JPS60169647A - Fuel injection control method of internal-combustion engine - Google Patents

Fuel injection control method of internal-combustion engine

Info

Publication number
JPS60169647A
JPS60169647A JP2296284A JP2296284A JPS60169647A JP S60169647 A JPS60169647 A JP S60169647A JP 2296284 A JP2296284 A JP 2296284A JP 2296284 A JP2296284 A JP 2296284A JP S60169647 A JPS60169647 A JP S60169647A
Authority
JP
Japan
Prior art keywords
intake pipe
fuel
engine
pressure
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2296284A
Other languages
Japanese (ja)
Inventor
Hiroshi Okano
岡野 博志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2296284A priority Critical patent/JPS60169647A/en
Publication of JPS60169647A publication Critical patent/JPS60169647A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/045Detection of accelerating or decelerating state

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To substantially improve the driving characteristic of an engine and improve the emission of its exhaust when the engine is driven in its transient operation, by using the estimated value of an intake air quantity or the like, at a point of time when injected fuel reaches a combustion chamber, so as to calculate and control an injection quantity of fuel. CONSTITUTION:A step 40 reads the updated pressure PMO in an intake pipe and pressures PM1, PM2 in the intake pipe when it is interrupted at the preceding time and that before the preceding time. A step 41 estimates the pressure PMCAL in the intake pipe at a point of time when injected fuel reaches a combustion chamber. A step 43, using the pressure PMCAL in the intake pipe, obtains a basic injection pulse width TP. When an engine is driven in its operative condition of acceleration causing the pressure in the intake pipe to increase, fuel in quantity meeting this pressure increase is supplied. In this way, a driving characteristic of the engine can be substantially improved and its exhaust emission can be improved when the engine is driven in its transient operation.

Description

【発明の詳細な説明】 技術分野 本発明は内燃機関の燃料噴射を電子的に制御する方法に
関する。
Description: TECHNICAL FIELD The present invention relates to a method for electronically controlling fuel injection in an internal combustion engine.

従来技術 機関の運転状態i4ラメータ、例えば吸気管内圧力及び
回転速度、を検出し、検出したパラメータに応じて噴射
1べき燃料量を11出し、その算出値に応じて燃料噴射
を行う機関においては、運転状態パラメータ検出時と、
これに基づく燃料が実際に燃焼室に導かれる時点との時
間的なずれにより、機関が真に要求する燃料量を供給で
きない場合がある。
In an engine that detects the operating state i4 parameters of a conventional engine, such as intake pipe internal pressure and rotational speed, calculates the amount of fuel that should be injected according to the detected parameters, and performs fuel injection according to the calculated value, When detecting operating status parameters,
Due to the time lag between this and the time when the fuel is actually introduced into the combustion chamber, it may not be possible to supply the amount of fuel truly required by the engine.

例えば第1図に示す如く、燃料噴射前の所定クランク角
度位置Aでその時の吸気管内圧力と回転速度とから燃料
噴射パルス幅を算出し、このパルス幅でインジェクタを
Bの期間駆動し、燃料噴射を行う。吸気弁がCの期間開
き、これにより燃料が燃焼室に供給される。この場合、
実際に燃料が燃焼室に入るのはDの位置近傍であり、従
って燃焼室内に入る空気量はD近傍の吸気管内圧力によ
って定まることになる。この図からも明らかのように、
燃料険の算出に用いるべき吸気管内圧力がDの位置のも
のであるのに、実際にはAの位置の吸気管内圧力を用い
ているのである。
For example, as shown in Fig. 1, at a predetermined crank angle position A before fuel injection, a fuel injection pulse width is calculated from the intake pipe internal pressure and rotational speed at that time, and the injector is driven with this pulse width for a period B, and the fuel injection is performed. I do. The intake valve opens for a period of time C, thereby supplying fuel to the combustion chamber. in this case,
The fuel actually enters the combustion chamber near the position D, so the amount of air entering the combustion chamber is determined by the pressure inside the intake pipe near D. As is clear from this figure,
Although the intake pipe pressure to be used in calculating the fuel pressure is at position D, the intake pipe pressure at position A is actually used.

