JPS6017672A - Alarm device for shortage of refrigerant - Google Patents

Alarm device for shortage of refrigerant

Info

Publication number
JPS6017672A
JPS6017672A JP12337183A JP12337183A JPS6017672A JP S6017672 A JPS6017672 A JP S6017672A JP 12337183 A JP12337183 A JP 12337183A JP 12337183 A JP12337183 A JP 12337183A JP S6017672 A JPS6017672 A JP S6017672A
Authority
JP
Japan
Prior art keywords
refrigerant
compressor
super heat
circuit
delay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12337183A
Other languages
Japanese (ja)
Inventor
佐用 耕作
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP12337183A priority Critical patent/JPS6017672A/en
Publication of JPS6017672A publication Critical patent/JPS6017672A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は自動重用空気調和装置に係り、特に、その冷凍
サイクルの冷媒不足警報装置の誤作動防正方法に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an automatic heavy-duty air conditioner, and particularly to a method for preventing malfunction of a refrigerant shortage alarm device in a refrigeration cycle thereof.

1]プh明の背iii、 ] 周知の通り、自動重用空気調和装置の冷凍サイクルにお
いては、圧縮機1が開放形であり、かつ0リングンール
やフレア継手を用いた配管継手部を°多数有し、また一
部配管路はゴムホースにて形成されている。従って、圧
縮機1の軸封装置や、配管継手部、ゴムホース等より冷
凍サイクル内に封入されている冷媒が外部に漏洩する事
を回避できず、徐々にサイクル内の冷媒量が減少し、こ
れにより次の様な問題を有していた。
1] Behind the scenes iii,] As is well known, in the refrigeration cycle of an automatic heavy-duty air conditioner, the compressor 1 is an open type, and there are many piping joints using O-ring loops and flare joints. However, some of the piping paths are made of rubber hoses. Therefore, it is impossible to prevent the refrigerant sealed in the refrigeration cycle from leaking to the outside from the shaft sealing device of the compressor 1, piping joints, rubber hoses, etc., and the amount of refrigerant in the cycle gradually decreases. This caused the following problems.

冷凍サイクル内の冷媒残存量が極端に少なくなると、冷
媒流量が減少して冷房能力が低Fして目ミ縮機1への潤
滑油の戻り量が減少して圧縮機1の潤滑不良′f:まね
いたシ、圧縮機吸入冷媒の過熱度(以下スーパーヒート
)が異常に上昇するに伴って吐出冷媒の温度が上昇し冷
媒が分解したり圧縮機1の温度上昇を招来するなど、圧
縮機1の耐久上特に致命的な現象を生ずる。
When the amount of refrigerant remaining in the refrigeration cycle becomes extremely low, the refrigerant flow rate decreases, the cooling capacity becomes low, and the amount of lubricating oil returned to the compressor 1 decreases, resulting in poor lubrication of the compressor 1. : As the superheat degree of the compressor suction refrigerant (hereinafter referred to as superheat) increases abnormally, the temperature of the discharged refrigerant increases, causing the refrigerant to decompose and the temperature of the compressor 1 to rise. This causes a phenomenon that is especially fatal in terms of the durability of No. 1.

