JP2008249239A - Control method of cooling device, cooling device and refrigerating storage - Google Patents

Control method of cooling device, cooling device and refrigerating storage Download PDF

Info

Publication number
JP2008249239A
JP2008249239A JP2007090895A JP2007090895A JP2008249239A JP 2008249239 A JP2008249239 A JP 2008249239A JP 2007090895 A JP2007090895 A JP 2007090895A JP 2007090895 A JP2007090895 A JP 2007090895A JP 2008249239 A JP2008249239 A JP 2008249239A
Authority
JP
Japan
Prior art keywords
refrigerant
temperature sensor
cooling device
evaporator
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007090895A
Other languages
Japanese (ja)
Inventor
Masahiko Nakagawa
昌彦 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007090895A priority Critical patent/JP2008249239A/en
Publication of JP2008249239A publication Critical patent/JP2008249239A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/22Preventing, detecting or repairing leaks of refrigeration fluids
    • F25B2500/222Detecting refrigerant leaks

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Defrosting Systems (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a control method of a cooling device of low probability of wrong detection in determining leakage of a refrigerant, even when a stored object of high temperature is stored in a storage. <P>SOLUTION: In this control method of the cooling device 10 having a refrigerant circuit to allow the refrigerant to successively circulate a compressor 10, a condenser 11, a throttle device 12 and an evaporator 13, and used in the refrigerating storage, the cooling device further comprises an inside air temperature sensor 1 for measuring a temperature of the air inside of the refrigerating storage, and an evaporator outlet temperature sensor 2 for measuring a refrigerant temperature of an evaporator outlet, and the presence or absence of the refrigerant leakage in the refrigerant circuit is determined on the basis of the comparison of difference between a measured value of the inside air temperature sensor 1 and a measured value of the evaporator outlet temperature sensor 2, with a predetermined determination reference value X. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、圧縮機、凝縮機、絞り装置および蒸発器を備えた冷却装置、その制御方法、その冷却装置を備えた冷蔵倉庫(単に冷蔵庫とも称する)に関する。   The present invention relates to a cooling device including a compressor, a condenser, a throttling device, and an evaporator, a control method thereof, and a refrigerated warehouse (also simply referred to as a refrigerator) including the cooling device.

現在、冷蔵庫用冷却装置には、多種多様な冷媒が封入されているが、その中には、可燃性・毒性を有するものがあり、冷却装置の冷媒回路からの冷媒の漏れは環境や安全性の点から問題となる。また、冷媒回路から冷媒が漏れると冷却装置の十分な能力を発揮できない。   Currently, refrigerators for refrigerators contain a wide variety of refrigerants, some of which are flammable and toxic. Leakage of refrigerant from the refrigerant circuit of the refrigerator is environmental and safety. This is a problem. In addition, if the refrigerant leaks from the refrigerant circuit, the cooling device cannot fully exhibit its ability.

このような問題に対応するため、従来より、冷媒回路からの冷媒漏れを検出する技術が開発されている。例えば、冷媒回路を構成する蒸発器の出入口の双方に冷媒温度を計測する温度センサを備え、冷却運転中の両センサの温度差により冷媒漏れを判定する技術が知られている(例えば、特許文献1参照。)。
特開平9−14811号公報
In order to cope with such a problem, techniques for detecting refrigerant leakage from the refrigerant circuit have been developed. For example, a technique is known in which temperature sensors for measuring the refrigerant temperature are provided at both the inlet and outlet of the evaporator constituting the refrigerant circuit, and refrigerant leakage is determined based on the temperature difference between the two sensors during the cooling operation (for example, Patent Documents). 1).
JP-A-9-14811

しかしながら上記特許文献1の場合、冷却装置が備えられている冷蔵倉庫に、高温の保管物が入庫された場合などの過渡的に庫内温度が上昇する場合においては、誤検知の可能性があった。また、従来は、蒸発器内部の圧力損失が判定値に加味できておらず、検知精度の点でも問題があった。   However, in the case of the above-mentioned Patent Document 1, there is a possibility of erroneous detection when the internal temperature rises transiently, such as when a high-temperature stored item is stored in a refrigerated warehouse equipped with a cooling device. It was. Conventionally, the pressure loss inside the evaporator cannot be added to the judgment value, and there is a problem in terms of detection accuracy.

この発明は、上記課題を解決するためになされたもので、使用されている冷蔵倉庫に、高温の保管物が入庫された場合などにも、冷媒漏れ判定の誤検知の可能性が低い冷却装置の制御方法を得ることを目的とする。
また、冷媒回路からの冷媒の漏れを、精度良く検知することができる冷却装置の制御方法を得ることも目的とする。
併せて、上記の方法を実行する手段を備えた冷却装置、およびその冷却装置を備えた冷蔵倉庫を提案するものである。
The present invention has been made to solve the above-described problem, and a cooling device that has a low possibility of erroneous detection of refrigerant leakage determination even when a high-temperature stored item is stored in a refrigerated warehouse in use. The purpose is to obtain a control method.
It is another object of the present invention to provide a cooling device control method capable of accurately detecting leakage of refrigerant from the refrigerant circuit.
In addition, the present invention proposes a cooling device provided with means for executing the above method, and a refrigerated warehouse provided with the cooling device.

