JPH10272332A - Gas separation device and its operation method - Google Patents

Gas separation device and its operation method

Info

Publication number
JPH10272332A
JPH10272332A JP9079639A JP7963997A JPH10272332A JP H10272332 A JPH10272332 A JP H10272332A JP 9079639 A JP9079639 A JP 9079639A JP 7963997 A JP7963997 A JP 7963997A JP H10272332 A JPH10272332 A JP H10272332A
Authority
JP
Japan
Prior art keywords
gas
adsorption tower
adsorption
gas separation
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9079639A
Other languages
Japanese (ja)
Inventor
Masahito Kawai
雅人 川井
Toru Nagasaka
徹 長坂
Ichiro Nakayama
一郎 仲山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Nippon Sanso Corp
Original Assignee
Japan Oxygen Co Ltd
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd, Nippon Sanso Corp filed Critical Japan Oxygen Co Ltd
Priority to JP9079639A priority Critical patent/JPH10272332A/en
Publication of JPH10272332A publication Critical patent/JPH10272332A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve the gas separation efficiency in a gas separation device of a pressure variation adsorption type including a compressor, an adsorption column filled with an adsorbent, and a surging tank, by dividing the adsorption column into a plurality of sections in the direction of gas and connecting the sections in series through valves. SOLUTION: Raw gas is passed through a line 1 and compressed by a compressor 3 and flows through lines 4, 6 into an adsorption column. The column is divided into a first adsorption column 9a located on the upstream side of the flow of the raw gas and a second adsorption column 9b on the downstream side of the gas, and the gas is adsorbed by adsorbents in the column 9a, while the gas which is hard to be adsorbed by the adsorbents flows out from a line 8 through the column 9b. Product gas leaving the column 9b is supplied from a service tank 12 via a pressure regulating valve 14 and flow regulating valve 15. And in a purge process, the gas held in the column 9b, after the adsorption process, is used together with the product gas in the tank 12 to pressurize the column 9a again.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ガス分離装置及び
その運転方法に関し、詳しくは、基本的に1筒式の圧力
変動吸着式ガス分離装置によるガス分離に係わり、特に
空気から酸素及び窒素を分離回収するガス分離装置及び
その運転方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas separation apparatus and a method of operating the same, and more particularly, to gas separation using a single-tube pressure fluctuation adsorption type gas separation apparatus, and particularly to the separation of oxygen and nitrogen from air. The present invention relates to a gas separation device for separating and recovering and an operation method thereof.

【0002】[0002]

【従来の技術】ゼオライトを吸着剤とする圧力変動吸着
式ガス分離装置(PressureSwing Ads
orption、以下、PSAと略記する)で空気から
酸素を分離する方法が広く行われている。この場合、ゼ
オライトの窒素に対する高い選択吸着性を利用して空気
から酸素を分離するが、酸素とアルゴンが略同一の吸着
性能を持つために、酸素とアルゴンとの分離ができず、
製品酸素にはアルゴンが含まれるので、酸素の最高濃度
は概ね95容積%である。
2. Description of the Related Art Pressure swing adsorption type gas separation apparatus using zeolite as an adsorbent (Pressure Swing Ads)
A method for separating oxygen from air by an option (hereinafter abbreviated as PSA) is widely used. In this case, oxygen is separated from air using the high selective adsorption of nitrogen to zeolite, but because oxygen and argon have substantially the same adsorption performance, oxygen and argon cannot be separated.
Since the product oxygen contains argon, the maximum concentration of oxygen is approximately 95% by volume.

【0003】このような濃度の酸素の用途として、電気
炉を用いた製鋼等は95容積%以下の酸素濃度で十分で
ある。しかし、金属の切断では99.5容積%程度の酸
素濃度がないと、切断速度、切断面の滑らかさ等の点で
問題がある。また、病院等で用いられる医療用酸素は、
薬事法で99.5容積%以上の酸素濃度が必要であると
定められている。しかし、大部分の酸素の用途において
は、90容積%前後の濃度があれば十分であり、PSA
法で分離された90容積%程度の濃度の酸素ガスは、現
在工業的に広く使用されている。かかる事情から、大量
の酸素をより安価に供給する様々な改良が行われてき
た。その例として設備構成の簡略化がある。
[0003] As an application of oxygen having such a concentration, for steel making using an electric furnace, an oxygen concentration of 95% by volume or less is sufficient. However, if there is no oxygen concentration of about 99.5% by volume in metal cutting, there are problems in cutting speed, smoothness of the cut surface, and the like. In addition, medical oxygen used in hospitals, etc.
The Pharmaceutical Affairs Law stipulates that an oxygen concentration of 99.5% by volume or more is required. However, for most oxygen applications, concentrations of around 90% by volume are sufficient and PSA
Oxygen gas having a concentration of about 90% by volume separated by the method is now widely used industrially. Under such circumstances, various improvements have been made to supply a large amount of oxygen at a lower cost. An example is simplification of the equipment configuration.

【0004】例えば、特開昭49−36579号公報に
は、単床式PSA酸素発生方法及び装置が開示されてい
る。この発明では、吸着塔を一つとするだけでなく、原
料空気を圧縮する圧縮機を、再生工程において真空ポン
プとして用い、再生効率を向上させることが示されてい
る。しかし、単床式では、一般に均圧操作を実施するこ
とができないため、複数の吸着塔を使用して均圧操作を
行う方式に比べて酸素回収率が低く、結果的に電力消費
量が多いという問題があった。
For example, Japanese Patent Application Laid-Open No. 49-36579 discloses a single-bed type PSA oxygen generating method and apparatus. According to the present invention, it is disclosed that not only a single adsorption tower but also a compressor for compressing raw material air is used as a vacuum pump in a regeneration step to improve regeneration efficiency. However, in the single-bed system, since the equalizing operation cannot be generally performed, the oxygen recovery rate is lower than that in the system in which the equalizing operation is performed using a plurality of adsorption towers, and as a result, the power consumption is larger. There was a problem.

【0005】また、特開昭60−110318号公報に
は、発生したガスを貯留するタンクを設けた1筒式PS
Aのプロセスが記載されている。そして、このタンクを
介して圧力均等化の工程を行っているが、これはいわゆ
る均圧工程ではなく、原料空気の加圧と製品ガスの加圧
とを同時に進行させる、いわゆる再加圧工程に他ならな
い。
Japanese Patent Application Laid-Open No. Sho 60-110318 discloses a single-cylinder PS having a tank for storing generated gas.
The process of A is described. Then, the pressure equalization process is performed through this tank, but this is not a so-called equalization process but a so-called re-pressurization process in which pressurization of the raw material air and pressurization of the product gas proceed simultaneously. Nothing else.