これに対して、第1図に示す如くのスーパーヒートスイ
ッチシステムを用いて、冷媒減少するとスーパーヒート
が上昇するのを検出し、阿報や圧縮機1の運転を停止さ
せる方法を採用し、圧縮機1のトラブルを未前に防ぐも
のが有る。iotよスーパーヒートスイッチで、蒸発器
4と圧縮ffy 1の間に取付けられている、その構造
及び作B7rII仄’OL ’L+1’ 21’!ti
に示す例(>t4を用いて説明ゴる。夕゛・fヤノラ、
・、H+) dの上′−べに←l連+I’i4路1 (
l Illを介してスーパー lj−トス・イワナ10
取伺部の冷媒圧力P 811が導入さtl、グイヤフラ
ムI:室は高融ガスか封入され/C)iTh’τ117
t ’jj’!l 10 Cにより、スーパーヒートス
イッチ10 +1v伺部の?@DX温度T S IIに
対応した圧力を生ず/:)っ斗だ、ダイヤフラム10d
には、接点10e7′・−11,11′+J r)られ
ており、その上部にはスイッチターミナル10 aが対
向して配設されている。従って、前ルー1圧力I’i+
uの飽和温度T8に比べて回部の温度Ill 、 、、
か高い、即ち、回部翰媒のスーパーヒートが犬となると
ダイヤフラム10dは図の上方にたわみ、同スーパーヒ
ートが所定fiilH’]’ ONに達すると接点10
eとスイッチターミナル10aとが接触する。この()
j:にして、スーパーヒートスイッチ10は、該スイッ
チ取付部のスーパーヒートに応じて、接点がONtたは
OFFの亀気信号金発する機能゛ をイ」する。
To deal with this, we have adopted a method that uses a super heat switch system as shown in Figure 1 to detect an increase in super heat when the refrigerant decreases, and then stops the operation of the alarm and compressor 1. There are things you can do to prevent problems with Aircraft 1. iot super heat switch, installed between evaporator 4 and compression ffy 1, its structure and operation B7rII 仄'OL 'L+1'21'! Ti
Let's explain using the example shown in (>t4.
・, H+) d's upper'-beni←l series + I'i4 path 1 (
l Ill through super lj-toss char 10
Refrigerant pressure P 811 in the interrogation section is introduced tl, Guyafram I: The chamber is filled with refractory gas /C) iTh'τ117
t'jj'! l 10 C, super heat switch 10 +1v section? @Produces pressure corresponding to DX temperature T S II / :) It's diaphragm 10d.
Contacts 10e7', -11, 11'+Jr) are provided at the terminals, and switch terminals 10a are disposed opposite to each other above them. Therefore, the front 1 pressure I'i+
Compared to the saturation temperature T8 of u, the temperature Ill of the circulation part is
In other words, when the superheat of the circulatory system becomes high, the diaphragm 10d bends upward in the figure, and when the superheat reaches a predetermined value of fiilH']' ON, the contact point 10
e comes into contact with the switch terminal 10a. this()
j: The super heat switch 10 has a function of emitting a signal to turn the contact ON or OFF depending on the super heat of the switch mounting part.

次に、11は遅延装置であり、システムの誤作!1i1
1 f防止するため用いられるものでちる。すなわち、
冷凍サイクル内に正規最の冷媒量が封入されている場合
でも、蒸発器4への熱負荷(送風空気の温度・湿度及び
風量)が大きい条件下で、冷曲サイクルを起動させたり
、重両(圧縮機1)を急加速すると、過渡的にスーパー
ヒートが太きくなり、スイッチ10が作動するっ尚、こ
の様な時は、サイクルの状態が急げきに変化しておりス
ーパーヒー)SHも大きな時間変化を伴う。従って、こ
の誤作動を防止するため、スーパーヒートスイッチ10
のON信号が一定時間以上継続しなければ、警報や圧縮
機lの運転停止の出方信号を発しない様に、遅延装置1
1で遅延処理を行なっている。
Next, 11 is a delay device, a system error! 1i1
It is used to prevent 1 f. That is,
Even if the maximum amount of refrigerant is sealed in the refrigeration cycle, the refrigeration cycle may not be started under conditions where the heat load on the evaporator 4 (temperature, humidity, and air volume of the blown air) is large, or if the refrigeration cycle is When the compressor (compressor 1) is rapidly accelerated, the superheat increases transiently and the switch 10 is activated.In addition, in such a case, the cycle condition is rapidly changing and the superheat (SH) also increases. With large time changes. Therefore, in order to prevent this malfunction, the super heat switch 10
If the ON signal does not continue for a certain period of time, the delay device 1 will not issue an alarm or a signal to stop compressor operation.
1 performs delay processing.

尚、遅延装置11としては、電子回路式・バイメタル式
等種々のものが有る事は周知の通りである。
It is well known that there are various types of delay devices 11, such as electronic circuit types and bimetal types.

12は、遅延装置11の出力信号により点灯する警報ラ
ンプである。
Reference numeral 12 denotes a warning lamp that is turned on by the output signal of the delay device 11.

この様な従来のシステムにおいては、次の問題点が有っ
た。
Such conventional systems have the following problems.