このように算出に用いる空気量の検出タイミングと実際
に空気が燃焼室に入るタイミングとに位相差があると、
特に機関が過渡運転状態にある場合、燃料量に著しい過
不足が生じてしまう。従来は、この過不足を補償するた
めにスロットル弁の開度信号等に応じて燃料の増量、減
量制御を行っていたが、十分に補償することは困難であ
シ、運転特性の悪化及びエミッション上の悪化を招いて
いた。
If there is a phase difference between the detection timing of the air amount used for calculation and the timing when air actually enters the combustion chamber,
Particularly when the engine is in a transient operating state, there will be a significant excess or deficiency in the amount of fuel. Conventionally, in order to compensate for this excess or deficiency, control was performed to increase or decrease the amount of fuel depending on the opening signal of the throttle valve, etc., but it was difficult to sufficiently compensate for this, resulting in deterioration of driving characteristics and emissions. This was causing the above situation to worsen.

発明の目的 従って本発明は従来技術の上述した不都合を解消するも
のであ、す、本発明の目的は、過渡運転状態時にも機関
の真に要求する燃料量を正確に供給することのできる燃
料噴射制御方法を提供することにある。
OBJECTS OF THE INVENTION Accordingly, the present invention solves the above-mentioned disadvantages of the prior art.An object of the present invention is to provide a fuel that can accurately supply the amount of fuel truly required by an engine even during transient operating conditions. An object of the present invention is to provide an injection control method.

発明の構成 上述の目的を達成する本発明の特徴は、機関が所定クラ
ンク角度回転する毎の吸入空気流量もしくは吸気管内圧
力に応じて噴射すべき燃料量を算1′lシ、該タナ出し
た燃料量に応じて実際に燃料噴射を行う方法において、
今回算出時の吸入空気流量もしくけ吸気管内圧力と少な
くとも前回算出時の吸入空気流量もしくは吸気管内圧力
とを用いて、今回の算出に基づいて噴射される燃料が燃
焼室に到達する時点での吸入空気流量もし、くけ吸気管
内圧力を予測l〜、該予測した吸入空気流量もしくけ吸
気管内圧力を用いて噴射燃料量を9−出し、該算1」H
〜た燃料量に応じて実際の燃料噴射を行うことにある。
Structure of the Invention The feature of the present invention that achieves the above-mentioned object is that the amount of fuel to be injected is calculated according to the intake air flow rate or the intake pipe pressure each time the engine rotates by a predetermined crank angle, and In the method of actually injecting fuel according to the amount of fuel,
Using the intake air flow rate or intake pipe internal pressure from the current calculation and at least the intake air flow rate or intake pipe internal pressure from the previous calculation, the intake air at the time when the fuel injected based on the current calculation reaches the combustion chamber. If the air flow rate is predicted and the pressure inside the intake pipe is predicted, the predicted intake air flow rate and the pressure inside the intake pipe are used to calculate the amount of fuel to be injected, and the calculation is 1"H.
The objective is to perform actual fuel injection according to the amount of fuel that has been obtained.

実施例 以下実施例を用いて本発明の詳細な説明する。Example The present invention will be described in detail below using Examples.

第2r9.lには、本発明の一実施例表して、電子制御
燃料噴射式内燃機関が概略的に表わされている。
2nd r9. 1 schematically shows an electronically controlled fuel injection type internal combustion engine as an embodiment of the present invention.

