JPS60166226A - Preparation of zirconium oxide powder containing rare earth element as solid solution - Google Patents

Preparation of zirconium oxide powder containing rare earth element as solid solution

Info

Publication number
JPS60166226A
JPS60166226A JP59017143A JP1714384A JPS60166226A JP S60166226 A JPS60166226 A JP S60166226A JP 59017143 A JP59017143 A JP 59017143A JP 1714384 A JP1714384 A JP 1714384A JP S60166226 A JPS60166226 A JP S60166226A
Authority
JP
Japan
Prior art keywords
powder
rare earth
hydroxide
earth element
zirconium oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59017143A
Other languages
Japanese (ja)
Inventor
Akira Kaneda
金田 朗
Hiroshi Kurokawa
洋 黒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Asahi Kasei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd, Asahi Kasei Kogyo KK filed Critical Asahi Chemical Industry Co Ltd
Priority to JP59017143A priority Critical patent/JPS60166226A/en
Publication of JPS60166226A publication Critical patent/JPS60166226A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To prepare ZrO2 powder containing a rare earth element as a solid solution, by attaching a gelatinous amorphous hydroxide of rare earth element on the surface of powder of ZrO2 or Zr(OH)2, calcining the powder. CONSTITUTION:An aqueous solution of at least one of water-soluble salts such as hydrochloride, nitrate, acetate, formate, etc. of rre earth elements such as La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, etc. is reacted with an aqueous solution of an alkali such as ammonia, caustic soda, caustic potash, etc. to give a gelatinous amorphous hydroxide, which is suspended in water. Powder of ZrO2 or Zr(OH)2 is added to the suspension, and stirred, so that the gelatinous amorphous hydroxide of the rare earth element is adsorbed on the surface of the powder. The suspension is subjected to solid-liquid separation, the powder of ZrO2 or Zr(OH)2 is calcined at 900-1,300 deg.C for 0.25-2hr, to prepare ZrO2 containing a rare earth element as a solid solution.

Description

【発明の詳細な説明】 本発明は、希土類元素を固溶した酸化ジルコニウム粉を
、従来に無い簡単な方法で製造する新らしい技術に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a new technique for producing zirconium oxide powder containing a rare earth element as a solid solution by a simple method not previously available.

従来、イツトリウム、カルシウムあるいはマグネシウム
を固溶した酸化ジルコニウム粉4、安定化ジルコニア焼
結体、あるいは部分安定化ジルコニア焼結体の材料とし
て、種々の製法が提案されて来ている。
Conventionally, various manufacturing methods have been proposed as materials for zirconium oxide powder 4 containing yttrium, calcium, or magnesium as a solid solution, stabilized zirconia sintered bodies, or partially stabilized zirconia sintered bodies.

特に、女定化、クルコニア焼結体は、それが持つ特異な
酸素イオン電導性を利用したサンソセンサー材料として
、自動車エンジンの燃焼室内酸素濃度調節機、あるいは
鉄鋼生産時の溶鉱炉内酸素濃度調節機などに組込まれ、
近年、急速に需要が高まっている。また、部分安定化ノ
ルコニア焼結体は、通常のセラミック材料、たとえばア
ルミナ、マグネシア等の焼結体では期待出来なかった高
靭性を有する新らしいセラミック材料として注目を集め
ており、各種機械部品としての適用が検討され始めてい
る。安定化ジルコニア焼結体も、部分安定化ジルコニア
焼結体も、共に酸化ジルコニウム結晶中にイツトリウム
、カルシウムわるいはマグネシウムを固溶する事で、通
常の酸化ジルコニウムに見られる温度変化に伴なう相変
態を起さない様にさせた物で、どちらもイツトリウム、
カルシウムあるいはマグネシウムを固溶した酸化ジルコ
ニウム粉をその原料として用いるのが通常である。現在
、この両焼結体の工業的に実用化されている製法として
は、■粉体混合法および■共沈混合法の2つが知られて
いる。■の粉体混合法は、酸化イツトリウム粉、酸化カ
ルシウム粉 あるいは酸化マグネシウム粉と酸化ジルコ
ニウム粉を原料とし、それぞれを所定の割合で混合し、
混合粉体を高温に加熱して酸化ジルコニウム粉中に、酸
化イツトリウム、酸化カルシウムあるいは酸化マグネシ
ウムを溶解させる方法であり、いわゆる固体間の反応と
なる為、その反応速度(=溶解速度)は、2種籾体どう
しの接触面積に大きく左右されるものとなっていた。従
って、該接触面積を大きくし、反応速度(=溶解速度)
を犬とし、生産性を高める為に、原料として用いる酸化
イツトリウム粉、酸化カルシウム粉あるいは酸化マグネ
シウム粉および酸化・ジルコニウム粉は実用的に可能な
限シ微粒径のものが望まれていた。また、製品の組成に
は均一性が要求される為に、2桟の原料粉どうしの分散
が均一でなければならず、通常は2種の原料粉を同時に
ゼールミル等に入れ粉砕−分散−混合の処理を行なった
後、必要があれば加圧成形し、粉体間の接触度を上け、
しかる後、加熱し固溶を行なうのが一般的な製法とされ
ていた。
In particular, the female and cruconia sintered bodies are used as sensor materials that utilize their unique oxygen ion conductivity to adjust the oxygen concentration in combustion chambers of automobile engines or in blast furnaces during steel production. It is incorporated into
Demand has been increasing rapidly in recent years. In addition, partially stabilized norconia sintered bodies are attracting attention as a new ceramic material that has high toughness that cannot be expected from ordinary ceramic materials such as sintered bodies of alumina and magnesia, and is used as a variety of mechanical parts. Applications are beginning to be considered. Both stabilized zirconia sintered bodies and partially stabilized zirconia sintered bodies have yttrium, calcium, or magnesium dissolved in zirconium oxide crystals, so that the phase change that occurs with temperature changes that occurs in ordinary zirconium oxide can be avoided. Both are yttrium, which prevents metamorphosis from occurring.
Zirconium oxide powder containing calcium or magnesium as a solid solution is usually used as the raw material. Currently, there are two known industrial methods for manufacturing these sintered bodies: (1) powder mixing method and (2) coprecipitation mixing method. The powder mixing method (2) uses yttrium oxide powder, calcium oxide powder, or magnesium oxide powder and zirconium oxide powder as raw materials, and mixes each in a predetermined ratio.
This is a method in which yttrium oxide, calcium oxide, or magnesium oxide is dissolved in zirconium oxide powder by heating the mixed powder to a high temperature.Since it is a so-called reaction between solids, the reaction rate (= dissolution rate) is 2. It was largely influenced by the contact area between the seed bodies. Therefore, by increasing the contact area, the reaction rate (= dissolution rate)
In order to increase productivity, it was desired that the yttrium oxide powder, calcium oxide powder, magnesium oxide powder, and zirconium oxide powder used as raw materials have the smallest particle size practically possible. In addition, since uniformity is required for the composition of the product, the dispersion of the raw material powders in the two bars must be uniform. Usually, the two types of raw material powders are placed in a Zeel mill etc. at the same time and are pulverized, dispersed, and mixed. After this treatment, if necessary, pressure molding is performed to increase the degree of contact between the powders.
The general manufacturing method was to then heat the mixture to form a solid solution.