遅延時間tdは、前に述べた通り誤作動防止のため、次
の様にして設定される。
The delay time td is set as follows in order to prevent malfunction as described above.

第3図は、冷凍サイクル内に、正規1段の冷媒が封入さ
れた状態で、最も誤作動を生じやすい、外気温度が高く
かつ日射量が多い時に、車両を停止し、炎天下に放置し
車室内が高温なっている状態(以下リーク状態)から、
エンジンを始動し、急加速すると同時に冷凍サイクル金
運転した時のスーパーヒートスイッチ10取付部の圧力
Psi・温度Ts11及びスーパーヒー)SHの過渡変
化を示すものである。、図で判る俤に、急加速により、
スーパーヒート84(は急激に上昇した後、降下線を沿
り、作動スーパーヒート8Hon以下の状態に落着くう
ここで、スーパーヒートスイッチ10の作動スーパーヒ
ート8HONを越える時間tOHの間は、UE規冷媒封
入量にもかかわらず、スーパーヒートスイッチ10の接
点はON信号を発する。従って、この様な条件にて、酵
報ランプ12を点灯させぬため、遅延装置11の遅延時
間tdをtON以上に設定している。この時間tdは、
一般的には数分に1没ポされる。
Figure 3 shows a case where the refrigeration cycle is filled with regular first-stage refrigerant, and when the outside temperature is high and there is a lot of sunlight, when malfunctions are most likely to occur, the vehicle is stopped and left in the hot sun. Due to the high temperature inside the room (hereinafter referred to as leak state),
This figure shows the transient changes in the pressure Psi, temperature Ts11, and superheat (super heat) SH at the attachment part of the super heat switch 10 when the engine is started, rapidly accelerated, and at the same time operated in the refrigeration cycle. As you can see in the figure, due to sudden acceleration,
Super heat 84 (after rising rapidly, follows a line of descent and settles down to a state below the operating super heat 8Hon. At this point, during the time tOH exceeding the operating super heat 8HON of the super heat switch 10, the UE standard refrigerant The contact point of the super heat switch 10 emits an ON signal regardless of the amount enclosed. Therefore, in order to prevent the fermentation lamp 12 from lighting up under such conditions, the delay time td of the delay device 11 is set to tON or more. This time td is
Generally, one is dropped every few minutes.

しかしながら、この様に長い遅延時間tdを設ける事は
、サイクル内の冷媒;J二が少なくなって、スーパーヒ
ートSHが作動スーパーヒート5)ION以上になった
際にも、当然、前記遅延時間td経過後でないと、錠軸
または圧縮機1の運転停止というシステムの最終出力を
発して乗員に冷媒不足でちる事を伝えられない。従って
、このtdO間圧縮機10は危険の状態で運転される事
になり、最悪の場合は焼付を発生する事が有った。特に
、冷凍サイクルを長期運転せず、かつその關に、サイク
ル内の冷媒が極端に少なくなってしまった状態から、急
にサイクルを運転する小になる冬期から中間期に入った
時期に於いてはこの様な問題がしばしば発生していた。
However, providing such a long delay time td naturally means that even when the amount of refrigerant in the cycle becomes low and the super heat SH reaches or exceeds the operating super heat 5) ION, the delay time td Only after this has elapsed can the final output of the system, which is to stop the operation of the lock shaft or compressor 1, be issued to notify the occupants that the refrigerant is running low. Therefore, this tdO compressor 10 was operated in a dangerous condition, and in the worst case, seizure could occur. In particular, when the refrigeration cycle has not been operated for a long period of time and the refrigerant in the cycle has become extremely low, the cycle suddenly becomes less operational during the winter to intermediate period. This kind of problem often occurred.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、遅延時間が炉かくかつ誤作動をしない
冷媒不足〜軸装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a refrigerant shortage shaft device that reduces the delay time in the furnace and does not cause malfunctions.