【0006】一方、吸着剤として分子篩活性炭を用いた
PSA法によって、空気から窒素を製品として得ること
ができる。このPSA法による窒素分離は、原料ガスを
適当な圧力に加圧して吸着剤層に通し、加圧下で酸素を
優先的に吸着させ、相対的に吸着されにくい窒素を製品
として取り出し、一定時間の吸着工程後に吸着剤が酸素
で飽和したら、原料空気の送入を停止して大気圧に解放
し、層内の圧力を大気圧又は大気圧以下に低下させ、こ
れにより吸着していた酸素分を脱着させ、吸着剤の再生
を行うことを一定時間毎に繰り返すことによって、製品
として窒素ガスを連続的に分離回収する方法である。
On the other hand, nitrogen can be obtained as a product from air by the PSA method using activated carbon molecular sieve as an adsorbent. In the nitrogen separation by the PSA method, the raw material gas is pressurized to an appropriate pressure and passed through an adsorbent layer, oxygen is preferentially adsorbed under the pressure, and nitrogen which is relatively hard to be adsorbed is taken out as a product for a predetermined time. When the adsorbent is saturated with oxygen after the adsorption step, the supply of the raw material air is stopped and released to the atmospheric pressure, and the pressure in the bed is reduced to the atmospheric pressure or lower than the atmospheric pressure. It is a method of continuously separating and recovering nitrogen gas as a product by repeating desorption and regeneration of the adsorbent at regular intervals.

【0007】PSAによる窒素分離法では、均圧操作
(吸着工程終了後の残留ガスの回収)の改良による窒素
回収率の向上、あるいは操作条件、例えばサイクルタイ
ム、パージ量等の最適化による窒素発生量の向上等の改
良がなされている。例えば特開昭63−182016号
公報には、分子篩活性炭使用の単床式PSA窒素発生装
置が開示されている。この装置は、前記特開昭49−3
6579号公報記載のものと特開昭60−110318
号公報記載のものとを組み合わせたものであり、圧縮機
と真空ポンプとを兼用すること及び吸着塔とサージタン
クとを設けた構成となっている。性能の向上という点で
付け加えられたものはない。
In the nitrogen separation method using PSA, the nitrogen recovery rate is improved by improving the pressure equalizing operation (recovery of the residual gas after the completion of the adsorption step), or the nitrogen generation is performed by optimizing the operating conditions such as cycle time and purge amount. Improvements have been made, such as increasing the amount. For example, JP-A-63-182016 discloses a single-bed PSA nitrogen generator using activated carbon of molecular sieve. This device is disclosed in
No. 6579 and JP-A-60-110318.
This publication combines the one described in Japanese Patent Application Laid-Open No. H10-205, and has a configuration in which both a compressor and a vacuum pump are used, and an adsorption tower and a surge tank are provided. Nothing was added in terms of performance improvements.

【0008】[0008]

【発明が解決しようとする課題】複数の吸着塔を用いた
PSA法による酸素、窒素の製造において、回収率を向
上するために共通して実施されている均圧操作を、単床
式PSAで実施するためには、吸着工程終了時のガスを
回収するための容器を別に設け、次のように操作するこ
とが考えられる。吸着工程終了時の排出ガスが、定めら
れた製品濃度より低下し始めたら、製品ガスとしてのガ
ス発生を打ち切り、吸着塔とガス回収のための容器とを
連結して物質移動帯(MTZ)に相当する部分のガスを
回収容器に回収する。回収したガスは、吸着塔が再生工
程を行っているときに再生用パージガスとして使用す
る、あるいは再生工程を終了した時点で再加圧用ガスと
して使用する。
In the production of oxygen and nitrogen by the PSA method using a plurality of adsorption towers, the equalizing operation commonly performed to improve the recovery rate is performed by a single-bed PSA. In order to carry out the method, it is conceivable to separately provide a container for collecting gas at the end of the adsorption step, and to operate as follows. When the exhaust gas at the end of the adsorption process starts to drop below the specified product concentration, the generation of gas as the product gas is stopped, and the adsorption tower and the container for gas recovery are connected to the mass transfer zone (MTZ). A corresponding part of the gas is collected in a collection container. The recovered gas is used as a purge gas for regeneration when the adsorption tower is performing the regeneration step, or is used as a gas for re-pressurization when the regeneration step is completed.

【0009】しかし、この回収容器を用いる方法には次
の欠点がある。吸着塔と回収容器とを連結したとき、吸
着塔上部のガスから流れ込むが、気相に存在する比較的
空気に近い組成のガスの流入を阻止することが難しい。
また、吸着塔から容器へガスが回収されるのに従って吸
着塔の圧力が低下するので、それに伴い吸着剤に吸着さ
れていた除去対象成分が脱着して回収ガスに混入してく
る。いずれの場合にも、回収されたガスの組成は幾分下
がり回収効果を低下させる。
However, the method using the recovery container has the following disadvantages. When the adsorption tower and the recovery vessel are connected, the gas flows from the gas in the upper part of the adsorption tower, but it is difficult to prevent the gas present in the gaseous phase having a composition relatively similar to air from flowing.
Further, as the gas is recovered from the adsorption tower to the vessel, the pressure in the adsorption tower decreases, and accordingly, the components to be removed that have been adsorbed by the adsorbent are desorbed and mixed into the recovered gas. In each case, the composition of the recovered gas is somewhat reduced, reducing the recovery effect.

【0010】さらに、この均圧用の回収容器は、製品を
貯留する容器とは別に設ける必要があるので、設備や配
管系統の複雑化等、設備費用上昇の原因になり、実用的
には望ましい方法とはいえない。
[0010] Further, since the pressure equalizing recovery container needs to be provided separately from the container for storing the product, it causes an increase in equipment cost such as complicated equipment and piping system, and is a practically desirable method. Not really.

【0011】そこで本発明は、上述のような単床式PS
Aの欠点を解決し、単床式PSAにおけるガス分離効率
を改善することができるガス分離装置及びその運転方法
を提供することを目的としている。
Accordingly, the present invention provides a single-bed PS as described above.
It is an object of the present invention to provide a gas separation apparatus which can solve the drawback of A and improve gas separation efficiency in a single-bed PSA, and a method of operating the same.

