器9、第1検出器10.第7検出器13および第8検
出器14が設けられている。
A first bottom pipe 31, a second bottom pipe 32, a third bottom pipe 33, a first bottom pipe 34, a fifth bottom pipe 35, and a sixth bottom pipe 36 are provided at the bottom of each column, respectively. be. These tower bottom pipes are connected to each other by a tower bottom communication pipe 37 branched from the first tower bottom pipe 31. In addition, these bottom pipes are provided with a first bottom valve 58, a second bottom valve 59, a third bottom valve 60, and a first bottom valve, respectively.
A tower bottom valve 61, a fifth tower bottom valve 62, and a sixth tower bottom valve 63 are provided. Further, a first detector 7, a second detector 8, a third detector 9, and a first detector 10 are provided between the bottom of each column and each bottom valve, respectively. A seventh detector 13 and an eighth detector 14 are provided.

塔頂連絡管22の第5塔頂管20と第6塔頂管21が接
続されている間の部分と塔底連絡管37の第5塔底管3
5と第6塔底管36が接続されている間の部分とは塔頂
塔底連絡管42で連絡され、塔頂塔底連絡管42には塔
頂塔底連絡弁68および第9検出器15が設けられてい
る。
The part between the fifth tower top pipe 20 and the sixth tower top pipe 21 of the tower top communication pipe 22 and the fifth tower bottom pipe 3 of the tower bottom communication pipe 37
5 and the sixth column bottom pipe 36 are connected by a column top/bottom communication pipe 42, and a column top/bottom communication valve 68 and a ninth detector are connected to the top/bottom communication pipe 42. 15 are provided.

第5カラム5および第6カラム6の塔底にはそれぞれ第
1製品管38、第2製品管39がある。これらの製品管
にはそれぞれ第1製品弁64および第2製品弁65が設
けられている。また第5カラム5および第6カラム6に
は各カラムの塔底と各製品弁との間にそれぞれ第5検出
器11および第6検出器12が設けられている。
A first product pipe 38 and a second product pipe 39 are provided at the bottoms of the fifth column 5 and the sixth column 6, respectively. Each of these product pipes is provided with a first product valve 64 and a second product valve 65. Further, the fifth column 5 and the sixth column 6 are provided with a fifth detector 11 and a sixth detector 12, respectively, between the bottom of each column and each product valve.

また第2製品管39は、第2製品弁65の出口の所で第
1製品管38と合流している。第2再生管40が第1製
品管38の第5検出器11と第1製品弁640間の部分
から分岐されており、第2再生管41が第2製品管39
の第6検出器12と第2製品弁650間の部分から分岐
されている。これらの再生管にはそれぞれ第1再生弁6
6および第2再生弁67が設けられている。また第2再
生管41は出口の所で第1再生管40と合流している。
The second product pipe 39 also joins the first product pipe 38 at the outlet of the second product valve 65 . The second regeneration pipe 40 is branched from a portion of the first product pipe 38 between the fifth detector 11 and the first product valve 640, and the second regeneration pipe 41 is branched from the part of the first product pipe 38 between the fifth detector 11 and the first product valve 640.
It is branched from a portion between the sixth detector 12 and the second product valve 650. Each of these regeneration pipes has a first regeneration valve 6.
6 and a second regeneration valve 67 are provided. Further, the second regeneration pipe 41 merges with the first regeneration pipe 40 at the outlet.

第1再生管40は第2再生管41と合流した所の後に第
1製品管38と合流している。
The first regeneration pipe 40 joins the first product pipe 38 after joining the second regeneration pipe 41 .

第5カラム5′J3よび第6カラム6の塔頂にはそれぞ
れ第1連絡管23および第2連絡管24がある。
A first connecting pipe 23 and a second connecting pipe 24 are provided at the tops of the fifth column 5'J3 and the sixth column 6, respectively.