しかしながら、工業的規模で作られる酸化イツトリウム
粉、酸化カルシ9ム粉あるいは酸化マグネシウム粉およ
び酸化ジルコニウム粉の粒径は、たとえ−次粒子径が小
さくても、粒としての単位となる二次、あるいは三次凝
集粒子は大きな物しか得られず、通常、微粒子と言われ
ている酸化イツトリウム粉、酸化カルシウム粉、酸化マ
グネシウム粉 あるいは酸化ジルコニウム粉でもそのわ
l径は0.1〜1.0μm程鼓でめる。これらの原料粉
をI−ルミル等で粉砕−分散−混合の操作を行っても、
各原料粉がよす細かく各粉体の一次粒子の大きさにまで
なる事は期待出来ず、従って、■の粉体混合法でイツト
リウム、カルシウム、あるいけマグネシウムを固溶した
酸化ジルコニウム粉を製造する場合、固溶に必要カ温度
は少くとも1300℃以上必要とされ、かつ、固溶に必
要な時間も20〜50時間と長く、固溶を完全に行なう
為には、より高温に、かつ長時間を必要とされていた。
However, even if the particle size of yttrium oxide powder, calcium oxide powder, magnesium oxide powder, and zirconium oxide powder produced on an industrial scale is small, the secondary or Only large tertiary agglomerated particles can be obtained, and even yttrium oxide powder, calcium oxide powder, magnesium oxide powder, or zirconium oxide powder, which are said to be fine particles, usually have a diameter of about 0.1 to 1.0 μm. Melt. Even if these raw material powders are pulverized, dispersed, and mixed using an I-lumil, etc.,
It is not possible to expect each raw material powder to be as fine as the primary particle size of each powder, so the powder mixing method described in (■) is used to produce zirconium oxide powder containing yttrium, calcium, and magnesium as a solid solution. In this case, the temperature required for solid solution is at least 1300°C or higher, and the time required for solid solution is as long as 20 to 50 hours. It required a long time.

高温での固溶処理を行なう為、得られる固溶粉は固溶以
外に焼結をも同時に起し、凝集の強い塊状物となり易く
、通常は、固溶後の製品を再就粉砕しなければ実用性の
有る原料粉とはなりえなかった。
Because the solid solution treatment is carried out at high temperatures, the resulting solid solution powder undergoes sintering in addition to solid solution, and tends to become highly agglomerated lumps, and usually the product after solid solution must be re-pulverized. Otherwise, it could not be used as a practical raw material powder.