【0012】[0012]

【課題を解決するための手段】上記目的を達成するた
め、本発明のガス分離装置は、圧縮機、吸着剤を充填し
た吸着塔及びサージタンクを備えた圧力変動吸着式のガ
ス分離装置において、吸着塔をガスの流れ方向に複数に
分割し、かつ、弁を介して直列に連結したことを特徴と
し、さらに、前記分割された吸着塔の原料ガスの流れ方
向の上流側に位置する第一の吸着塔と、原料ガスの流れ
方向の下流側に位置する第二の吸着塔とに充填された前
記吸着剤の量の比が、1:0.1から1:0.5の間で
あることを特徴としている。
In order to achieve the above object, a gas separation apparatus of the present invention comprises a pressure fluctuation adsorption type gas separation apparatus comprising a compressor, an adsorption tower filled with an adsorbent, and a surge tank. The adsorption tower is divided into a plurality in the gas flow direction, and is connected in series via a valve, and further, a first adsorption tower located on the upstream side in the flow direction of the raw material gas in the divided adsorption tower. And the ratio of the amount of the adsorbent packed in the second adsorption tower located downstream in the flow direction of the raw material gas is between 1: 0.1 and 1: 0.5. It is characterized by:

【0013】また、本発明のガス分離装置の運転方法
は、上記構成のガス分離装置の運転方法であって、相対
的に高い圧力で行われる吸着工程と、低い圧力で行われ
る再生工程とを主要な工程とする圧力変動吸着式でガス
を分離するにあたり、前記吸着工程の間、分割された吸
着塔の原料ガスの流れ方向の上流側に位置する第一の吸
着塔と、原料ガスの流れ方向の下流側に位置する第二の
吸着塔とを連通させて用いることを特徴としている。
The method of operating a gas separation device according to the present invention is an operation method of a gas separation device having the above-described configuration, wherein an adsorption step performed at a relatively high pressure and a regeneration step performed at a relatively low pressure. In separating gas by the pressure fluctuation adsorption method as a main step, during the adsorption step, the first adsorption tower located on the upstream side in the flow direction of the raw material gas of the divided adsorption tower, and the flow of the raw material gas It is characterized in that it is used in communication with a second adsorption tower located downstream in the direction.

【0014】さらに、本発明方法では、再生工程中のパ
ージ工程において、前記第一の吸着塔が再生工程に移行
して圧力が低下したとき、前記第一の吸着塔と前記第二
の吸着塔とを連通させ、前記吸着工程が終了した時点で
前記第二の吸着塔が保持するガスを、前記第一の吸着塔
のパージガスとして用いることを特徴としている。
Further, in the method of the present invention, in the purge step during the regeneration step, when the pressure of the first adsorption tower shifts to the regeneration step and the pressure decreases, the first adsorption tower and the second adsorption tower And the gas held by the second adsorption tower at the time of completion of the adsorption step is used as a purge gas for the first adsorption tower.

【0015】また、再生工程後の再加圧工程において、
前記第一の吸着塔が再生工程を完了した後、前記第一の
吸着塔と前記第二の吸着塔を連通させ、前記吸着工程が
終了した時点で前記第二の吸着塔が保持するガスを、前
記第一の吸着塔の再加圧用ガスとして用いること、ある
いは、 前記第一の吸着塔が再生工程を完了した時点
で、前記第一の吸着塔と第二の吸着塔及び前記サージタ
ンクを連通させ、前記吸着工程が終了した時点で前記第
二の吸着塔が保持するガスを、前記サージタンク内の製
品ガスとともに前記第一の吸着塔の再加圧用ガスとして
用いることを特徴としている。
In the re-pressurizing step after the regenerating step,
After the first adsorption tower completes the regeneration step, the first adsorption tower and the second adsorption tower are communicated with each other, and the gas retained by the second adsorption tower at the time when the adsorption step is completed. Used as a gas for re-pressurization of the first adsorption tower, or, when the first adsorption tower has completed the regeneration step, the first adsorption tower, the second adsorption tower and the surge tank The method is characterized in that the gas is held in communication with the second adsorption tower when the adsorption step is completed, and is used together with the product gas in the surge tank as a gas for re-pressurizing the first adsorption tower.

【0016】本発明では、ガス分離のための主たる前記
吸着剤がゼオライトであって、分離回収されるガスが酸
素であること、あるいは、ガス分離のための主たる前記
吸着剤が分子篩活性炭であって、分離回収されるガスが
窒素であることを特徴としている。
In the present invention, the main adsorbent for gas separation is zeolite and the gas to be separated and recovered is oxygen, or the main adsorbent for gas separation is activated carbon molecular sieve. The gas to be separated and recovered is nitrogen.

【0017】[0017]

【発明の実施の形態】図1は本発明のガス分離装置(P
SA装置)の一形態例を示す系統図、図2はその運転方
法の説明図である。
FIG. 1 shows a gas separation apparatus (P) according to the present invention.
FIG. 2 is a system diagram showing an example of an embodiment of the present invention (SA device), and FIG.

【0018】原料ガスは、ライン1から弁2を介して圧
縮機3に吸入され、圧縮機3により所定の圧力に圧縮さ
れた後、ライン4、弁5、ライン6を通って吸着塔に流
入する。吸着塔は、弁7を有するライン8を介して原料
ガスの流れ方向の上流側に位置する第一の吸着塔9aと
原料ガスの流れ方向の下流側に位置する第二の吸着塔9
bに分割されており、それぞれに吸着剤が充填されてい
る。
The raw material gas is sucked into the compressor 3 from the line 1 via the valve 2, compressed to a predetermined pressure by the compressor 3, and then flows into the adsorption tower through the line 4, the valve 5 and the line 6. I do. The adsorption tower comprises a first adsorption tower 9a located upstream in the flow direction of the source gas via a line 8 having a valve 7 and a second adsorption tower 9 located downstream in the flow direction of the source gas.
b, each of which is filled with an adsorbent.