これらの連絡管にはそれぞれ第1連絡弁50および第2
連絡弁51が設けられている。また第2連絡管24は第
1連絡弁500Å口の所で第1連絡管23から分岐され
ている。第1連絡管23は第1塔底管31の第1検出器
7と第1塔底弁58の間の部分で第1塔底管31から分
岐されている。
A first communication valve 50 and a second communication valve 50 are provided in these communication pipes, respectively.
A communication valve 51 is provided. Further, the second communication pipe 24 is branched from the first communication pipe 23 at a 500 Å port of the first communication valve. The first communication pipe 23 is branched from the first bottom pipe 31 at a portion of the first bottom pipe 31 between the first detector 7 and the first bottom valve 58 .

第5カラム5および第6カラム6の塔頂にはそれぞれ第
3連絡管25および第1連絡管26がある。
A third communication pipe 25 and a first communication pipe 26 are provided at the top of the fifth column 5 and the sixth column 6, respectively.

これらの連絡管にはそれぞれ第1連絡弁52および第1
連絡弁53が設けられている。また第1連絡管26は第
3連絡弁52の入口の所で第3連絡管25から分岐され
ている。第3連絡管25は第2塔底管32の第2検出器
8と第2塔底弁59の間の部分で第2塔底管32から分
岐されている。
These communication pipes are provided with a first communication valve 52 and a first communication valve 52, respectively.
A communication valve 53 is provided. Further, the first communication pipe 26 is branched from the third communication pipe 25 at the entrance of the third communication valve 52. The third communication pipe 25 is branched from the second bottom pipe 32 at a portion of the second bottom pipe 32 between the second detector 8 and the second bottom valve 59 .

第5カラム5および第6カラム6の塔頂にはそれぞれ第
5連絡管27および第1連絡管28がある。
A fifth communication pipe 27 and a first communication pipe 28 are provided at the tops of the fifth column 5 and the sixth column 6, respectively.

これらの連絡管にはそれぞれ第5連絡弁54および第6
連絡弁55が設けられている。また第6連絡管28は第
5連絡弁540入口の所で第5連絡管27から分岐され
ている。第5連絡管27は第3塔底管33の第3検出器
9と第3塔底弁60の間の部分で第3塔底管33から分
岐されている。
A fifth communication valve 54 and a sixth communication valve 54 are provided in these communication pipes, respectively.
A communication valve 55 is provided. Further, the sixth communication pipe 28 is branched from the fifth communication pipe 27 at the inlet of the fifth communication valve 540. The fifth communication pipe 27 is branched from the third bottom pipe 33 at a portion of the third bottom pipe 33 between the third detector 9 and the third bottom valve 60 .

第5カラム5および第6カラム6の塔頂にはそれぞれ第
7連絡管29および第8連絡管30がある。
A seventh connecting pipe 29 and an eighth connecting pipe 30 are provided at the tops of the fifth column 5 and the sixth column 6, respectively.

これらの連絡管にはそれぞれ第7連絡弁56および第8
連絡弁57が設けられている。また第8連絡管30は第
7連絡弁56の入口の所で第7連絡管29から分岐され
ている。第7連絡管29は第1塔底管34の第1検出器
10と第1塔底弁61の間の部分で第1塔底管34から
分岐されている。
These communication pipes are provided with a seventh communication valve 56 and an eighth communication valve 56, respectively.
A communication valve 57 is provided. Further, the eighth communication pipe 30 is branched from the seventh communication pipe 29 at the entrance of the seventh communication valve 56. The seventh communication pipe 29 is branched from the first bottom pipe 34 at a portion of the first bottom pipe 34 between the first detector 10 and the first bottom valve 61 .

この装置では、実施例の均圧操作を行わない以外は全て
実施例に準じて行った。
With this apparatus, everything was carried out in accordance with the example except that the pressure equalization operation of the example was not performed.