同図において、lOは吸気管、12は吸気管内圧力を検
出する圧力センザ、14は300毎、1800毎のクラ
ンク角度を検出する角度センサを内蔵するブ゛イストリ
ピユータである。圧力セン−It 12からの検出信号
及びディストリビュータ14内の角度センサからの検出
信号は、マイクロコンビー−タを内蔵する電子制御ユニ
ッ) (ECU ) 16に送り込まれて燃料噴射・や
ルス幅の演ηが行われる。
In the figure, IO is an intake pipe, 12 is a pressure sensor that detects the pressure inside the intake pipe, and 14 is a boost repeater incorporating an angle sensor that detects crank angles every 300 degrees and every 1800 degrees. The detection signal from the pressure sensor It 12 and the detection signal from the angle sensor in the distributor 14 are sent to an electronic control unit (ECU) 16 that has a built-in microconbeater and calculates the fuel injection and pulse width. will be held.

F:CU 16からはη出しだ・Pルス幅に相当するパ
ルス幅を有する駆動信号が各インジェクタ18a。
F: η is output from the CU 16. A drive signal having a pulse width corresponding to the P pulse width is sent to each injector 18a.

18b、]、8c、18dにそれぞれ別個に出力され、
斯くして燃料噴射が行われる。ECU 16にはその他
に、冷却水温センサ20.吸気温センサ22、スロット
ル弁24の開いたことを検知するスロットルスイッチ2
6、スロットル弁24の開度センサ28、酸素濃度セン
サ30等からの検出信号、バッテリ32の端子電圧、ス
タータ信号。
18b,], 8c, and 18d, respectively,
Fuel injection is thus performed. In addition, the ECU 16 includes a cooling water temperature sensor 20. Intake temperature sensor 22, throttle switch 2 that detects opening of throttle valve 24
6. Detection signals from the opening sensor 28 of the throttle valve 24, the oxygen concentration sensor 30, etc., the terminal voltage of the battery 32, and the starter signal.

エアコンスイッチ信号、市速情号等が送り込壕れる。ま
たECU 16からはディストリビュータ14に内蔵さ
れるイグナイタに点火信号が出力され、これによって点
火グラブ34の通電制御が行われるが、これらは本発明
と直接関係ないため説明を省略する。
Air conditioner switch signals, city speed information signals, etc. will be sent to the shelter. Further, the ECU 16 outputs an ignition signal to the igniter built in the distributor 14, and thereby controls the energization of the ignition glove 34, but since these are not directly related to the present invention, a description thereof will be omitted.

FJCU160マイクロコンピュータは、アナログの入
力信号を2進信号に変換するA/D変換器16a。
The FJCU160 microcomputer has an A/D converter 16a that converts an analog input signal into a binary signal.

入出力ポート(T107]?−ト)16b、中央処理装
置(CPU ) ] 6 c 、ランダムアクセスメモ
リ(RAM)16d、リードオンリメモリ(ROM)1
6e、イグニッンヨンスイッチオフ後も情報の保持を行
うバックアップRA、M ] 6 f等を備えておシ、
これらはパス16gによって接続されている。
Input/output port (T107) 16b, central processing unit (CPU) 6c, random access memory (RAM) 16d, read only memory (ROM) 1
6e, backup RA that retains information even after the ignition switch is turned off,
These are connected by a path 16g.

圧力センザ12の検出信号は、所定時間4jjに実行さ
れるMD変変換ルーフッより2進信号にi換され、吸気
管内圧力PM Oを表わすプ゛−夕としてその都度RA
M 16 dに格納される。アイス) IJビー−月4
内の角度センサからのクランク角30°イσ 。
The detection signal of the pressure sensor 12 is converted into a binary signal by the MD conversion routine executed at a predetermined time 4jj, and is converted into a binary signal each time as a signal representing the intake pipe internal pressure PMO.
Stored in M 16 d. Ice) IJ B-Mon 4
Crank angle 30° from the angle sensor inside σ.