【0019】吸着剤として、例えば、原料ガスが空気で
ある場合には、空気が水蒸気を含むため、第一の吸着塔
9aの原料流入端には、活性アルミナ、シリカゲルある
いは水分吸着に適したゼオライトが充填される。水蒸気
を原料供給ラインの途中に設けた冷凍式除湿器等を用い
て予め除去する場合には、これらの水蒸気除去用吸湿剤
を充填する必要はない。水蒸気の除去は、吸湿剤と冷凍
式除湿器等とを併用してもよい。
As the adsorbent, for example, when the raw material gas is air, since the air contains water vapor, the raw material inflow end of the first adsorption tower 9a is provided with activated alumina, silica gel or zeolite suitable for adsorbing moisture. Is filled. When removing water vapor in advance using a refrigeration dehumidifier provided in the middle of the raw material supply line, it is not necessary to fill these water vapor removing desiccants. For the removal of water vapor, a moisture absorbent and a refrigerating dehumidifier may be used in combination.

【0020】第一の吸着塔9aには、前記水蒸気除去吸
湿剤より下流側に、ガス分離用の主たる吸着剤が充填さ
れる。対象とする製品ガスが酸素の場合にはゼオライト
であり、対象とする製品ガスが窒素の場合には分子篩活
性炭である。ゼオライトとしては、いわゆるモレキュラ
ーシーブス、MS−5A、MS−10X,MS−13
X、又はモルデナイト等が好適である。また、上記ゼオ
ライトを適宜イオン交換処理して金属イオンを導入した
ものであってもよい。分子篩活性炭(以下CMSと略記
する)は、種類を規定する一般的な型式はないが、細孔
入口径がおよそ3オングストロームであって、酸素と窒
素の吸着速度が大幅に異なるものが好適である。第二の
吸着塔9bには、前記の主たる吸着剤のみが充填され
る。
The first adsorber 9a is filled with a main adsorbent for gas separation downstream of the water vapor removing / absorbing agent. When the product gas of interest is oxygen, it is zeolite, and when the product gas of interest is nitrogen, it is molecular sieve activated carbon. As the zeolite, so-called molecular sieves, MS-5A, MS-10X, MS-13
X or mordenite is preferred. Further, the above zeolite may be appropriately ion-exchanged to introduce metal ions. There is no general type for molecular sieve activated carbon (hereinafter abbreviated as CMS), but a type having a pore entrance diameter of about 3 angstroms and a greatly different oxygen and nitrogen adsorption rate is preferable. . The second adsorption tower 9b is filled with only the main adsorbent.

【0021】第一の吸着塔9aに流入した原料ガスは、
入口部に充填された活性アルミナ等の吸湿剤によって水
蒸気を除去された後に主たる吸着剤層に入り、充填され
た吸着剤の種類によって決まる優先的に吸着されるガス
が吸着され、吸着されにくいガスが製品として塔内を前
進し、ライン8から第二の吸着塔9bを通って流出す
る。
The raw material gas flowing into the first adsorption tower 9a is:
A gas that enters the main adsorbent layer after water vapor is removed by a moisture absorbent such as activated alumina filled in the inlet portion, and gas that is preferentially adsorbed depending on the type of adsorbent charged is adsorbed, and is difficult to be adsorbed Proceeds as a product in the column and flows out of the line 8 through the second adsorption column 9b.

【0022】第二の吸着塔9bから流出した製品ガス
は、ライン10、弁11を通ってサージタンク12に入
り、さらに、ライン13、圧力調整弁14、流量調整弁
15、ライン16を経て使用先に供給される。原料ガス
の供給を続けることによって、吸着成分で飽和した吸着
層が下流側に進むので、第二の吸着塔出口における製品
ガス濃度を検出し、許容された製品濃度範囲から外れた
時点で、製品ガスの送出を停止する。ここまでの、原料
ガスを供給して製品ガスを取り出す期間が、図2(A)
に示す吸着工程である。
The product gas flowing out of the second adsorption tower 9b enters the surge tank 12 through the line 10 and the valve 11, and is further used through the line 13, the pressure regulating valve 14, the flow regulating valve 15, and the line 16. Supplied first. By continuing the supply of the raw material gas, the adsorbed layer saturated with the adsorbed component proceeds to the downstream side, so the product gas concentration at the outlet of the second adsorption tower is detected. Stop gas delivery. The period during which the raw material gas is supplied and the product gas is extracted is shown in FIG.
This is the adsorption step shown in FIG.

【0023】吸着工程終了時点で弁5が切り換えられ、
圧縮機3からのガスは弁5からライン17へ流れ、吸着
塔側は閉じられる。また、弁7、弁11も閉じられる。
しかし、製品ガスはサージタンク12内に蓄えられたガ
スによって連続的にライン16から供給される。
At the end of the adsorption step, the valve 5 is switched,
The gas from the compressor 3 flows from the valve 5 to the line 17, and the adsorption tower side is closed. Further, the valves 7 and 11 are also closed.
However, the product gas is continuously supplied from the line 16 by the gas stored in the surge tank 12.

【0024】吸着工程終了時点の第一の吸着塔9aは、
全領域が空気と平衡関係にあり、気相はほとんど空気組
成である。また第二の吸着塔9bには、製品出口部分に
いわゆる物質移動帯(MTZ)が残り、製品品位よりは
低いが、空気よりは濃縮された製品ガスが存在する。
At the end of the adsorption step, the first adsorption tower 9a
All regions are in equilibrium with air, and the gas phase is almost air composition. In the second adsorption tower 9b, a so-called mass transfer zone (MTZ) remains at the product outlet, and a product gas which is lower than the product quality but more concentrated than air exists.

【0025】再生工程は、第一の吸着塔と第二の吸着塔
とを連通する弁7を閉じ、第一の吸着塔9aが保持する
圧力をライン6、弁18、ライン19を経て大気に逃が
して圧力を下げる、図2(B)に示す減圧工程から始ま
る。このような操作が必要となるのは、第一の吸着塔9
aの圧力が大気圧よりかなり高い場合であって、略大気
圧である場合には圧力を大気に逃がすこの工程を省略し
て次の工程を実施してよい。第一の吸着塔9aの圧力が
略大気圧になったら、弁18を閉じて、ライン6、ライ
ン20、弁2を経て圧縮機3により塔内のガスを吸引
し、ライン4、弁5、ライン17から脱着ガスを大気に
放出する。圧力を十分に低下させることで、吸着剤に吸
着していた優先的に吸着する成分が脱着して大気に流れ
出す。
In the regeneration step, the valve 7 communicating the first adsorption tower and the second adsorption tower is closed, and the pressure held by the first adsorption tower 9a is released to the atmosphere via the line 6, the valve 18 and the line 19. It starts from the pressure reduction step shown in FIG. Such an operation is required because the first adsorption tower 9
When the pressure of a is considerably higher than the atmospheric pressure, and when the pressure is substantially the atmospheric pressure, this step of releasing the pressure to the atmosphere may be omitted and the next step may be performed. When the pressure of the first adsorption tower 9a becomes substantially atmospheric pressure, the valve 18 is closed, the gas in the tower is sucked by the compressor 3 through the line 6, the line 20, and the valve 2, and the line 4, the valve 5, The desorption gas is released from the line 17 to the atmosphere. By sufficiently reducing the pressure, the preferentially adsorbed component adsorbed on the adsorbent is desorbed and flows out to the atmosphere.