即ち第1カラム1が粗精製工程の吸着操作にある時は、
第2カラム2では粗精製工程の減圧操作、第3カラム3
では粗精製工程の掃気操作および加圧操作を行った。ま
た第5カラム5が精製工程の最終吸着操作にある時は、
第6カラム6では精製工程の減圧操作、掃気操作、再生
操作および加圧操作を行った。
That is, when the first column 1 is in the adsorption operation of the crude purification step,
The second column 2 performs a vacuum operation in the crude purification process, and the third column 3
Then, the scavenging operation and pressurization operation of the crude purification process were performed. Also, when the fifth column 5 is in the final adsorption operation of the purification process,
In the sixth column 6, depressurization operation, scavenging operation, regeneration operation, and pressurization operation of the purification process were performed.

この結果、精製水素量は平均1.36Nm3/Hr 、
水素純度99.9999%以上であった。水素の回収率
は85.0%、単位時間に精製された水素量当りの吸着
剤全使用量は4532g−吸着剤、 Hr/Nm’とな
る。
As a result, the average amount of purified hydrogen was 1.36Nm3/Hr,
The hydrogen purity was 99.9999% or more. The hydrogen recovery rate was 85.0%, and the total amount of adsorbent used per amount of hydrogen purified per unit time was 4532 g-adsorbent, Hr/Nm'.

このように本比較例では、実施例に比較して水素純度お
よび回収率が著しく低下しており、単位時間に精製され
た水素量当りの吸着剤全使用量も多くなっている。
As described above, in this comparative example, the hydrogen purity and recovery rate are significantly lower than in the example, and the total amount of adsorbent used per amount of hydrogen purified per unit time is also increased.

(発明の効果) 本発明においては、吸着操作終了時の加圧状態の水素ガ
スの一部が均圧操作により回収されるので、水素回収率
が向上する。また本発明の方法は、従来の吸着カラムク
ロマトグラフィー法に比較して吸着剤の使用量が減少さ
せることができるので、水素精製コストが低減されると
共に、今まで困難であった吸着カラムクロマトグラフィ
ー法の大型化が促進されるようになり、これらによる本
発明の工業的意義が大きい。
(Effects of the Invention) In the present invention, a portion of the pressurized hydrogen gas at the end of the adsorption operation is recovered by the pressure equalization operation, so that the hydrogen recovery rate is improved. In addition, the method of the present invention can reduce the amount of adsorbent used compared to conventional adsorption column chromatography methods, thereby reducing hydrogen purification costs and performing adsorption column chromatography, which has been difficult until now. The industrial significance of the present invention is great because the scale-up of the process has been promoted.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法において使用される水素精製装置
のフローシートの一例を示し、また第2図は本発明の比
較例において使用された水素精製装置のフローシートを
示す。 (第1図) 1〜6:第1〜6カラム   51〜52:第1〜2均
圧連絡管7〜15:第1〜9検出器   53〜58:
第1〜6均圧分岐管16〜21:第1〜6塔頂管   
59〜64:第1〜6塔頂弁22:塔頂連絡管    
  65:塔頂連絡弁23〜30:第1〜8連絡管  
 66〜73:第1〜8連絡弁31〜36:第1〜6塔
底管   74〜79:第1〜6塔底弁37:塔底連絡
管     80〜81:第1〜2製品弁38〜39:
第1〜2製品管   82〜83:第1〜2再生弁40
〜41;第1〜4再生管    84:塔頂塔底連絡弁
42:塔頂塔底連絡管   85〜88:第1〜−4均
圧弁43〜46:第1〜4均圧管   89〜92:第
1〜4塔底分岐弁47〜50:第1〜4塔底分岐管 9
3〜98:第1〜6均圧分岐弁(第2図) 1〜6:第1〜6カラム    37:塔底連絡管7〜
15:第1〜9検出器   38〜39:第1〜2製品
管16〜21:第1〜6塔頂管   40〜41:第1
〜2再生管22:塔頂連絡管      42:塔頂塔
底連絡管23〜30:第1〜8連絡管   43〜48
:第1〜6塔頂管31〜3G  第1〜6堪底管   
 49:塔頂連絡弁50〜57:第1〜8連絡弁   
66〜67:第1〜2再生弁58〜63:第1〜6塔底
弁    68:塔頂基底連絡弁64〜65:第1〜2
製品弁 特許出願人 三菱瓦斯化学株式会社 代理人 弁理士 小 堀 貞 文
FIG. 1 shows an example of a flow sheet of a hydrogen purification apparatus used in the method of the present invention, and FIG. 2 shows a flow sheet of a hydrogen purification apparatus used in a comparative example of the present invention. (Fig. 1) 1-6: 1st-6th columns 51-52: 1st-2 pressure equalization connecting pipes 7-15: 1st-9th detectors 53-58:
1st to 6th pressure equalizing branch pipes 16 to 21: 1st to 6th tower top pipes
59-64: 1st-6 tower top valve 22: tower top communication pipe
65: Top communication valve 23-30: 1st-8th communication pipe
66-73: 1st-8th communication valve 31-36: 1st-6th tower bottom pipe 74-79: 1st-6th tower bottom valve 37: tower bottom communication pipe 80-81: 1st-2nd product valve 38- 39:
1st to 2nd product pipes 82 to 83: 1st to 2nd regeneration valves 40
- 41; 1st - 4th regeneration pipes 84: Top and bottom communication valve 42: Top and bottom communication pipe 85 - 88: 1st - -4 pressure equalization valves 43 - 46: 1st - 4th pressure equalization pipes 89 - 92: 1st to 4th bottom branch valves 47 to 50: 1st to 4th bottom branch pipes 9
3 to 98: 1 to 6 pressure equalization branch valves (Figure 2) 1 to 6: 1 to 6 columns 37: Bottom communication pipe 7 to
15: 1st to 9th detectors 38 to 39: 1st to 2nd product pipes 16 to 21: 1st to 6th tower top pipes 40 to 41: 1st
~2 Regeneration pipe 22: Tower top communication pipe 42: Tower top/bottom communication pipe 23-30: 1st to 8th communication pipe 43-48
: 1st to 6th tower top pipe 31 to 3G 1st to 6th bottom pipe
49: Top communication valve 50-57: 1st-8th communication valve
66 to 67: 1st to 2nd regeneration valves 58 to 63: 1st to 6th tower bottom valves 68: Tower top base communication valves 64 to 65: 1st to 2nd
Product Valve Patent Applicant Mitsubishi Gas Chemical Co., Ltd. Agent Patent Attorney Sadafumi Kobori