の信号はl1071e−ト16bを介してマイクロコン
ビ。−2内に取り込まれ、回転速度NEを11出する3
(1’CA割込み要求信号と々る。n−出される回転速
度NEのデータはその都度RAM 16 dに格納され
る。従ってRAM 16 dには常に最新の吸気管内圧
力1”M四回転速度NEを表わすデータが格納されてい
ることとなる。
The signal is sent to the microcombi via l1071e-to-16b. 3 which is taken into -2 and outputs a rotational speed NE of 11
(1'CA interrupt request signal is received. n-Data of rotational speed NE output is stored in RAM 16d each time. Therefore, RAM 16d always contains the latest intake pipe internal pressure 1"M4 rotational speed NE. This means that data representing .

次に第3図のフローチャート及′び第4図の説明図を用
いて上述のマイクロコンピュータの動作を説明する。
Next, the operation of the above-mentioned microcomputer will be explained using the flowchart shown in FIG. 3 and the explanatory diagram shown in FIG.

クランク角180°毎にCPU 16 cは第3図に示
す処理ルーチンを実行する。まずステップ40において
、RAM 16 dより最新の吸気管内圧力PMO前回
の割込み時の吸気管内圧力PM1、及び前々回の割込み
時の吸気管内圧力PM2を読み出す。次いでステップ4
1において、今回算出する噴射パルス幅に従って噴射さ
れた燃料が実際に燃焼室に到達する時点における吸気管
内圧力PM CALを予測する。第4−図に示す如き吸
気弁開弁期間との関係から、燃料が実際に燃焼室に到達
するのは、今回の割込み時点から180°CA後である
と考え、その時点での吸気管内圧力の予測値PM CA
Lをめる。
The CPU 16c executes the processing routine shown in FIG. 3 every 180 degrees of crank angle. First, in step 40, the latest intake pipe internal pressure PMO, the intake pipe internal pressure PM1 at the time of the previous interruption, and the intake pipe internal pressure PM2 at the time of the interruption before the previous time are read out from the RAM 16d. Then step 4
1, the intake pipe internal pressure PM CAL at the time when the injected fuel actually reaches the combustion chamber is predicted according to the injection pulse width calculated this time. From the relationship with the intake valve opening period as shown in Figure 4, it is assumed that the fuel actually reaches the combustion chamber after 180° CA from the current interrupt time, and the intake pipe internal pressure at that time Predicted value PM CA
Put L.

一般に、現在までのデータから未来の値を予測する17
I、マクロ−リン展開等の多項式が用いられる。マクロ
−リン展開の一般式は下記の如く表わされる。
In general, predicting future values from data up to the present17
Polynomials such as I, Macrolin expansion, etc. are used. The general formula for macrolin expansion is expressed as follows.

本実施例において、t’(x)は吸気管内圧力であり、
xlJクランク角度、hは1800クランク角にそれぞ
れ対応りる。吸気管内圧力f (x)の関数形は不定で
あるため、近似計算を用いる。捷ず、2次までのf’(
x)、f“(、)は次の如くなる。
In this example, t'(x) is the pressure inside the intake pipe,
xlJ crank angle and h correspond to 1800 crank angle, respectively. Since the functional form of the intake pipe internal pressure f (x) is indefinite, approximate calculation is used. Without switching, f'(
x), f''(,) are as follows.

2次壕での近似を考え、第(2) 、 (3)式を第(
1)式に代入すると、次のようになる。
Considering the approximation using a quadratic moat, equations (2) and (3) can be transformed into (
1) Substituting into the equation gives the following:

f (x+h) # 2.5 f(x)−2f (x−
h)+0.5 f (x−2h)=(4)第(4)式に
おいて、f (x)を現在の吸気管内圧力値PM Oで
あると考えれば、f (x −h )はPMI。
f (x+h) # 2.5 f(x)-2f (x-
h)+0.5 f (x-2h) = (4) In equation (4), if f (x) is considered to be the current intake pipe internal pressure value PMO, then f (x - h ) is PMI.

f(x−2h)はPM2となり、180°CA後の予測
値PM CALがf(x十h)でめられることとがる。
f(x-2h) becomes PM2, and the predicted value PM CAL after 180° CA can be determined by f(x10h).