【0026】なお、本形態例では、圧縮機3を再生用の
真空ポンプとして使う場合を記載しているが、真空ポン
プを別に用意し、空気供給系統と真空排気系統とを別に
することもできる。
In this embodiment, the case where the compressor 3 is used as a vacuum pump for regeneration is described. However, it is also possible to prepare a vacuum pump separately and separate an air supply system and a vacuum exhaust system. .

【0027】再生工程を単に吸着塔9aを大気に解放す
ることで行うことに比べて、上述のような真空排気を行
うことは、圧力スイング幅を広げることによる吸着容量
の増大、再生程度の向上による製品ガスの回収率の向上
の点で効果が大きい。
Compared to simply performing the regeneration step by releasing the adsorption tower 9a to the atmosphere, performing the above-described vacuum evacuation increases the adsorption capacity by increasing the pressure swing width and improves the degree of regeneration. The effect is large in terms of improvement of the product gas recovery rate by the method.

【0028】再生工程の一つの形態は、第二の吸着塔9
bに残留する比較的濃縮された製品ガスを利用する方
法、すなわち、図2(C)に示すように、第一の吸着塔
9a内の圧力が十分低下した時点で弁7を開き、第二の
吸着塔9b内に残留するガスを第一の吸着塔9aに逆流
させ、パージガスとして使用する方法である。このよう
にして物質移動帯部分に残るかなり濃縮された製品ガス
により第一の吸着塔9aのパージを行うことは、圧力低
下により脱着して吸着剤周辺に存在する易吸着成分を排
気側に押し出す効果がある。また、パージにより、吸着
剤周辺における易吸着成分の分圧が低下するから、吸着
剤からの易吸着成分の脱着を促進させる効果もある。し
かも、通常は製品ガスを使って行うパージが、製品には
ならない濃度のガスで行われるため、製品の取り出し量
が増える効果も持つ。
One form of the regeneration step is the second adsorption tower 9
b, the valve 7 is opened when the pressure in the first adsorption tower 9a is sufficiently reduced, as shown in FIG. 2 (C). In this method, the gas remaining in the adsorption tower 9b is returned to the first adsorption tower 9a and used as a purge gas. Purging the first adsorption tower 9a with the considerably concentrated product gas remaining in the mass transfer zone in this way desorbs due to a decrease in pressure and pushes easily adsorbed components present around the adsorbent to the exhaust side. effective. Further, the purging reduces the partial pressure of the easily adsorbable component around the adsorbent, and thus has an effect of promoting the desorption of the easily adsorbable component from the adsorbent. In addition, since the purging normally performed using the product gas is performed using a gas having a concentration that does not become a product, the amount of product to be taken out is increased.

【0029】再生工程を終了した吸着塔9a,9bは、
吸着工程と比較して大きな圧力差があるので、吸着工程
に入る前に、図2(D)に示すような再加圧工程が行わ
れる。再加圧の方法には、主としてサージタンク12内
の製品ガスを用いる場合と、第二の吸着塔9b内に残留
する比較的濃縮された製品ガスを用いる場合とがある。
After the regeneration step, the adsorption towers 9a and 9b are
Since there is a large pressure difference as compared with the adsorption step, a re-pressurization step as shown in FIG. 2D is performed before the adsorption step. The method of re-pressurization includes a case where the product gas in the surge tank 12 is mainly used and a case where a relatively concentrated product gas remaining in the second adsorption tower 9b is used.

【0030】第二の吸着塔9bに残留するガスを前記再
生工程(パージ工程)で使用した場合には、再加圧はも
っぱらサージタンク12の製品ガスを用いる。この場
合、製品ガスはサージタンク12、弁11、ライン1
0、第二の吸着塔9b,ライン8,弁7を経て、第一の
吸着塔9aに入り、塔内の加圧を行う。このようにする
ことで、第二の吸着塔9bは、サージタンク12内の製
品ガスによるパージを受けて再生される。
When the gas remaining in the second adsorption tower 9b is used in the regeneration step (purge step), the product gas in the surge tank 12 is used exclusively for re-pressurization. In this case, the product gas is surge tank 12, valve 11, line 1
0, through the second adsorption tower 9b, the line 8, and the valve 7, enter the first adsorption tower 9a, and pressurize the inside of the tower. In this way, the second adsorption tower 9b is regenerated after being purged by the product gas in the surge tank 12.

【0031】最後に、図2(E)に示すように、圧縮機
3からの原料ガスの供給が始まり、塔内圧力が所定圧力
に達した時点で図2(A)に示す吸着工程に戻る。
Finally, as shown in FIG. 2 (E), supply of the raw material gas from the compressor 3 starts, and when the pressure in the tower reaches a predetermined pressure, the process returns to the adsorption step shown in FIG. 2 (A). .

【0032】また、再生工程の別の形態として、図3に
示すように、サージタンク12から第一の吸着塔9aを
直接結ぶライン21と、この間に信号によって開閉する
弁22とを設け、再生工程の全部の時期または圧力が十
分低下した一時期に弁22を開き、図4(C)に示すよ
うに、サージタンク12内の製品ガスを第一の吸着塔9
aに逆流させ、第一の吸着塔9a内をパージすることも
有効である。
As another embodiment of the regeneration step, as shown in FIG. 3, a line 21 that directly connects the surge tank 12 to the first adsorption tower 9a, and a valve 22 that opens and closes by a signal between the line 21 are provided. The valve 22 is opened at all times of the process or at a time when the pressure is sufficiently reduced, and the product gas in the surge tank 12 is supplied to the first adsorption tower 9 as shown in FIG.
It is also effective to reverse the flow to a and purge the interior of the first adsorption tower 9a.