この発明は、圧縮機、凝縮器、絞り装置、蒸発器の順に冷媒を循環させる冷媒回路を有した、冷蔵倉庫に使用される冷却装置の制御方法であって、冷蔵倉庫内部の空気温度を計測する庫内空気温度センサと、前記蒸発器出口の冷媒温度を計測する蒸発器出口温度センサとを備え、前記庫内空気温度センサの計測値と前記蒸発器出口温度センサの計測値との差と、予め定めた判定基準値Xとの比較に基づいて、前記冷媒回路の冷媒漏れの有無を判定するものである。
また、圧縮機、凝縮器、絞り装置、蒸発器の順に冷媒を循環させる冷媒回路を有した、冷蔵倉庫に使用される冷却装置の制御方法であって、前記蒸発器出口の冷媒圧力を計測する蒸発器出口圧力センサと、前記蒸発器出口の冷媒温度を計測する蒸発器出口温度センサと、外気温度を計測する外気温度センサとを備え、前記蒸発器出口圧力センサの計測値を予め記憶していた算式に当てはめて蒸発温度を算出し、前記蒸発器出口温度センサの計測値と前記算出された蒸発温度との差が、予め定めた判定基準値を外気温度と庫内空気温度または目標庫内温度とに応じて調整した判定基準値Y以上の場合に、前記冷媒回路の冷媒漏れが発生していると判定するものである。
The present invention relates to a control method for a cooling device used in a refrigerator warehouse having a refrigerant circuit for circulating refrigerant in the order of a compressor, a condenser, a throttle device, and an evaporator, and measures the air temperature inside the refrigerator warehouse And a difference between a measured value of the internal air temperature sensor and a measured value of the evaporator outlet temperature sensor, and an evaporator outlet temperature sensor for measuring a refrigerant temperature of the evaporator outlet. Based on the comparison with a predetermined determination reference value X, the presence or absence of refrigerant leakage in the refrigerant circuit is determined.
A method for controlling a cooling device used in a refrigerated warehouse having a refrigerant circuit for circulating a refrigerant in the order of a compressor, a condenser, a throttle device, and an evaporator, wherein the refrigerant pressure at the outlet of the evaporator is measured. An evaporator outlet pressure sensor, an evaporator outlet temperature sensor that measures the refrigerant temperature at the evaporator outlet, and an outside air temperature sensor that measures the outside air temperature, the measured value of the evaporator outlet pressure sensor being stored in advance. The evaporation temperature is calculated by applying the above equation, and the difference between the measured value of the evaporator outlet temperature sensor and the calculated evaporation temperature is determined based on a predetermined criterion value between the outside air temperature and the inside air temperature or the target inside temperature. It is determined that the refrigerant leakage of the refrigerant circuit has occurred when the value is equal to or higher than the determination reference value Y adjusted according to the temperature.

前者の発明の場合には、庫内空気温度を判定値のパラメータとしているため、高温の保管物が入庫された場合などにも、冷媒漏れ判定の誤検知の可能性を低くできる。
また、後者の発明の場合には、蒸発器出口の冷媒の温度および圧力の情報を判定値に取り込んでいるため、冷媒漏れの検知精度が向上する。さらに、外気温度などを考慮して判定基準値Yを調整するため、より精度の高い冷媒漏れ検知を実現させることができる。
In the case of the former invention, since the internal air temperature is used as a parameter of the determination value, the possibility of erroneous detection of refrigerant leakage determination can be reduced even when a high-temperature stored item is received.
Further, in the case of the latter invention, since the information on the temperature and pressure of the refrigerant at the outlet of the evaporator is taken into the determination value, the accuracy of detecting the refrigerant leakage is improved. Furthermore, since the determination reference value Y is adjusted in consideration of the outside air temperature and the like, more accurate refrigerant leak detection can be realized.

実施の形態1.
図1は本発明の実施の形態1に係る冷却装置及びその制御方法を実施するための構成図である。図1の冷却装置101は、圧縮機10、凝縮器11、絞り装置12、蒸発器13が冷媒配管により順に接続された冷媒回路を有する。なお、本発明の冷却装置は、冷蔵倉庫(以下、単に冷蔵庫という)、特にプレハブなどで形成された小型の業務用冷蔵庫に用いられることを前提としている。
Embodiment 1 FIG.
FIG. 1 is a configuration diagram for implementing a cooling device and a control method thereof according to Embodiment 1 of the present invention. The cooling device 101 in FIG. 1 has a refrigerant circuit in which a compressor 10, a condenser 11, a throttling device 12, and an evaporator 13 are connected in order by refrigerant piping. Note that the cooling device of the present invention is premised on being used in a refrigerated warehouse (hereinafter simply referred to as a refrigerator), particularly a small commercial refrigerator formed of a prefabricated product or the like.

冷却装置101にはさらに、冷蔵庫内部の空気温度を計測する庫内空気温度センサ1、蒸発器13出口の冷媒温度を計測する蒸発器出口温度センサ2、凝縮温度または凝縮器1出口の冷媒温度を計測する凝縮温度センサ3、蒸発器13入口の冷媒温度を計測する蒸発器入口温度センサ4を備える。なお、凝縮温度センサ3と蒸発器入口温度センサ4は、後述する実施の形態2で使用するものであり、実施の形態1ではなくてもよい。   The cooling device 101 further includes an internal air temperature sensor 1 that measures the air temperature inside the refrigerator, an evaporator outlet temperature sensor 2 that measures the refrigerant temperature at the outlet of the evaporator 13, a condensation temperature or a refrigerant temperature at the outlet of the condenser 1. A condensation temperature sensor 3 for measuring and an evaporator inlet temperature sensor 4 for measuring the refrigerant temperature at the inlet of the evaporator 13 are provided. The condensing temperature sensor 3 and the evaporator inlet temperature sensor 4 are used in the second embodiment to be described later, and may not be the first embodiment.

また、各センサ1〜4の計測値を取り込み、その情報を基に、冷媒回路からの冷媒漏れを判定するコントローラ(制御装置)14を備えている。コントローラ(制御装置)14は、圧縮機10や絞り装置12にも作用して、それらの動作を制御する。
さらに、コントローラ(制御装置)14は無線又は有線の通信回線を介して、冷蔵庫外部の遠隔操作装置15に接続されている。
Moreover, the controller (control apparatus) 14 which takes in the measured value of each sensor 1-4 and determines the refrigerant | coolant leakage from a refrigerant circuit based on the information is provided. The controller (control device) 14 also acts on the compressor 10 and the expansion device 12 to control their operation.
Furthermore, the controller (control device) 14 is connected to a remote control device 15 outside the refrigerator via a wireless or wired communication line.