即ち、ステップ41では、PMO、PMI 、 PM2
から次式により、予測値PM CALを算出する。
That is, in step 41, PMO, PMI, PM2
The predicted value PM CAL is calculated from the following equation.

PM CAL = 2.5 PM O−2,OPM l
 十0.5 PM 2次のステップ42では、次回の割
込み口りの予測値計算に備えるため、PM 1の内容を
PM2にPMOの内容をPMIにそれぞれ移すようにR
AM 16 dに記憶させでおく。次いでステップ43
において、予測した吸気管内圧力PM CALとその時
の回転速度NEとから基本噴射・ぐルス幅TPを周知の
方法、例えばT P = g(NE 、 PMCAI、
)のテーブルを用いる方法等によってめ、さらに、ステ
ップ44においで、冷却水温センサ20.吸気温センザ
22.スロットルスイッチ26.開度センサ28.酸素
濃度七ンザ28等からの検出信号及びバッテリ電圧等に
よる補正を行って最終的な噴射・やルス幅をめRAM 
16 dに一時的に格納する。所定のクランク角度位置
でCPU ]、 6 cはこの噴射ノ9ルス幅に相当す
る・ぐルス幅を有する駆動信号をIlo &−)Ifi
bを介し、てそれぞれのインゾェクタに別個に出力する
PM CAL = 2.5 PM O-2, OPM l
10.5 PM In the second step 42, in order to prepare for calculating the predicted value of the next interrupt entrance, R is executed to transfer the contents of PM1 to PM2 and the contents of PMO to PMI.
AM 16 d. Then step 43
, the basic injection/gust width TP is calculated from the predicted intake pipe internal pressure PM CAL and the rotational speed NE at that time using a well-known method, for example, T P = g (NE, PMCAI,
), and further, in step 44, the cooling water temperature sensor 20. Intake temperature sensor 22. Throttle switch 26. Opening sensor 28. After making corrections based on the detection signal from the oxygen concentration sensor 28, battery voltage, etc., the final injection and pulse width is determined.
16 Temporarily stored in d. At a predetermined crank angle position, 6c generates a drive signal having a width corresponding to this injection nozzle width as Ilo &-) Ifi.
b to each injector separately.

第4図に示−すように、」二連の如く予測値PM CA
Lを用いて噴射i4ルス幅を計算しているため、即ち、
燃料が燃焼室に到達する時点の吸入空気量に対応した吸
気管内圧力で噴射ノクルス幅を計aしているため、加速
運転状態となって吸気管内圧力が上n。
As shown in Figure 4, the predicted value PM CA
Since the injection i4 pulse width is calculated using L, that is,
Since the injection nozzle width is measured by the pressure inside the intake pipe corresponding to the amount of intake air at the time when the fuel reaches the combustion chamber, the pressure inside the intake pipe rises during acceleration operation.

する場合、その上昇に正しく見合った作の燃料供給を行
うことができる。従って加速応答性が大幅に向上する。
If so, fuel supply can be made to properly compensate for the increase. Therefore, acceleration response is greatly improved.

以」二の実施例では、180°CA後の予測値を示した
が、同様の方法によシ他のクランク角度の予測を行うこ
とも可能である。まだ予測値を算出する式とし2て他の
多項式を用いても良い。もちろん、次数も2次に限定さ
れない。
In the second embodiment, predicted values after 180° CA were shown, but it is also possible to predict other crank angles using a similar method. However, other polynomials may be used as the equation 2 for calculating the predicted value. Of course, the order is not limited to the second order either.