【0033】このように、サージタンク12の製品ガス
を直接パージガスとする場合には、第二の吸着塔9bに
残留するガスはパージガスとして用いない方が望まし
い。
As described above, when the product gas in the surge tank 12 is directly used as the purge gas, it is desirable not to use the gas remaining in the second adsorption tower 9b as the purge gas.

【0034】第二の吸着塔9b内に残留するガスを再加
圧用として使用する場合には、第一の吸着塔9aの再生
が終了した時点で弁7を開き、第二の吸着塔9b内に残
留するガスを第一の吸着塔9aに供給する。このとき弁
11を開いてサージタンク12内の製品ガスを第二の吸
着塔9bを介して第一の吸着塔9aに供給すると、加圧
に供されるガス量が多くなり、再加圧がより一層進むの
で好ましい。
When the gas remaining in the second adsorption tower 9b is used for re-pressurization, the valve 7 is opened when the regeneration of the first adsorption tower 9a is completed, and the gas in the second adsorption tower 9b is opened. Is supplied to the first adsorption tower 9a. At this time, when the valve 11 is opened and the product gas in the surge tank 12 is supplied to the first adsorption tower 9a via the second adsorption tower 9b, the amount of gas used for pressurization increases, and It is preferable because it proceeds further.

【0035】第二の吸着塔9bに残留したガスを再加圧
に使用すると、吸着塔の圧抜き工程で物質移動帯に存在
する比較的濃縮した製品ガスを系外に捨てることがなく
なるので、製品ガスの採取率が飛躍的に向上する。
When the gas remaining in the second adsorption tower 9b is used for re-pressurization, the relatively concentrated product gas present in the mass transfer zone in the depressurization step of the adsorption tower is not discarded outside the system. The sampling rate of product gas is dramatically improved.

【0036】また、第一の吸着塔9aと第二の吸着塔9
bとの大きさは、吸着剤の種類や製品ガスの種類などに
よっても異なるが、通常は、第一の吸着塔と第二の吸着
塔とに充填された前記吸着剤の量の比が、1:0.1か
ら1:0.5の間にすることが好ましい。これよりも第
二の吸着塔9bが小さいとパージガス等として用いるガ
ス量が不足することがあり、これより大きくすると、第
二の吸着塔9b内の物質移動帯部分に残るかなり濃縮さ
れた製品ガスを有効に利用することができなくなる。
The first adsorption tower 9a and the second adsorption tower 9
The size of b differs depending on the type of adsorbent and the type of product gas, but usually, the ratio of the amount of the adsorbent filled in the first adsorption tower and the second adsorption tower is Preferably between 1: 0.1 and 1: 0.5. If the second adsorption tower 9b is smaller than this, the amount of gas used as a purge gas or the like may be insufficient, and if it is larger than this, a considerably concentrated product gas remaining in the mass transfer zone in the second adsorption tower 9b. Cannot be used effectively.

【0037】なお、図3及び図4において、前記図1に
示す構成要素及び図2に示す工程にはそれぞれ同一符号
を付し、これらの詳細な説明は省略する。
In FIGS. 3 and 4, the same reference numerals are given to the components shown in FIG. 1 and the steps shown in FIG. 2, respectively, and detailed description thereof will be omitted.

【0038】[0038]

【実施例】【Example】

実施例1 図1に示す構成のPSA装置を図2に示す工程を繰返す
運転方法で運転し、空気から酸素を分離する実験運転を
行った。再生工程では圧縮機を真空ポンプとして使用し
た。また、吸着工程終了時に弁7を閉じることなく、第
一の吸着塔9aと第二の吸着塔9bとを一体の吸着塔と
して扱った場合を比較例法とした。運転結果を表1に示
す。
Example 1 The PSA apparatus having the configuration shown in FIG. 1 was operated by an operation method in which the steps shown in FIG. 2 were repeated, and an experimental operation for separating oxygen from air was performed. In the regeneration step, the compressor was used as a vacuum pump. Further, a case where the first adsorption tower 9a and the second adsorption tower 9b were treated as an integral adsorption tower without closing the valve 7 at the end of the adsorption step was defined as a comparative example method. Table 1 shows the operation results.

【0039】[0039]

【表1】 (注)吸着塔剤比率は、第一の吸着塔と第二の吸着塔と
の充填吸着剤の比を表す(以下の実施例でも同じ)。
[Table 1] (Note) The adsorption tower agent ratio indicates the ratio of the packed adsorbent between the first adsorption tower and the second adsorption tower (the same applies to the following examples).

【0040】実施例2 図1に示す構成のPSA装置を図2に示す工程を繰返す
運転方法で運転し、空気から窒素を分離する実験運転を
行った。再生工程では単に吸着塔を大気に解放するだけ
とした。また、実施例1と同様に、第一の吸着塔と第二
の吸着塔とを一体の吸着塔として扱った場合を比較例法
とした。運転結果を表2に示す。
Example 2 The PSA apparatus having the configuration shown in FIG. 1 was operated by an operation method in which the steps shown in FIG. 2 were repeated, and an experimental operation for separating nitrogen from air was performed. In the regeneration step, the adsorption tower was simply released to the atmosphere. Further, as in Example 1, a case where the first adsorption tower and the second adsorption tower were treated as an integral adsorption tower was defined as a comparative example method. Table 2 shows the operation results.

【0041】[0041]

【表2】 [Table 2]

【0042】実施例3 図3に示す構成のPSA装置を図4に示す工程を繰返す
運転方法で運転し、空気から酸素を分離する実験運転を
行った。再生工程では圧縮機を真空ポンプとして使用し
た。また、前記同様に第一の吸着塔と第二の吸着塔とを
一体の吸着塔として扱った場合を比較例法とした。運転
結果を表3に示す。
Example 3 The PSA apparatus having the structure shown in FIG. 3 was operated by an operation method in which the steps shown in FIG. 4 were repeated, and an experimental operation for separating oxygen from air was performed. In the regeneration step, the compressor was used as a vacuum pump. In the same manner as described above, a case where the first adsorption tower and the second adsorption tower were treated as an integral adsorption tower was defined as a comparative example method. Table 3 shows the operation results.