図2は上記の冷却装置101が設置された冷蔵庫100の一例を示す外観図である。図2では、1つの冷蔵庫100に1台の冷却装置101が設置された例を示している。なお図2中の符号110は、冷蔵庫100の扉を表している。   FIG. 2 is an external view showing an example of the refrigerator 100 in which the cooling device 101 is installed. FIG. 2 shows an example in which one cooling device 101 is installed in one refrigerator 100. In addition, the code | symbol 110 in FIG.

図1において、正常運転時には、コントローラ14は、庫内空気温度センサ1が計測する庫内温度を用いて冷却装置101の運転/停止を制御し、蒸発器出口温度センサ2が計測する蒸発器出口冷媒温度を用いて除霜運転終了のタイミングを制御している。
このように構成された冷却装置において、冷媒配管から何らかの理由で冷媒漏れが発生した場合に、これを検出する方法について、以下に説明する。
In FIG. 1, during normal operation, the controller 14 controls the operation / stop of the cooling device 101 using the internal temperature measured by the internal air temperature sensor 1 and the evaporator outlet temperature sensor 2 measures. The timing of completion of the defrosting operation is controlled using the refrigerant temperature.
In the cooling device configured as described above, a method of detecting a refrigerant leak for some reason from the refrigerant pipe will be described below.

冷媒回路全体の体積に変化がない状態で、冷媒漏れにより冷媒回路内部の冷媒量が減少すると、単位体積中に存在する冷媒量が減少し、その結果、高圧圧力、低圧圧力とも正常運転状態に対して低くなり、冷却装置の冷却能力が低下する。その状態を、示したのが図3のモリエル線図であり、点線で示した状態Aが正常状態を、実線で示した状態Bが冷媒漏れが発生して冷媒回路内の冷媒量が減少した状態を示している。   If the amount of refrigerant in the refrigerant circuit decreases due to refrigerant leakage when there is no change in the volume of the entire refrigerant circuit, the amount of refrigerant present in the unit volume decreases, and as a result, both high pressure and low pressure are in a normal operating state. On the other hand, the cooling capacity of the cooling device decreases. This state is shown in the Mollier diagram of FIG. 3, where the state A indicated by the dotted line indicates the normal state, and the state B indicated by the solid line indicates that refrigerant leakage has occurred and the amount of refrigerant in the refrigerant circuit has decreased. Indicates the state.

冷媒回路内の冷媒量が減少すると、冷蔵庫内部の冷却負荷が発する熱量が、冷却装置の冷却能力を上回るため、冷蔵庫内部の温度が上昇する。冷媒密度が小さく、庫内温度が高いため、蒸発器13内部で顕熱変化を行う領域が多くなり、蒸発器13出口における冷媒温度が上昇し、最終的には、蒸発器13出口における冷媒温度と、冷蔵庫内部の空気温度がほぼ同一となる。この温度変化の一例をしたものが図6の表とグラフである。   When the amount of refrigerant in the refrigerant circuit decreases, the amount of heat generated by the cooling load inside the refrigerator exceeds the cooling capacity of the cooling device, so the temperature inside the refrigerator rises. Since the refrigerant density is low and the internal temperature is high, there are more areas where sensible heat changes inside the evaporator 13, the refrigerant temperature at the evaporator 13 outlet rises, and finally the refrigerant temperature at the evaporator 13 outlet. And the air temperature inside a refrigerator becomes substantially the same. An example of this temperature change is the table and graph of FIG.

実施の形態1に示す冷却装置の制御方法である冷媒漏れ検知は、この特性を利用して、「判定値△T=(庫内空気温度センサ1の計測値)−(蒸発器出口温度センサ2の計測値)」の値が、予めコントローラ14に記憶させてある判定基準値X以下となる状態が予め定めた時間(所定時間)以上継続した場合に、冷媒漏れが発生していると判断する。なお、その判断結果は、庫外の遠隔操作装置15に通報するようにしておくものとする。
なお、判定基準値Xや上記所定時間は、同種の冷却装置を用いた実験またはシミュレーションなどを行って、予め定めることができる。
The refrigerant leakage detection, which is the control method of the cooling device shown in the first embodiment, utilizes this characteristic to calculate “determination value ΔT = (measured value of the internal air temperature sensor 1) − (evaporator outlet temperature sensor 2). When the state where the value of “measured value)” is equal to or less than the determination reference value X stored in advance in the controller 14 continues for a predetermined time (predetermined time) or more, it is determined that refrigerant leakage has occurred. . The determination result is reported to the remote operation device 15 outside the warehouse.
The determination reference value X and the predetermined time can be determined in advance by performing experiments or simulations using the same type of cooling device.

このように庫内空気温度を判定値に含めているため、高温の保管物が入庫された場合などにも、冷媒漏れ判定の誤検知の可能性を低くできる。また、温度センサのみを用いて冷媒漏れの有無の判定(冷媒漏れ検知)が可能となる。   Since the internal air temperature is included in the determination value in this way, the possibility of erroneous detection of refrigerant leakage determination can be reduced even when a high-temperature stored item is received. In addition, it is possible to determine the presence or absence of refrigerant leakage (refrigerant leakage detection) using only the temperature sensor.