Claims (1)

【特許請求の範囲】[Claims] (1)水素と少なくとも1種類以上の不純成分を含む原
料ガスを吸着カラムクロマトグラフィー法で精製するに
際し、原料ガスの吸着操作と、均圧操作、減圧操作、掃
気操作、加圧操作とに切換えることができる3基以上の
カラムを設置し、均圧操作で排出するガスを既に掃気操
作が完了している他のカラムの中段に導入することを特
徴とする水素の精製法(2)原料ガスの吸着操作と、均
圧操作、減圧操作、掃気操作、加圧操作とに切換えるこ
とができる3基以上のカラムを有する粗精製工程と、粗
精製工程より得られた粗精製ガスの最終吸着操作と、均
圧操作、減圧操作、掃気操作、再生操作、加圧操作とに
切換えることができる2基以上のカラムを有する精製工
程からなる、二段階の精製工程において、両工程の均圧
操作で排出するガスを粗精製工程の既に掃気操作が完了
している他のカラムの中段に導入する特許請求の範囲第
1項の水素精製法
(1) When purifying a raw material gas containing hydrogen and at least one type of impurity component by adsorption column chromatography, switching between the raw material gas adsorption operation, pressure equalization operation, pressure reduction operation, scavenging operation, and pressurization operation. Hydrogen purification method (2) Feedstock gas characterized by installing three or more columns that can perform a pressure equalization operation, and introducing the gas discharged in the pressure equalization operation into the middle stage of another column where the scavenging operation has already been completed. A crude purification process having three or more columns that can be switched to adsorption operation, pressure equalization operation, pressure reduction operation, scavenging operation, and pressurization operation, and a final adsorption operation of the crude gas obtained from the crude purification process. In a two-stage purification process consisting of a purification process having two or more columns that can be switched to pressure equalization operation, pressure reduction operation, scavenging operation, regeneration operation, and pressurization operation, the pressure equalization operation of both steps The hydrogen purification method according to claim 1, wherein the gas to be discharged is introduced into the middle stage of another column in the rough purification process where the scavenging operation has already been completed.
JP62249992A 1987-10-05 1987-10-05 Hydrogen purification method Expired - Lifetime JP2600199B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62249992A JP2600199B2 (en) 1987-10-05 1987-10-05 Hydrogen purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62249992A JP2600199B2 (en) 1987-10-05 1987-10-05 Hydrogen purification method