また、上述の実施例は吸気管内圧力を用いだ」r1合で
あるが、機械式あるいは熱線式等のエアフロメータによ
り吸入空気流量を用いて噴射量)1量を計算する場合に
本発明の方法を用いても良い。
Furthermore, although the above embodiment uses the pressure inside the intake pipe, the method of the present invention can be used to calculate the injection amount using the intake air flow rate using a mechanical or hot wire air flow meter. You may also use

発明の効果 本発明では、噴射される燃料が燃焼室に到達する時点で
の吸入空気量もしくは吸気管内圧力を予測し、その予測
値を用いて噴射量の計算及び制御を行っているため、過
渡運転状態忙おいても槻門が真に要求している燃料量を
正確に供給することができる。その結果、過渡時の運転
特性の大幅な向上及びエミッンヨンの向上を図ることが
できる。
Effects of the Invention In the present invention, the amount of intake air or the pressure inside the intake pipe is predicted at the time when the injected fuel reaches the combustion chamber, and the predicted value is used to calculate and control the amount of injection. Even in busy operating conditions, it can accurately supply the amount of fuel Tsukimon truly requires. As a result, it is possible to significantly improve the transient operating characteristics and improve the emission characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は燃料噴射、噴射量の計算等のタイミングの説明
図、第2図は本発明の一実施例の概略図、第3図は上記
実施例の制御グロダラムのフローチャート、第4図は上
記実施例の作用説明図である。 10・・・吸気管、12・・圧力センサ、14・・ディ
ストリビュータ、16−・ECU、18a、18b、1
8c。 18d・・インジェクタ。 特許出願人 トヨタ自動車株式会社 特許出願代理人 弁理士 育 木 朗 弁理士 西 舘 和 之 弁理士 松 下 操 弁理士 山 口 昭 之 弁理士 西 山 雅 也 第1図 第4図
Fig. 1 is an explanatory diagram of the timing of fuel injection, calculation of injection amount, etc., Fig. 2 is a schematic diagram of an embodiment of the present invention, Fig. 3 is a flowchart of the control glodarum of the above embodiment, and Fig. 4 is the above FIG. 3 is an explanatory diagram of the operation of the embodiment. 10... Intake pipe, 12... Pressure sensor, 14... Distributor, 16-... ECU, 18a, 18b, 1
8c. 18d...Injector. Patent Applicant Toyota Motor Corporation Patent Application Agent Patent Attorneys Akira Ikugi Patent Attorney Kazuyuki Nishidate Patent Attorney Masashi Matsushita Patent Attorney Akira Yamaguchi Patent Attorney Masaya Nishiyama Figure 1 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 1 機関が所定クランク角度回転する毎の吸入空気流量
もしくは吸気管内圧力に応じて噴射すべき燃料量を算出
し、該算出した燃料量に応じて実際に燃料噴射を行う方
法において、今回算出時の吸入空気流量もしくは吸気管
内圧力と少なくとも前回算出時の吸入空気流量もしくは
吸気管内圧力とを用いて、今回の(至)出に基づいて噴
射される燃料が燃焼室に到達する時点での吸入空気流量
もしくは吸気管内圧力を予測し、該予測した吸入空気流
量もしくは吸気管内圧力を用いて噴射燃料量を算出し、
該算出した燃料量に応じて実際の燃料噴射を行うことを
特徴とする内燃機関の燃料噴射制御方法。
1 In the method of calculating the amount of fuel to be injected according to the intake air flow rate or intake pipe internal pressure each time the engine rotates a predetermined crank angle, and actually injecting fuel according to the calculated fuel amount, Using the intake air flow rate or intake pipe internal pressure and at least the intake air flow rate or intake pipe internal pressure from the previous calculation, calculate the intake air flow rate at the time when the fuel injected based on the current output reaches the combustion chamber. Alternatively, the intake pipe internal pressure is predicted, and the injected fuel amount is calculated using the predicted intake air flow rate or intake pipe internal pressure,
A fuel injection control method for an internal combustion engine, characterized in that actual fuel injection is performed according to the calculated fuel amount.
JP2296284A 1984-02-13 1984-02-13 Fuel injection control method of internal-combustion engine Pending JPS60169647A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2296284A JPS60169647A (en) 1984-02-13 1984-02-13 Fuel injection control method of internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2296284A JPS60169647A (en) 1984-02-13 1984-02-13 Fuel injection control method of internal-combustion engine