実施の形態2.
実施の形態1では、庫内空気温度センサ1と蒸発器出口温度センサ2を利用して冷媒漏れの有無を判定したが、実施の形態2では、冷媒漏れ検知の精度を向上させるため、凝縮温度または凝縮器11出口の冷媒温度を計測するための凝縮温度センサ3の計測値も利用する。すなわち、実施の形態1で冷媒漏れ有無の判断基準としていた「判定値△Tが判定基準値X以下となる状態が所定時間以上継続した場合」に加えて、「凝縮温度の低下(=高圧圧力の低下)」を新たに判定基準とし、これらの2条件が同時に成り立つ場合においてのみ、冷媒回路から冷媒漏れが発生していると判断するものである。
なお、判定基準「凝縮温度の低下」が、冷媒漏れ検知に対して有効であることは、図6の表およびグラフから明らかである。
Embodiment 2. FIG.
In the first embodiment, the presence / absence of refrigerant leakage is determined using the internal air temperature sensor 1 and the evaporator outlet temperature sensor 2, but in the second embodiment, the condensation temperature is increased in order to improve the accuracy of refrigerant leakage detection. Alternatively, the measured value of the condensation temperature sensor 3 for measuring the refrigerant temperature at the outlet of the condenser 11 is also used. That is, in addition to “when the state in which the determination value ΔT is equal to or less than the determination reference value X continues for a predetermined time or longer”, which is used as the determination criterion for refrigerant leakage in the first embodiment, “decrease in condensation temperature (= high pressure pressure)” ”Is newly determined as a criterion, and only when these two conditions are satisfied at the same time, it is determined that the refrigerant leaks from the refrigerant circuit.
In addition, it is clear from the table | surface and graph of FIG. 6 that the criterion "decrease in condensing temperature" is effective for refrigerant leak detection.

これにより、庫内温度の推移による影響を受けやすい判定値△Tに対し、高圧圧力の値で一意に定まる凝縮温度を判定基準に加えているため、例えば冷蔵庫扉110の開放による庫内温度上昇といった、過渡的な温度変化の影響を受けにくい冷媒漏れ検知を行うことができ、冷却装置制御の信頼性が向上する。   As a result, a condensing temperature that is uniquely determined by the value of the high pressure is added to the determination criterion with respect to the determination value ΔT that is easily affected by the transition of the internal temperature, so that the internal temperature rise due to the opening of the refrigerator door 110, for example. Thus, it is possible to detect refrigerant leakage that is not easily affected by a transient temperature change, and the reliability of cooling device control is improved.

なお、凝縮温度センサ3の計測値に代えて、蒸発器入口温度センサ4の計測値を利用し、「蒸発器入口温度の低下(=低圧圧力の低下)」を判断基準としても、同等の効果が得られる。   It should be noted that, instead of using the measured value of the condensation temperature sensor 3, the measured value of the evaporator inlet temperature sensor 4 is used, and the same effect is obtained even if the “decrease in evaporator inlet temperature (= decreased low pressure)” is used as a criterion. Is obtained.

実施の形態3.
実施の形態3ではさらに別の方法による冷媒回路からの冷媒漏れ検知方法を説明する。図4は本発明の実施の形態3に係る冷却装置及びその制御方法を実施するための構成図である。図4において、図1と同じ符号は同一物または相当物を表している。図4において新たに加えられた要素は、蒸発器13の出口の冷媒圧力を計測する蒸発器出口圧力センサ5と、凝縮器11の吸込み空気温度を計測する凝縮器吸込み空気温度センサ(外気温度センサ)6である。
Embodiment 3 FIG.
In the third embodiment, a refrigerant leakage detection method from the refrigerant circuit according to still another method will be described. FIG. 4 is a configuration diagram for implementing the cooling device and the control method thereof according to Embodiment 3 of the present invention. 4, the same reference numerals as those in FIG. 1 denote the same or equivalent components. The newly added elements in FIG. 4 are an evaporator outlet pressure sensor 5 that measures the refrigerant pressure at the outlet of the evaporator 13, and a condenser intake air temperature sensor that measures the intake air temperature of the condenser 11 (outside air temperature sensor). ) 6.

この構成において冷媒漏れ検知は、コントローラ14により次のように行われる。
(1)蒸発器出口圧力センサの計測値を、コントローラ14に予め記憶している算式に当てはめ、蒸発温度を計算する。
(2)次に、「(蒸発器出口温度センサ2の計測値)−(上記で求めた蒸発温度)」により判定値である蒸発器出口過熱度を求める。
(3)そして、蒸発器出口過熱度が判定基準値Y以上であれば、ガス漏れが発生していると判断する。
なお、判定基準値Yは、同種の冷却装置を用いた実験またはシミュレーションなどを行って、予め定めることができる。
In this configuration, refrigerant leakage detection is performed by the controller 14 as follows.
(1) The measured value of the evaporator outlet pressure sensor is applied to the formula stored in advance in the controller 14 to calculate the evaporation temperature.
(2) Next, the evaporator outlet superheat degree, which is a determination value, is obtained by “(measured value of evaporator outlet temperature sensor 2) − (evaporation temperature obtained above)”.
(3) If the degree of superheat at the evaporator outlet is equal to or greater than the determination reference value Y, it is determined that a gas leak has occurred.
The determination reference value Y can be determined in advance by conducting an experiment or simulation using the same type of cooling device.

冷媒回路からの冷媒漏れが発生すると、冷凍サイクル中の冷媒密度が下がり、低圧が下がってくるのに対し、庫内温度は冷却能力が低下してくるため、上昇(または他系統の冷却により維持)し、蒸発器出口過熱度の値が大きくなる。従来の方法による判定値は、「(蒸発出口温度)−(蒸発器入口温度)」であり、その判定値は、蒸発器内部の熱交換で付加される過熱度と熱交換器内部の圧力損失を温度換算した値の合算である。   When refrigerant leaks from the refrigerant circuit, the refrigerant density in the refrigeration cycle decreases and the low pressure decreases, while the internal temperature rises (or is maintained by cooling other systems) because the cooling capacity decreases. ) And the value of the degree of superheat of the evaporator outlet increases. The judgment value by the conventional method is “(evaporation outlet temperature) − (evaporator inlet temperature)”, and the judgment value is the degree of superheat added by heat exchange inside the evaporator and the pressure loss inside the heat exchanger. Is the sum of values converted to temperature.