〔発明の概要〕[Summary of the invention]

本発明の判、徴とするところは、蒸発器から圧縮機の間
の冷媒のスーパーヒートを検知判断する冷媒不足警報装
置において、スーパーヒートの変化率が所定以上の時、
11報手段を発しない様にした小をlrq徴とするっ 〔発明の実施例〕 」ン[本発明の実施例を第5〜7図を用いて説明する。
The characteristics and characteristics of the present invention are that in a refrigerant shortage alarm device that detects and judges superheat of refrigerant between an evaporator and a compressor, when the rate of change of superheat is more than a predetermined value,
Embodiments of the Invention An embodiment of the present invention will be described with reference to FIGS. 5 to 7.

まず、第4図はシステム構成図で、冷凍す・rクル側に
ついては第1図に示すものと全く同じテ;p>ルカ、7
A発器出口のスーパーヒートsHの検出は、第2図の如
くの機械式ではなく、2つのサーミスタ15.16を用
いた電子式のものである。
First, Figure 4 is a system configuration diagram, and the refrigerator side is exactly the same as that shown in Figure 1;
The detection of the superheat sH at the outlet of the A generator is not a mechanical method as shown in FIG. 2, but an electronic method using two thermistors 15 and 16.

すなわちリーミスタ(I)15は、蒸発器4人口の冷〃
111、i、tp度T e Ifとらえ、一方ノ? −
ミスタ(2116f、J、 A%発器4の出口冷媒温度
Teotとらえる。ここで、TeIは蒸発器内の圧ブ月
J1失が小さい場合は、蒸発器4出口の圧力に相当する
飽和温度Tel+に略ヤノルい。従って蒸発器4出口の
冷媒のスーパーヒー) S i(は次式で表わされる。
In other words, Reamister (I) 15 has a cooling capacity of 4 evaporators.
111, i, tp degree T e If captured, on the other hand? −
Mister (2116f, J, A% The outlet refrigerant temperature Teot of the generator 4 is captured.Here, TeI is the saturation temperature Tel+ corresponding to the pressure at the evaporator 4 outlet if the pressure loss in the evaporator is small. Therefore, the superheat of the refrigerant at the evaporator 4 outlet is expressed by the following equation.

SH中Te oIll e。TeoIlle during SH.

また、蒸発器4の圧力損失が大きい場合には、公7:1
1技術である特開昭53−63645で詳述されている
如く、TeIに対し圧力損失分に見合った補正を行々つ
ても良い。
In addition, if the pressure loss of the evaporator 4 is large,
As detailed in Japanese Patent Application Laid-Open No. 53-63645, which is one technique, a correction commensurate with the pressure loss may be made to TeI.

上記S Hは、具体的には第5図に示す電子回路18内
の差動増f1]回路18aにて処理され、SHに比例し
た信号電圧V8Hとなり、比較回路(1)18 bに送
り込まれる。以下第6図に示すフローチャートを併用し
説明する。比較回路t1)18bではサイクル異常の判
別基準となる作動スーパーヒート5HONに見合って定
数設定された基準電圧VIII□、。、と比較され、次
の如く出力信号Vlを出す。
Specifically, the above SH is processed in the differential amplifier f1] circuit 18a in the electronic circuit 18 shown in FIG. 5, becomes a signal voltage V8H proportional to SH, and is sent to the comparison circuit (1) 18b. . The process will be explained below using the flowchart shown in FIG. In the comparator circuit t1) 18b, a reference voltage VIII□ is set as a constant in accordance with the operating super heat 5HON, which is a criterion for determining cycle abnormality. , and outputs an output signal Vl as follows.

Vsn≧VOR・ON時: Vsn ON従って、V 
so (V 6H−ON時には、■5が0FIi”信号
となるので陸報手段は働らかず、正常運転が続行される
。一方、■・団≧Vsn−on時には、■sI+が微分
回路18Cに入力され、ここで微分されて、8Hの時間
に対する変化率に見合った■2を出力する。次に、比較
回路(2+ 18 dでは、前記■2の絶対値IV21
が基準電圧V。と比較され、次の如く出力信号を出す。
When Vsn≧VOR・ON: Vsn ON Therefore, V
so (When V 6H-ON, ■5 becomes the 0FIi" signal, so the land reporting means does not work, and normal operation continues. On the other hand, when ■・group≧Vsn-on, ■sI+ goes to the differential circuit 18C. It is input, differentiated here, and outputs ■2 that corresponds to the rate of change over time of 8H.Next, in the comparator circuit (2+18 d, the absolute value IV21 of the above ■2)
is the reference voltage V. The output signal is output as shown below.