Publications (1)

Publication Number Publication Date
JPS60169647A true JPS60169647A (en) 1985-09-03

Family

ID=12097211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2296284A Pending JPS60169647A (en) 1984-02-13 1984-02-13 Fuel injection control method of internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS60169647A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6293472A (en) * 1985-10-21 1987-04-28 Honda Motor Co Ltd Detecting device for internal pressure of intake pipe in internal combustion engine
JPS6293470A (en) * 1985-10-21 1987-04-28 Honda Motor Co Ltd Detecting device for internal pressure of intake pipe in internal combustion engine
JPS63253137A (en) * 1987-04-08 1988-10-20 Hitachi Ltd Feedforward type fuel supply system
US4870937A (en) * 1986-01-13 1989-10-03 Nissan Motor Company, Limited Air fuel mixture A/F control system
US4886030A (en) * 1987-03-05 1989-12-12 Toyota Jidosha Kabushiki Kaisha Method of and system for controlling fuel injection rate in an internal combustion engine
US5211150A (en) * 1990-09-19 1993-05-18 Nissan Motor Co., Ltd. Fuel supply apparatus for internal combustion engine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6293472A (en) * 1985-10-21 1987-04-28 Honda Motor Co Ltd Detecting device for internal pressure of intake pipe in internal combustion engine
JPS6293470A (en) * 1985-10-21 1987-04-28 Honda Motor Co Ltd Detecting device for internal pressure of intake pipe in internal combustion engine
US4870937A (en) * 1986-01-13 1989-10-03 Nissan Motor Company, Limited Air fuel mixture A/F control system
US4886030A (en) * 1987-03-05 1989-12-12 Toyota Jidosha Kabushiki Kaisha Method of and system for controlling fuel injection rate in an internal combustion engine
JPS63253137A (en) * 1987-04-08 1988-10-20 Hitachi Ltd Feedforward type fuel supply system
US5211150A (en) * 1990-09-19 1993-05-18 Nissan Motor Co., Ltd. Fuel supply apparatus for internal combustion engine

Similar Documents

Publication Publication Date Title
EP1079089B1 (en) Control apparatus for internal combustion engine and method of controlling internal combustion engine
JPH10339215A (en) Egr control device of engine
JPS60169647A (en) Fuel injection control method of internal-combustion engine
JP3185637B2 (en) Fuel injection control device for internal combustion engine
JPH0245030B2 (en)
JP4378665B2 (en) Control device and control method for internal combustion engine
JPS61135948A (en) Method of controlling injection quantity of fuel in internal combustion engine
JPH0115690B2 (en)
JP3617773B2 (en) Idle speed control method and apparatus
JPS60233327A (en) Apparatus for controlling air-fuel ratio and ignition timing of internal-combustion engine
JP2803084B2 (en) Idle speed control method
JP2512789B2 (en) Engine fuel control device
JPH0663470B2 (en) Idle speed control method for internal combustion engine
JPS63246428A (en) Control unit for internal combustion engine
JPH0754590Y2 (en) Control device for internal combustion engine
JPH01265148A (en) Electric power control device for heater provided to oxygen concentration sensor
JPS62206245A (en) Fuel injection controller for internal combustion engine
JPS6258035A (en) Air-fuel ratio controller for engine
JPH0733799B2 (en) Idle speed control method for internal combustion engine
JPS627949A (en) Fuel injection amount control device of internal-combustion engine
JPS61126338A (en) Fuel injection quantity control unit for internal-combustion engine
JPS63159641A (en) Fuel injection controller for internal combustion engine
JPH0650076B2 (en) Intake air amount control method for internal combustion engine with supercharger
JPS6088830A (en) Method of controlling operation characteristic quantity for operation control means of internal-combustion engine
JPS5996452A (en) Partial lean control method for air-fuel ratio of internal-combustion engine