熱交換器内部の圧力損失は、熱交換器のスペックや冷媒流量によって変動するため、従来の判定値ではこのばらつき分を見込んだ判定値とする必要があり、精度の高いものではなかった。
これに対して本発明の実施の形態3では、蒸発器出口圧力の飽和温度をパラメータとしているため、判定値に蒸発器内部の圧力損失は含まれず、より精度の高い判定値を得ることができる。
Since the pressure loss inside the heat exchanger fluctuates depending on the specifications of the heat exchanger and the refrigerant flow rate, the conventional judgment value needs to be a judgment value that accounts for this variation, and is not highly accurate.
On the other hand, in Embodiment 3 of the present invention, the saturation temperature of the evaporator outlet pressure is used as a parameter, so the judgment value does not include the pressure loss inside the evaporator, and a judgment value with higher accuracy can be obtained. .

ところで、空冷式熱交換器の性能は、吸込み空気温度と内部を流れる冷媒温度の差により変化する。このため、蒸発器吸込み空気温度が上昇するほど、蒸発器の熱交換能力が上昇し、蒸発器出口過熱度の値が大きくなる。
一方、冷却装置の周囲温度が高くなると、凝縮温度が上昇するため、圧縮機10の能力が低下する。この影響により、冷却装置の周囲温度が上昇するほど、冷却能力が低下し、蒸発器出口過熱度が減少する傾向がある。
このため、外気温度と、目標庫内温度または庫内空気温度の組合せにより、判定基準値Yを随時変化させることが好ましい。
By the way, the performance of the air-cooled heat exchanger changes depending on the difference between the intake air temperature and the temperature of the refrigerant flowing inside. For this reason, the higher the evaporator intake air temperature, the higher the heat exchange capacity of the evaporator, and the larger the value of the evaporator outlet superheat.
On the other hand, when the ambient temperature of the cooling device increases, the condensation temperature increases, so the capacity of the compressor 10 decreases. Due to this influence, as the ambient temperature of the cooling device increases, the cooling capacity tends to decrease and the evaporator outlet superheat degree tends to decrease.
For this reason, it is preferable to change the determination reference value Y at any time according to the combination of the outside air temperature and the target internal temperature or the internal air temperature.

そこで、この実施の形態3では、凝縮器吸込み空気温度センサ(外気温度センサ)6の計測値と、遠隔操作装置15などに記憶されている目標庫内温度または庫内空気温度センサ1の計測値との組合せにより、判定基準値Yを随時変化させる(調整する)。これにより、より精度の高い冷媒漏れ検知が実現できる。
なお、判定基準値Yの調整は、蒸発器吸込み空気温度と蒸発器出口過熱度の関係、冷却装置の周囲温度と蒸発器出口過熱度の関係を、実験またはシミュレーションなどを行って予め求めておき、その関係に基づいて行うものとする。
Therefore, in this third embodiment, the measured value of the condenser intake air temperature sensor (outside air temperature sensor) 6 and the measured value of the target internal temperature or the internal air temperature sensor 1 stored in the remote control device 15 or the like. The determination reference value Y is changed (adjusted) as needed by the combination. Thereby, more accurate refrigerant leak detection can be realized.
In addition, the adjustment of the judgment reference value Y is obtained in advance by performing experiments or simulations, etc., on the relationship between the evaporator intake air temperature and the evaporator outlet superheat degree, and the relationship between the ambient temperature of the cooling device and the evaporator outlet superheat degree. , Based on the relationship.

実施の形態4.
実施の形態1〜3では、1つの冷蔵庫に対して、1台の冷却装置で庫内を冷却する構成を前提に説明してきたが、実施の形態4では、システムの冗長性を持たせるために、1つの冷蔵庫に対して、複数の冷却装置を設置する構成としたものである。
Embodiment 4 FIG.
In the first to third embodiments, the description has been made on the assumption that the inside of the refrigerator is cooled by one cooling device for one refrigerator. However, in the fourth embodiment, in order to provide system redundancy. It is set as the structure which installs several cooling device with respect to one refrigerator.

図5は本発明の実施の形態4に係る冷蔵庫の一例を示す外観図であり、1つの冷蔵庫200に対して、冷却装置201と冷却装置202を備えた構成となっている。冷却装置201および202は、図1または図4の冷却装置と同様の機能を有する。また、それぞれ単独で冷蔵庫200の庫内温度を維持するのに十分な能力を有しており、仮にどちらか1台に異常が発生しても、冷蔵庫200の庫内温度は目標とする範囲内に維持される。   FIG. 5 is an external view showing an example of a refrigerator according to Embodiment 4 of the present invention. The refrigerator 200 and the cooling device 202 are provided for one refrigerator 200. The cooling devices 201 and 202 have the same function as the cooling device of FIG. 1 or FIG. In addition, each has sufficient ability to maintain the internal temperature of the refrigerator 200, and the internal temperature of the refrigerator 200 is within a target range even if an abnormality occurs in either one. Maintained.

この構成において、冷却装置201に冷媒漏れが発生したときの冷却装置201の各部温度の推移を示したものが、図7の表とグラフである。
図7からわかるように、冷却能力低下による庫内温度上昇がない場合においても、判定値△Tは冷媒漏れの進行にしたがって減少しており、△Tを用いた冷媒漏れ有無の検知は、冷却装置を複数台設置した場合においても有効であることが分かる。
In this configuration, the table and graph of FIG. 7 show the transition of the temperature of each part of the cooling device 201 when refrigerant leakage occurs in the cooling device 201.
As can be seen from FIG. 7, even when there is no rise in the internal temperature due to a decrease in cooling capacity, the determination value ΔT decreases as the refrigerant leakage progresses. It can be seen that this is effective even when a plurality of apparatuses are installed.