【0043】[0043]

【表3】 [Table 3]

【0044】実施例4 図3に示す構成のPSA装置を図4に示す工程を繰返す
運転方法で運転し、空気から窒素を分離する実験運転を
行った。再生工程では単に吸着塔を大気に解放するだけ
とした。また、前記同様に、第一の吸着塔と第二の吸着
塔とを一体の吸着塔として扱った場合を比較例法とし
た。運転結果を表4に示す。
Example 4 The PSA apparatus having the structure shown in FIG. 3 was operated by an operation method in which the steps shown in FIG. 4 were repeated, and an experimental operation for separating nitrogen from air was performed. In the regeneration step, the adsorption tower was simply released to the atmosphere. As in the above, a case where the first adsorption tower and the second adsorption tower were treated as an integral adsorption tower was defined as a comparative example method. Table 4 shows the operation results.

【0045】[0045]

【表4】 [Table 4]

【0046】[0046]

【発明の効果】以上説明したように、本発明のガス分離
装置及びその運転方法によれば、基本的に1筒式である
ので設備構成が簡単であり、設備費が低減される。吸着
塔の形状とシステムを工夫することによって、1筒式で
もパージあるいは再加圧用として物質移動帯に存在する
製品ガスを利用できるようにしたので、製品ガスの回収
率が向上し、電力消費量が削減できる。
As described above, according to the gas separation apparatus and the method of operating the same according to the present invention, since the apparatus is basically a single-tube type, the equipment configuration is simple and the equipment cost is reduced. By devising the shape and system of the adsorption tower, the product gas existing in the mass transfer zone can be used for purging or re-pressurizing even one-tube type, so the product gas recovery rate is improved and the power consumption is improved. Can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明のガス分離装置の一形態例を示す系統
図である。
FIG. 1 is a system diagram showing one embodiment of a gas separation device of the present invention.

【図2】 本発明の運転方法の一例を示す説明図であ
る。
FIG. 2 is an explanatory diagram showing an example of an operation method according to the present invention.

【図3】 本発明のガス分離装置の他の形態例を示す系
統図である。
FIG. 3 is a system diagram showing another embodiment of the gas separation device of the present invention.

【図4】 本発明の運転方法の他の例を示す説明図であ
る。
FIG. 4 is an explanatory diagram showing another example of the operating method of the present invention.

【符号の説明】[Explanation of symbols]

3…圧縮機、9a…第一の吸着塔、9b…第二の吸着
塔、12…サージタンク、14…圧力調整弁、15…流
量調整弁
3 ... Compressor, 9a ... First adsorption tower, 9b ... Second adsorption tower, 12 ... Surge tank, 14 ... Pressure regulating valve, 15 ... Flow regulating valve

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機、吸着剤を充填した吸着塔及びサ
ージタンクを備えた圧力変動吸着式のガス分離装置にお
いて、吸着塔をガスの流れ方向に複数に分割し、かつ、
弁を介して直列に連結したことを特徴とするガス分離装
置。
1. A pressure fluctuation adsorption type gas separation device comprising a compressor, an adsorption tower filled with an adsorbent, and a surge tank, wherein the adsorption tower is divided into a plurality in the gas flow direction, and
A gas separation device connected in series via a valve.
【請求項2】 前記分割された吸着塔の原料ガスの流れ
方向の上流側に位置する第一の吸着塔と、原料ガスの流
れ方向の下流側に位置する第二の吸着塔とに充填された
前記吸着剤の量の比が、1:0.1から1:0.5の間
であることを特徴とする請求項1記載のガス分離装置。
2. The divided adsorption tower is filled in a first adsorption tower located on the upstream side in the flow direction of the source gas and a second adsorption tower located on the downstream side in the flow direction of the source gas. 2. The gas separation device according to claim 1, wherein the ratio of the amounts of the adsorbents is between 1: 0.1 and 1: 0.5.
【請求項3】 ガス分離のための主たる前記吸着剤がゼ
オライトであって、分離回収されるガスが酸素であるこ
とを特徴とする請求項1記載のガス分離装置。
3. The gas separation apparatus according to claim 1, wherein the main adsorbent for gas separation is zeolite, and the gas separated and recovered is oxygen.
【請求項4】 ガス分離のための主たる前記吸着剤が分
子篩活性炭であって、分離回収されるガスが窒素である
ことを特徴とする請求項1記載のガス分離装置。
4. The gas separation apparatus according to claim 1, wherein the main adsorbent for gas separation is activated carbon of molecular sieve, and the gas separated and recovered is nitrogen.
【請求項5】 請求項1又は2記載のガス分離装置の運
転方法であって、相対的に高い圧力で行われる吸着工程
と、低い圧力で行われる再生工程とを主要な工程とする
圧力変動吸着式でガスを分離するにあたり、前記吸着工
程の間、分割された吸着塔の原料ガスの流れ方向の上流
側に位置する第一の吸着塔と、原料ガスの流れ方向の下
流側に位置する第二の吸着塔とを連通させて用いること
を特徴とするガス分離装置の運転方法。
5. The method for operating a gas separation device according to claim 1, wherein a pressure change mainly comprising an adsorption step performed at a relatively high pressure and a regeneration step performed at a relatively low pressure. In separating the gas by the adsorption method, during the adsorption step, the first adsorption tower located on the upstream side in the flow direction of the raw material gas of the divided adsorption tower and the downstream side in the flow direction of the raw material gas. A method for operating a gas separation device, wherein the gas separation device is used in communication with a second adsorption tower.
【請求項6】 前記第一の吸着塔が再生工程に移行して
圧力が低下したとき、前記第一の吸着塔と前記第二の吸
着塔とを連通させ、前記吸着工程が終了した時点で前記
第二の吸着塔が保持するガスを、前記第一の吸着塔のパ
ージガスとして用いることを特徴とする請求項5記載の
ガス分離装置の運転方法。
6. When the pressure of the first adsorption tower shifts to the regeneration step and the pressure decreases, the first adsorption tower and the second adsorption tower are communicated with each other. The method according to claim 5, wherein the gas held by the second adsorption tower is used as a purge gas for the first adsorption tower.
【請求項7】 前記第一の吸着塔が再生工程を完了した
後、前記第一の吸着塔と前記第二の吸着塔を連通させ、
前記吸着工程が終了した時点で前記第二の吸着塔が保持
するガスを、前記第一の吸着塔の再加圧用ガスとして用
いることを特徴とする請求項5記載のガス分離装置の運
転方法。
7. After the first adsorption tower has completed the regeneration step, the first adsorption tower and the second adsorption tower are communicated with each other,
The method according to claim 5, wherein the gas retained by the second adsorption tower at the time when the adsorption step is completed is used as a gas for re-pressurizing the first adsorption tower.
【請求項8】 前記第一の吸着塔が再生工程を完了した
時点で、前記第一の吸着塔と第二の吸着塔及び前記サー
ジタンクを連通させ、前記吸着工程が終了した時点で前
記第二の吸着塔が保持するガスを、前記サージタンク内
の製品ガスとともに前記第一の吸着塔の再加圧用ガスと
して用いることを特徴とする請求項5記載のガス分離方
法。
8. When the first adsorption tower completes the regeneration step, the first adsorption tower communicates with the second adsorption tower and the surge tank, and when the adsorption step is completed, the first adsorption tower communicates with the second adsorption tower. The gas separation method according to claim 5, wherein the gas held by the two adsorption towers is used together with the product gas in the surge tank as a gas for re-pressurizing the first adsorption tower.
JP9079639A 1997-03-31 1997-03-31 Gas separation device and its operation method Pending JPH10272332A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9079639A JPH10272332A (en) 1997-03-31 1997-03-31 Gas separation device and its operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9079639A JPH10272332A (en) 1997-03-31 1997-03-31 Gas separation device and its operation method