(V3 ) (V6 ) lV2+>VO時: OF’F IV21≦Vo時: ON ON M”、 −) ”C’、l V2 lンVO時には■3
がOFFイFJ Mとiン、ので1ユ′1計・手段は動
らかず、正常運転が続行されろう一方、IV21≦Vo
時には、遅延回路18eの入力信号をONとしライフル
が異常になっている牛を云える。この遅延回路18eで
は、ON信号が入力されてからの経過時間t。、lと基
準遅延時間tdとを比較1.2次の如く出力信号を出す
(V3) (V6) When lV2+>VO: OF'F When IV21≦Vo: ON ON M", -) "C', lV2 When VO, ■3
is OFF, FJ M and i are turned off, so the 1U'1 meter and means will not move and normal operation will continue, while IV21≦Vo
Sometimes, the input signal of the delay circuit 18e is turned on to tell when the rifle is malfunctioning. In this delay circuit 18e, the elapsed time t after the ON signal is input. , l and the reference delay time td are compared, and an output signal is output as shown in 1.2 order.

(V6) toN(td時: O1!’F tON≧td時=ON この(:′5にして、TsllOIJ ≧Tdに至ると
、v6がONとなり、出力回路18fがON if発し
、警報ラング12の点灯や圧縮機1の運転停市を行ない
、乗員に−ライフルの異常を伝える。尚、出力口fIX
時は、入力信号V3 、V4 、Vsの全てが、ON信
号になった時のみON出力を出す、AND回路となって
いる。
(V6) toN (at td: O1!'F When tON≧td = ON When this (:'5 is set and TsllOIJ ≧Td is reached, v6 turns ON, output circuit 18f turns ON if, and alarm rung 12 Turn on the light and stop compressor 1 to notify the crew of the rifle's abnormality.In addition, the output port fIX
In this case, the circuit is an AND circuit that outputs an ON output only when all of the input signals V3, V4, and Vs become ON signals.

この様な構成で成る本システムを、第3図に示したIJ
−り後の急加速時に適用すると、第7e21に示す如く
、微分回路18Cの出力信号■2が発生する。従って、
■3けtV3.I l tv3.2 及びtV3.3の
間ONとなる。しかしtv3.3については、■3はO
Nとなるも、81−1が8 Ho r+ よりも小さい
(すなわちV+]uがVt、11−8、よりも小さい)
 his態のため、比較回路(1) 18 L+の出力
信けへl、が□ j+ Fとなるので、他信号にかかわ
らず、出力回路18fの出力はOFFとなり、正常運転
が行口二われる。
This system with such a configuration is installed on the IJ shown in Figure 3.
When applied during rapid acceleration after the vehicle has stopped, the output signal (2) of the differentiating circuit 18C is generated as shown in No. 7e21. Therefore,
■3 digits V3. It is ON between I l tv3.2 and tV3.3. However, for tv3.3, ■3 is O
N, but 81-1 is smaller than 8 Hor+ (i.e. V+]u is smaller than Vt, 11-8)
Due to the HIS state, the output signal of the comparator circuit (1) 18L+ becomes □j+F, so the output of the output circuit 18f is turned OFF regardless of other signals, and normal operation is terminated.

従って、遅延回路18eの遅延時間tdを、Lv24及
びtVZ、2以上に設定しておけば、■4がON信号と
なる事はなく、誤作動を防げる。
Therefore, if the delay time td of the delay circuit 18e is set to Lv24 and tVZ, 2 or more, 4 will not become an ON signal, and malfunction can be prevented.

ここで、発明基らの実験によれば、Lv3.l +tv
3.2等は数十秒以下であり、従って遅延時間tdも従
来技術の5分1程度で誤作OIlを完全に防止出来た。
Here, according to experiments by Inventor et al., Lv3. l+tv
3.2 etc. is several tens of seconds or less, and therefore the delay time td is about 1/5 of that of the prior art, completely preventing erroneous OIl.