なお、上記各実施の形態において、冷媒漏れが発生していると判断した場合、コントローラ14は圧縮機10に作用して圧縮機10を停止させ、冷凍装置の運転を停止させるようにしておくことが好ましい。
また、蒸発器出口温度センサ2を、除霜運転の終了を判断するために用いられる除霜用温度センサと兼用すれば、冷却装置に設ける温度センサの個数を少なくできる。
さらに、上記各実施の形態において、圧縮機10の停止中若しくは冷却装置の除霜運転中は、正確な検知ができないおそれがあるため、冷媒漏れの検知を行わないようにするのが好ましい。
In each of the above embodiments, when it is determined that refrigerant leakage has occurred, the controller 14 acts on the compressor 10 to stop the compressor 10 and stop the operation of the refrigeration apparatus. Is preferred.
Further, if the evaporator outlet temperature sensor 2 is also used as a defrosting temperature sensor used for determining the end of the defrosting operation, the number of temperature sensors provided in the cooling device can be reduced.
Further, in each of the above-described embodiments, it is preferable not to detect refrigerant leakage because there is a possibility that accurate detection may not be possible while the compressor 10 is stopped or during the defrosting operation of the cooling device.

本発明の実施の形態1に係る冷却装置及びその制御方法を実施するための構成図。The block diagram for enforcing the cooling device which concerns on Embodiment 1 of this invention, and its control method. 図1の冷却装置を備えた冷蔵庫の一例を示す外観図。The external view which shows an example of the refrigerator provided with the cooling device of FIG. 冷却装置が冷媒漏れもなく正常に運転している状態(図中の状態A)と、冷媒漏れが発生して回路内部の冷媒量が減少した状態(図中の状態B)の一例を示した、モリエル線図。An example of a state in which the cooling device is operating normally without refrigerant leakage (state A in the figure) and a state in which refrigerant leakage has occurred and the amount of refrigerant inside the circuit has decreased (state B in the figure) is shown. , Mollier diagram. 本発明の実施の形態3に係る冷却装置及びその制御方法を実施するための構成図。The block diagram for enforcing the cooling device which concerns on Embodiment 3 of this invention, and its control method. 本発明の実施の形態4に係る冷蔵庫の一例を示す外観図。The external view which shows an example of the refrigerator which concerns on Embodiment 4 of this invention. 図1の構成において、冷却装置の冷媒漏れが進行していった場合の各部温度の推移の一例を示した表およびグラフ。The table and graph which showed an example of transition of each part temperature when the refrigerant | coolant leakage of a cooling device advances in the structure of FIG. 2つの冷却装置がある場合において、1台の冷却装置の冷媒漏れが進行していった場合の各部温度の推移の一例を示した表およびグラフ。The table | surface and graph which showed an example of transition of each part temperature when the refrigerant | coolant leakage of one cooling device progressed when there existed two cooling devices.

符号の説明Explanation of symbols

1 庫内空気温度センサ、2 蒸発器出口温度センサ、3 凝縮温度センサ、4 蒸発器入口温度センサ、5 蒸発器出口圧力センサ、6 凝縮器吸込み空気温度センサ(外気温度センサ)、10 圧縮機、11 凝縮器、12 絞り装置、13 蒸発器、14 コントローラ(制御装置)、15 遠隔操作装置、100 冷蔵倉庫、101 冷却装置、110 冷蔵庫扉、200 冷蔵倉庫、201 冷却装置、202 冷却装置、210 冷蔵庫扉。   1. Air temperature sensor in the chamber, 2 evaporator outlet temperature sensor, 3 condensation temperature sensor, 4 evaporator inlet temperature sensor, 5 evaporator outlet pressure sensor, 6 condenser intake air temperature sensor (outside air temperature sensor), 10 compressor, DESCRIPTION OF SYMBOLS 11 Condenser, 12 Throttle device, 13 Evaporator, 14 Controller (control device), 15 Remote operation device, 100 Refrigerated warehouse, 101 Cooling device, 110 Refrigerator door, 200 Refrigerated warehouse, 201 Cooling device, 202 Cooling device, 210 Refrigerator door.

Claims (9)