Publications (2)

Publication Number Publication Date
JPH0193402A true JPH0193402A (en) 1989-04-12
JP2600199B2 JP2600199B2 (en) 1997-04-16

Family

ID=17201226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62249992A Expired - Lifetime JP2600199B2 (en) 1987-10-05 1987-10-05 Hydrogen purification method

Country Status (1)

Country Link
JP (1) JP2600199B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100292555B1 (en) * 1999-01-21 2001-06-01 손재익 Pressure swing adsorption process for hydrogen purification with high productivity

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59207803A (en) * 1983-02-10 1984-11-26 Nippon Kagaku Gijutsu Kk Hydrogen purification by two-stage pressure swing adsorption
JPS60191002A (en) * 1984-03-07 1985-09-28 Osaka Oxgen Ind Ltd Method for concentrating hydrogen in mixed gas containing at least hydrogen by using adsorption method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59207803A (en) * 1983-02-10 1984-11-26 Nippon Kagaku Gijutsu Kk Hydrogen purification by two-stage pressure swing adsorption
JPS60191002A (en) * 1984-03-07 1985-09-28 Osaka Oxgen Ind Ltd Method for concentrating hydrogen in mixed gas containing at least hydrogen by using adsorption method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100292555B1 (en) * 1999-01-21 2001-06-01 손재익 Pressure swing adsorption process for hydrogen purification with high productivity

Also Published As

Publication number Publication date
JP2600199B2 (en) 1997-04-16

Similar Documents

Publication Publication Date Title
US4077779A (en) Hydrogen purification by selective adsorption
CA1336041C (en) Separation of gas mixtures including hydrogen
EP0008512B1 (en) Separation of multicomponent gas mixtures
EP0307843B1 (en) Production of hydrogen and carbon monoxide
AU646704B2 (en) Hydrogen and carbon monoxide production by hydrocarbon steam reforming and pressure swing adsorption purification
US4402712A (en) System for treatment of plural crude gases in single adsorption plant
US5234472A (en) Separation of gas mixtures including hydrogen
US4171207A (en) Separation of multicomponent gas mixtures by pressure swing adsorption
US4913709A (en) Adsorption process for recovering two high purity gas products from multicomponent gas mixtures
US4892565A (en) Adsorptive separation utilizing multiple adsorption beds
US4726816A (en) Reformer-pressure swing adsorption process for the production of carbon monoxide
US4371380A (en) Pressure swing adsorption process
US4836833A (en) Production and recovery of hydrogen and carbon monoxide
EP0166013B1 (en) Improved product recovery in pressure swing adsorption process and system
USRE31014E (en) Separation of multicomponent gas mixtures
US3252268A (en) Gas separation by adsorption process
EP0194334A1 (en) Pressure swing adsorption with intermediate product recovery
EP0545559B1 (en) Separation of gas mixtures
JPH0871350A (en) Simultaneous stage pressure variation type adsorption method
EP0129444B2 (en) Methods for obtaining high-purity carbon monoxide
JPH0463726B2 (en)
EP0219103A2 (en) Oxidation of carbonaceous material
JPH0422848B2 (en)
JPH0193402A (en) Method for purifying hydrogen
JP2848557B2 (en) Hydrogen purification method