Publications (1)

Publication Number Publication Date
JPH10272332A true JPH10272332A (en) 1998-10-13

Family

ID=13695681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9079639A Pending JPH10272332A (en) 1997-03-31 1997-03-31 Gas separation device and its operation method

Country Status (1)

Country Link
JP (1) JPH10272332A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002051523A1 (en) * 2000-12-26 2002-07-04 Sumitomo Seika Chemicals Co., Ltd. Method and device for separating object gas
WO2007055035A1 (en) * 2005-11-14 2007-05-18 Taiyo Nippon Sanso Corporation Pressure fluctuation adsorption method and apparatus
JP2009168092A (en) * 2008-01-15 2009-07-30 Panasonic Corp Vacuum heat insulation material and building component using vacuum heat insulation material
JP2009168202A (en) * 2008-01-18 2009-07-30 Panasonic Corp Vacuum heat insulation box body
JP2013154340A (en) * 2012-01-06 2013-08-15 Kyuchaku Gijutsu Kogyo Kk Method and apparatus for adsorption separation of oxygen and nitrogen from air
JP2017018917A (en) * 2015-07-14 2017-01-26 吸着技術工業株式会社 Method and device for performing adsorption separation of ch4 from biogas
JP2017160084A (en) * 2016-03-09 2017-09-14 吸着技術工業株式会社 Method and device for adsorption separation of h2 from steam modified gas mainly containing h2, co, co2 and h2o
JP2020018995A (en) * 2018-08-03 2020-02-06 日本製鉄株式会社 Gas separator using self thermal compensation type flexible pcp

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002051523A1 (en) * 2000-12-26 2002-07-04 Sumitomo Seika Chemicals Co., Ltd. Method and device for separating object gas
WO2007055035A1 (en) * 2005-11-14 2007-05-18 Taiyo Nippon Sanso Corporation Pressure fluctuation adsorption method and apparatus
JP2007130611A (en) * 2005-11-14 2007-05-31 Taiyo Nippon Sanso Corp Pressure fluctuation adsorption type gas separation process and apparatus
US7824472B2 (en) 2005-11-14 2010-11-02 Taiyo Nippon Sanso Corporation Method and apparatus for pressure swing adsorption
KR101296160B1 (en) * 2005-11-14 2013-08-19 타이요 닛폰 산소 가부시키가이샤 Pressure fluctuation adsorption method and apparatus
JP2009168092A (en) * 2008-01-15 2009-07-30 Panasonic Corp Vacuum heat insulation material and building component using vacuum heat insulation material
JP2009168202A (en) * 2008-01-18 2009-07-30 Panasonic Corp Vacuum heat insulation box body
JP2013154340A (en) * 2012-01-06 2013-08-15 Kyuchaku Gijutsu Kogyo Kk Method and apparatus for adsorption separation of oxygen and nitrogen from air
JP2017014101A (en) * 2012-01-06 2017-01-19 吸着技術工業株式会社 Method for separating and acquiring oxygen from air by adsorption separation and device therefor
JP2017018917A (en) * 2015-07-14 2017-01-26 吸着技術工業株式会社 Method and device for performing adsorption separation of ch4 from biogas
JP2017160084A (en) * 2016-03-09 2017-09-14 吸着技術工業株式会社 Method and device for adsorption separation of h2 from steam modified gas mainly containing h2, co, co2 and h2o
JP2020018995A (en) * 2018-08-03 2020-02-06 日本製鉄株式会社 Gas separator using self thermal compensation type flexible pcp

Similar Documents

Publication Publication Date Title
EP0791388B1 (en) VSA adsorption process with energy recovery
KR100838166B1 (en) Method And System for Separating Gas
US6475265B1 (en) Pressure swing adsorption method for production of an oxygen-enriched gas
JP3310249B2 (en) Oxygen production method and apparatus using one adsorber and one blower
JP3050881B2 (en) How to separate oxygen from air
US6524370B2 (en) Oxygen production
EP1018359A2 (en) Pressure swing adsorption process and system with product storage tank(s)
JP2002191925A (en) Pressure swing adsorption method for separating feed gas
JPH08224428A (en) Continuous method for separating component of gas mixture bymeans of pressure swing adsorption
JPS60191002A (en) Method for concentrating hydrogen in mixed gas containing at least hydrogen by using adsorption method
JP2004000819A (en) Gas isolating process
JPH10314531A (en) Method and apparatus for pressure swinging type adsorption
US5997611A (en) Single vessel gas adsorption system and process
JPS60150814A (en) Process for separating supplied gaseous mixture stream by pressure swing adsorption
JPH10272332A (en) Gas separation device and its operation method
US6083299A (en) High pressure purge pressure swing adsorption process
JP3654658B2 (en) Pressure fluctuation adsorption type oxygen production method and apparatus
JP4895467B2 (en) Oxygen concentration method and oxygen concentration apparatus
JP4050415B2 (en) Gas separation method
JPH07110762B2 (en) Method for producing high concentration oxygen
JP7122191B2 (en) Gas separation device, gas separation method, nitrogen-enriched gas production device, and nitrogen-enriched gas production method
JPH07330306A (en) Generation of oxygen by pressure change adsorption separation method
JP3121293B2 (en) Mixed gas separation method by pressure swing adsorption method
JPH06178933A (en) Oxygen adsorbent and separation of oxygen and nitrogen
JP3073061B2 (en) Gas separation device