圧縮機、凝縮器、絞り装置、蒸発器の順に冷媒を循環させる冷媒回路を有した、冷蔵倉庫に使用される冷却装置の制御方法であって、
冷蔵倉庫内部の空気温度を計測する庫内空気温度センサと、前記蒸発器出口の冷媒温度を計測する蒸発器出口温度センサとを備え、
前記庫内空気温度センサの計測値と前記蒸発器出口温度センサの計測値との差と、予め定めた判定基準値Xとの比較に基づいて、前記冷媒回路の冷媒漏れの有無を判定することを特徴とする冷却装置の制御方法。
A control method for a cooling device used in a refrigerated warehouse, having a refrigerant circuit for circulating a refrigerant in the order of a compressor, a condenser, a throttle device, and an evaporator,
An internal air temperature sensor for measuring the air temperature inside the refrigerated warehouse, and an evaporator outlet temperature sensor for measuring the refrigerant temperature at the evaporator outlet,
Determining whether there is a refrigerant leak in the refrigerant circuit based on a comparison between a measured value of the internal air temperature sensor and a measured value of the evaporator outlet temperature sensor and a predetermined criterion value X A control method for a cooling device.
凝縮温度または凝縮器出口冷媒温度を計測する凝縮温度センサを備え、
前記庫内空気温度センサの計測値と前記蒸発器出口温度センサの計測値との差が、予め定めた判定基準値X以下となる状態が所定時間以上継続し、かつ、前記凝縮温度センサの計測値が低下した場合に、前記冷媒回路の冷媒漏れが発生していると判定することを特徴とする請求項1に記載の冷却装置の制御方法。
Condensation temperature sensor that measures condensation temperature or condenser outlet refrigerant temperature,
The state in which the difference between the measured value of the internal air temperature sensor and the measured value of the evaporator outlet temperature sensor is equal to or less than a predetermined determination reference value X continues for a predetermined time and the measurement of the condensation temperature sensor The method for controlling a cooling device according to claim 1, wherein when the value decreases, it is determined that a refrigerant leak has occurred in the refrigerant circuit.
蒸発器入口の冷媒温度を計測する蒸発器入口温度センサを備え、
前記庫内空気温度センサの計測値と前記蒸発器出口温度センサの計測値との差が、予め定めた判定基準値X以下となる状態が所定時間以上継続し、かつ、前記蒸発器入口温度センサの計測値が低下した場合に、前記冷媒回路の冷媒漏れが発生していると判定することを特徴とする請求項1に記載の冷却装置の制御方法。
Equipped with an evaporator inlet temperature sensor that measures the refrigerant temperature at the evaporator inlet,
The state in which the difference between the measured value of the internal air temperature sensor and the measured value of the evaporator outlet temperature sensor is equal to or less than a predetermined determination reference value X continues for a predetermined time and the evaporator inlet temperature sensor 2. The method of controlling a cooling device according to claim 1, wherein it is determined that a refrigerant leak has occurred in the refrigerant circuit when the measured value of the refrigerant has decreased.
圧縮機、凝縮器、絞り装置、蒸発器の順に冷媒を循環させる冷媒回路を有した、冷蔵倉庫に使用される冷却装置の制御方法であって、
前記蒸発器出口の冷媒圧力を計測する蒸発器出口圧力センサと、前記蒸発器出口の冷媒温度を計測する蒸発器出口温度センサと、外気温度を計測する外気温度センサとを備え、
前記蒸発器出口圧力センサの計測値を予め記憶していた算式に当てはめて蒸発温度を算出し、
前記蒸発器出口温度センサの計測値と前記算出された蒸発温度との差が、予め定めた判定基準値を外気温度と庫内空気温度または目標庫内温度とに応じて調整した判定基準値Y以上の場合に、前記冷媒回路の冷媒漏れが発生していると判定することを特徴とする冷却装置の制御方法。
A control method for a cooling device used in a refrigerated warehouse, having a refrigerant circuit for circulating a refrigerant in the order of a compressor, a condenser, a throttle device, and an evaporator,
An evaporator outlet pressure sensor that measures the refrigerant pressure at the evaporator outlet, an evaporator outlet temperature sensor that measures the refrigerant temperature at the evaporator outlet, and an outside air temperature sensor that measures the outside air temperature,
Applying the measured value of the evaporator outlet pressure sensor to the previously stored formula to calculate the evaporation temperature,
The difference between the measured value of the evaporator outlet temperature sensor and the calculated evaporation temperature is a judgment reference value Y obtained by adjusting a predetermined judgment reference value according to the outside air temperature and the inside air temperature or the target inside temperature. In the above case, it is determined that a refrigerant leak has occurred in the refrigerant circuit.
冷媒漏れが発生していると判断した場合に、前記冷蔵倉庫の外部に異常状態を通報することを特徴とする請求項1から4のいずれかに記載の冷却装置の制御方法。   The method for controlling a cooling device according to any one of claims 1 to 4, wherein when it is determined that a refrigerant leak has occurred, an abnormal state is reported to the outside of the refrigerated warehouse. 冷媒漏れが発生していると判断した場合、冷凍装置の運転を停止させることを特徴とする請求項1から5のいずれかに記載の冷却装置の制御方法。   The method for controlling a cooling device according to any one of claims 1 to 5, wherein when it is determined that a refrigerant leak has occurred, the operation of the refrigeration device is stopped. 前記蒸発器出口温度センサは、除霜運転の終了を判断するために用いられる除霜用温度センサと兼用されていることを特徴とする請求項1から6のいずれかに記載の冷却装置の制御方法。   The said evaporator outlet temperature sensor is combined with the temperature sensor for defrost used in order to judge completion | finish of a defrost operation, Control of the cooling device in any one of Claim 1 to 6 characterized by the above-mentioned. Method. 圧縮機、凝縮器、絞り装置、蒸発器の順に冷媒を循環させる冷媒回路を備えた冷蔵倉庫に使用される冷却装置であって、
請求項1〜7のいずれかの制御方法を実行するための制御装置が備えられていることを特徴とする冷却装置。
A cooling device used in a refrigerator warehouse having a refrigerant circuit for circulating a refrigerant in the order of a compressor, a condenser, a throttle device, and an evaporator,
A cooling device comprising a control device for executing the control method according to claim 1.
請求項8の冷却装置が1台以上設置されていることを特徴とする冷蔵倉庫。   One or more cooling devices according to claim 8 are installed.
JP2007090895A 2007-03-30 2007-03-30 Control method of cooling device, cooling device and refrigerating storage Withdrawn JP2008249239A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007090895A JP2008249239A (en) 2007-03-30 2007-03-30 Control method of cooling device, cooling device and refrigerating storage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007090895A JP2008249239A (en) 2007-03-30 2007-03-30 Control method of cooling device, cooling device and refrigerating storage

Publications (1)

Publication Number Publication Date
JP2008249239A true JP2008249239A (en) 2008-10-16

Family

ID=39974396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007090895A Withdrawn JP2008249239A (en) 2007-03-30 2007-03-30 Control method of cooling device, cooling device and refrigerating storage

Country Status (1)