この仔に、従来技術に比べ、遅延時間idを大巾に短か
くする事が出来るので、ザイクル内の冷媒量が極;’1
iAに減少しスーパーヒートSIIが作動スーパーヒー
ト5Hos 以上になった際、21d時1+fl (遅
延時間’I’d)、経過後、警報を発する。
Compared to the conventional technology, the delay time id can be significantly shortened, so the amount of refrigerant in the cycle can be reduced to an extremely low level.
iA and the super heat SII becomes activated super heat 5Hos or more, an alarm will be issued after 1+fl (delay time 'I'd) has elapsed at 21d.

〔発明の効果〕〔Effect of the invention〕

従って本発明によれば圧縮機1が危険な状態にさらされ
る時間は、従来技術の4分1程度と短かくなるので、前
述した様な、圧縮機1が遅延時間・Pd内で、破損する
という重大な問題は大巾に低減される、
Therefore, according to the present invention, the time during which the compressor 1 is exposed to a dangerous condition is shortened to about 1/4 of that of the conventional technology, so that the compressor 1 is not damaged within the delay time Pd as described above. This serious problem is greatly reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のスーパーヒートスイッチシステムを有し
た冷凍ザイクル構成図、第2図は第1図に用いたスーパ
ーヒートスイッチの断面構造図、第3 図td スーパ
ーヒートスイッチ取付部の圧力・rAFl鹿の退離変化
特性図、第4図は本発明の一実施例となる冷媒不定管軸
装置を有した冷凍ザイクル11”・1成1ネ1、第5区
は第4図に用いた電子回路のブロック図、第6図は第5
図の電子回路の機能を説明するためのフローチャート、
第7図は第3図において本発明した事の電子回路の作動
を説明するための11.〜1渡変化特性図。 l・・・圧縮機、2・・・凝縮器、3・・・膨張弁、4
・・・蒸発器、5・・・ザーーLスタット、6・・・配
も路、7・・・;毘磁クラッチ、10・・・スーツく−
ヒートスイッチ、10a・・・スイッチターミナル、1
0I)・・・連通孔、10C・・・感温筒、10d・・
・ダイヤフラ”、loc・・・接点、11・・・遅延装
置、12・・・出力手段(f′;報ランフ゛)、15・
・・サーミスタ(1)、16・・・サーミスタ(2)、
18・・・電子回路、18a・・・差動増rl]回路、
18b・・・比較回路(1)、18C・・・微分回路、
18d・・・比較回路(21,18e・・・遅延回路、
18f・・・出力回路。 。
Figure 1 is a configuration diagram of a frozen cycle with a conventional super heat switch system, Figure 2 is a cross-sectional structural diagram of the super heat switch used in Figure 1, and Figure 3 is the pressure at the super heat switch mounting part. Fig. 4 is a refrigerant cycle 11'', 1, 1, 1, 1, 1, and 1, which is an embodiment of the present invention, and the 5th section is the electronic circuit used in Fig. 4. The block diagram of Figure 6 is the block diagram of Figure 5.
Flowchart to explain the functions of the electronic circuit in the diagram,
FIG. 7 shows 11. for explaining the operation of the electronic circuit according to the present invention in FIG. 3. ~1-pass change characteristic diagram. l... Compressor, 2... Condenser, 3... Expansion valve, 4
...Evaporator, 5...Zer-L-stat, 6...Memoji, 7...Bmagnetic clutch, 10...Suit-
Heat switch, 10a...Switch terminal, 1
0I)...Communication hole, 10C...Thermosensing tube, 10d...
・Diaphragm", loc...contact, 11...delay device, 12...output means (f'; information lamp), 15.
...Thermistor (1), 16...Thermistor (2),
18...Electronic circuit, 18a...Differential amplifier rl] circuit,
18b... Comparison circuit (1), 18C... Differential circuit,
18d... Comparison circuit (21, 18e... Delay circuit,
18f...Output circuit. .