Country Link
JP (1) JP2008249239A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102472549A (en) * 2009-07-10 2012-05-23 松下电器产业株式会社 Storage apparatus, and storage method
JP2013036704A (en) * 2011-08-10 2013-02-21 Daikin Industries Ltd Refrigeration device
WO2017109932A1 (en) * 2015-12-25 2017-06-29 三菱電機株式会社 Cooling warehouse
CN107407514A (en) * 2015-03-31 2017-11-28 大金工业株式会社 Indoor apparatus of air conditioner
WO2018131085A1 (en) * 2017-01-11 2018-07-19 三菱電機株式会社 Refrigerated warehouse
US10399412B2 (en) 2016-06-08 2019-09-03 Truma Geraetetechnik Gmbh & Co. Kg Air conditioning system and method for leakage detection in an air conditioning system
JP2019199981A (en) * 2018-05-15 2019-11-21 三菱重工サーマルシステムズ株式会社 Heat source system, control device, heat source system operation method, and program
CN110940051A (en) * 2018-09-25 2020-03-31 奥克斯空调股份有限公司 Air conditioner refrigerant leakage detection method and air conditioner using same
CN110940046A (en) * 2018-09-21 2020-03-31 奥克斯空调股份有限公司 Refrigerant leakage detection method and air conditioner
JP2020118318A (en) * 2019-01-21 2020-08-06 ホシザキ株式会社 Cooling storage
CN112856715A (en) * 2021-02-23 2021-05-28 珠海拓芯科技有限公司 Air conditioner refrigerant leakage detection method and device, storage medium and air conditioner
CN117396713A (en) * 2021-05-21 2024-01-12 大金工业株式会社 Refrigerant leak detection system

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102472549A (en) * 2009-07-10 2012-05-23 松下电器产业株式会社 Storage apparatus, and storage method
JP2013036704A (en) * 2011-08-10 2013-02-21 Daikin Industries Ltd Refrigeration device
US10488066B2 (en) 2015-03-31 2019-11-26 Daikin Industries, Ltd. Air conditioning indoor unit with refrigerant leak detection
CN107407514A (en) * 2015-03-31 2017-11-28 大金工业株式会社 Indoor apparatus of air conditioner
EP3279591A4 (en) * 2015-03-31 2018-04-18 Daikin Industries, Ltd. Indoor air conditioning unit
US20180283719A1 (en) * 2015-03-31 2018-10-04 Daikin Industries, Ltd. Air conditioning indoor unit
WO2017109932A1 (en) * 2015-12-25 2017-06-29 三菱電機株式会社 Cooling warehouse
GB2561097B (en) * 2015-12-25 2021-02-03 Mitsubishi Electric Corp Refrigerated warehouse and controller
JPWO2017109932A1 (en) * 2015-12-25 2018-08-09 三菱電機株式会社 Cooling warehouse and control device
CN108431529A (en) * 2015-12-25 2018-08-21 三菱电机株式会社 Cooling warehouse
GB2561097A (en) * 2015-12-25 2018-10-03 Mitsubishi Electric Corp Cooling warehouse
US10399412B2 (en) 2016-06-08 2019-09-03 Truma Geraetetechnik Gmbh & Co. Kg Air conditioning system and method for leakage detection in an air conditioning system
JPWO2018131085A1 (en) * 2017-01-11 2019-08-08 三菱電機株式会社 Cooling warehouse
WO2018131085A1 (en) * 2017-01-11 2018-07-19 三菱電機株式会社 Refrigerated warehouse
JP2019199981A (en) * 2018-05-15 2019-11-21 三菱重工サーマルシステムズ株式会社 Heat source system, control device, heat source system operation method, and program
JP7085405B2 (en) 2018-05-15 2022-06-16 三菱重工サーマルシステムズ株式会社 Heat source system, control device, heat source system operation method and program
CN110940046A (en) * 2018-09-21 2020-03-31 奥克斯空调股份有限公司 Refrigerant leakage detection method and air conditioner
CN110940051A (en) * 2018-09-25 2020-03-31 奥克斯空调股份有限公司 Air conditioner refrigerant leakage detection method and air conditioner using same
CN110940051B (en) * 2018-09-25 2021-03-12 奥克斯空调股份有限公司 Air conditioner refrigerant leakage detection method and air conditioner using same
JP2020118318A (en) * 2019-01-21 2020-08-06 ホシザキ株式会社 Cooling storage
JP7174635B2 (en) 2019-01-21 2022-11-17 ホシザキ株式会社 cold storage
CN112856715A (en) * 2021-02-23 2021-05-28 珠海拓芯科技有限公司 Air conditioner refrigerant leakage detection method and device, storage medium and air conditioner
CN117396713A (en) * 2021-05-21 2024-01-12 大金工业株式会社 Refrigerant leak detection system

Similar Documents

Publication Publication Date Title
JP2008249239A (en) Control method of cooling device, cooling device and refrigerating storage
US10775084B2 (en) System for refrigerant charge verification
JP6475346B2 (en) Refrigeration cycle equipment
JP4317878B2 (en) Air conditioner and method for judging refrigerant amount
JP4503646B2 (en) Air conditioner
US7856836B2 (en) Refrigerating air conditioning system
CN105485856B (en) Method for detecting abnormality under air-conditioning system and air-conditioning system heating state
JP5249821B2 (en) Refrigeration apparatus and refrigerant leakage detection method for refrigeration apparatus
JP5511761B2 (en) Air conditioner
CN110895020B (en) Refrigerant leakage detection method and air conditioner
CN109983286A (en) Method for carrying out failure mitigation in vapor compression system
JP2016125766A (en) Cooler
JP2013228130A (en) Freezer
JP2016003848A (en) Air conditioning system and control method for the same
JP2007139244A (en) Refrigeration device
JP2010164270A (en) Multiple chamber type air conditioner
JP6297151B2 (en) Refrigeration cycle apparatus, refrigerant leak detection apparatus and refrigerant leak detection method
JP6095155B2 (en) Refrigeration apparatus and refrigerant leakage detection method for refrigeration apparatus
JP2019002639A (en) Refrigerant leakage detection method of ari conditioner, and air conditioner
JP4292525B2 (en) Refrigerant amount detection method for vapor compression refrigeration cycle
KR20120085403A (en) Refrigerant circulation apparatus and method of controlling the same
JP2017067397A (en) Refrigerator
JP2004061056A (en) Oil level detecting method and device for compressor
KR20130135132A (en) Heat pump type air conditioner
JP2008249240A (en) Condensing unit and refrigerating device comprising the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100601