Claims (1)

【特許請求の範囲】[Claims] 1、冷凍サイクルの蒸発器から圧縮機までの低圧側11
豫¥:のス−/く−ヒートを検出し、該スーパーヒート
が所定値以上でかつ一定時間以上持続された時、yf報
出力を発する冷媒不足警報装置において、前記スーパー
ヒートが所定値以上であっても、その変化率が基準値以
上の場合は警報出力を発しない様にした事を特徴とする
冷媒不足警報装置。
1. Low pressure side 11 from the evaporator to the compressor of the refrigeration cycle
豫¥: In the refrigerant shortage alarm device that detects the heat of heat and outputs a yf alarm when the superheat exceeds a predetermined value and continues for a predetermined period of time, A refrigerant shortage alarm device is characterized in that, even if the rate of change is greater than a reference value, no alarm output is issued.
JP12337183A 1983-07-08 1983-07-08 Alarm device for shortage of refrigerant Pending JPS6017672A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12337183A JPS6017672A (en) 1983-07-08 1983-07-08 Alarm device for shortage of refrigerant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12337183A JPS6017672A (en) 1983-07-08 1983-07-08 Alarm device for shortage of refrigerant

Publications (1)

Publication Number Publication Date
JPS6017672A true JPS6017672A (en) 1985-01-29

Family

ID=14858923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12337183A Pending JPS6017672A (en) 1983-07-08 1983-07-08 Alarm device for shortage of refrigerant

Country Status (1)

Country Link
JP (1) JPS6017672A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6370050A (en) * 1986-09-10 1988-03-30 サンデン株式会社 Protective device of compressor for refrigerator
JPS6370051A (en) * 1986-09-10 1988-03-30 サンデン株式会社 Protective device of compressor for refrigerator
JPH02208469A (en) * 1989-02-03 1990-08-20 Daikin Ind Ltd Air conditioner
JPH0439662U (en) * 1990-07-30 1992-04-03
JPH0755280A (en) * 1993-08-20 1995-03-03 Sanyo Electric Co Ltd Air conditioning system
JP2009092268A (en) * 2007-10-04 2009-04-30 Gunma Prefecture Refrigerant leakage detecting method of refrigerating device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6370050A (en) * 1986-09-10 1988-03-30 サンデン株式会社 Protective device of compressor for refrigerator
JPS6370051A (en) * 1986-09-10 1988-03-30 サンデン株式会社 Protective device of compressor for refrigerator
JPH02208469A (en) * 1989-02-03 1990-08-20 Daikin Ind Ltd Air conditioner
JPH0439662U (en) * 1990-07-30 1992-04-03
JPH0755280A (en) * 1993-08-20 1995-03-03 Sanyo Electric Co Ltd Air conditioning system
JP2009092268A (en) * 2007-10-04 2009-04-30 Gunma Prefecture Refrigerant leakage detecting method of refrigerating device

Similar Documents

Publication Publication Date Title
US7343750B2 (en) Diagnosing a loss of refrigerant charge in a refrigerant system
EP0853221B1 (en) Refrigeration air-conditioner using a non-azeotrope refrigerant and having a control-information detecting apparatus
US6260365B1 (en) Control system and related methods for refrigeration and freezer units
US7494536B2 (en) Method for detecting a fault in an HVAC system
US3060699A (en) Condenser pressure regulating system
US4644755A (en) Emergency refrigerant containment and alarm system apparatus and method
US20050126190A1 (en) Loss of refrigerant charge and expansion valve malfunction detection
CA1204297A (en) Cooling and heating device
CN108870644B (en) Air conditioning system filter blockage detection method and detection device
JP2008249239A (en) Control method of cooling device, cooling device and refrigerating storage
JPS6017672A (en) Alarm device for shortage of refrigerant
US5176007A (en) Refrigerator with lubricant mixture sensor
JPH05240570A (en) Device for warning abnormal condition in temperature regulating device
JPH07294073A (en) Refrigeration device
JPH09303888A (en) Controller for operation of compressor in refrigerating unit
JPH04225771A (en) Protecting device of refrigerating machine
JPH0473566A (en) Operation control device for freezer
JPS6051027B2 (en) Refrigerant shortage detection device
JPH0278874A (en) Shortage of refrigerant judging device for refrigerating cycle
JPS5895175A (en) Cooler cycle
JPH0510614A (en) Screw refrigerator
JP2841542B2 (en) Insufficient refrigerant detector for cooling equipment
JP3197634B2 (en) Refrigeration equipment
JPS63259353A (en) Refrigerator
JPH0157274B2 (en)