上記粉体混合法の欠点を改良すべく軛案されたのが■の
共沈混合法である。共沈混合法は、水溶性のイツトリウ
ム塩、例えば、塩化イツトリウム、硝l(ットリウム等
、水溶性のカルシウム塩、例えハ、塩化カルシウム、硝
酸カルシウム等、あるいは水溶性のマグネシウム塩、例
えば、塩化マグネシウム、硝酸マグネシウム等の水溶液
と、水溶性(D−)k=jニウム塩、例えば、オキシ塩
化ジルコニウム、硝酸ジルコニウム等の水溶液とを所定
の割合に混合し、該混合溶液中にイツトリウム、および
ジルコニウムに共通の沈澱剤、例えばアンモニア水を加
え、水酸化ジルコニウムと水酸化イツトリウム、水酸化
カルシウムあるいは水酸化マグネシウムとを同時に析出
させ、−次粒子レベルでの分散を均一にした混合水酸化
物を作り、該混合水酸化物を焙焼し、混合酸化物とする
と同時に固溶を行なわせる方法である。
The coprecipitation mixing method (2) was devised to improve the drawbacks of the powder mixing method described above. The coprecipitation mixing method uses water-soluble yttrium salts, such as yttrium chloride, ttrium nitrate, water-soluble calcium salts, such as calcium chloride, calcium nitrate, etc., or water-soluble magnesium salts, such as magnesium chloride. , an aqueous solution of magnesium nitrate, etc., and an aqueous solution of a water-soluble (D-)k=j nium salt, such as zirconium oxychloride, zirconium nitrate, etc., are mixed at a predetermined ratio, and yttrium and zirconium are added to the mixed solution. By adding a common precipitant, such as aqueous ammonia, zirconium hydroxide, yttrium hydroxide, calcium hydroxide, or magnesium hydroxide are precipitated simultaneously to create a mixed hydroxide with uniform dispersion at the secondary particle level. This is a method in which the mixed hydroxide is roasted to form a mixed oxide and at the same time solid solution is performed.

この方法は、酸化ジルコニウム粉と酸化イツトリウム粉
、酸化カルシウム粉 あるいは酸化マグネシウム粉との
混合が、前駆物質である水酸化ジルコニウムと水酸化イ
ツトリウム、水酸化カルシウム あるいは水酸化マグネ
シウムの混合物の段階ですでに一次粒子レベルで分散混
合されている為、前記の粉体混合法に比べより理想的な
ものとなっている。従って固溶に必要な偏置は粉体混合
法に比べて低く、1000℃以下で充分であると言われ
ている。しかしながら、との共沈混合法で作られる共沈
混合水酸化物は、共沈操作、すなわち共沈剤を添加する
過程で順次その混合組成が変化する欠点を有している。
In this method, zirconium oxide powder and yttrium oxide powder, calcium oxide powder, or magnesium oxide powder are already mixed at the stage of the mixture of zirconium hydroxide and yttrium hydroxide, calcium hydroxide, or magnesium hydroxide, which are precursors. Since the method is dispersed and mixed at the primary particle level, it is more ideal than the powder mixing method described above. Therefore, the eccentricity required for solid solution is lower than that in the powder mixing method, and it is said that 1000°C or less is sufficient. However, the coprecipitated mixed hydroxide produced by the coprecipitation mixing method with hydroxide has the disadvantage that the mixture composition changes sequentially during the coprecipitation operation, that is, the process of adding the coprecipitant.

これは、イツトリウム、カルシウム あるいはマグネシ
ウムとジルコニウムとを全く同時に、同じ速度で水酸化
物として折出させる事が出来ない為であり、溶液のpH
%温度、共沈剤の添加速度、反応系の攪拌条件などの微
妙な違いが、各成分の析出速度をそれぞれ独立に左右す
るからである。この為、往々にして、初期に共沈した混
合水酸化物の組成と、末期に共沈した混合水酸化物の組
成はかな多異なっている事があり、生産トラブルを起し
ているのが現状であり、工業的規模で、かつ、・々ツチ
式共沈操作はその管理が離しいとされている。
This is because yttrium, calcium, or magnesium and zirconium cannot be precipitated as hydroxides at the same time and at the same rate, and the pH of the solution
This is because subtle differences in temperature, addition rate of the coprecipitant, stirring conditions of the reaction system, etc. independently influence the precipitation rate of each component. For this reason, the composition of the mixed hydroxide co-precipitated at the beginning and the composition of the mixed hydroxide co-precipitated at the final stage are often very different, causing production troubles. At present, it is said that it is difficult to control the industrial-scale co-precipitation operation.

また、共沈混合法で得られた共沈混合水酸化物は、粒径
が細かい為、水分分離操作が難かしく、遠心分離機、フ
ィルタープレス等の長時間の使用が必要である事も、こ
の方法の生産性を低めている原因の1つである。
In addition, since the coprecipitated mixed hydroxide obtained by the coprecipitation mixing method has a small particle size, water separation is difficult and requires the use of centrifuges, filter presses, etc. for a long time. This is one of the causes of low productivity in this method.

また、上記の共沈混合水酸化物は、濾別後も多量の水分
金倉んでおり、乾燥には多・犬な熱量を必要とする欠点
も有している。
Further, the coprecipitated mixed hydroxide described above retains a large amount of water even after being filtered, and has the disadvantage that a large amount of heat is required for drying.

さらに、上記の共沈混合水酸化物を乾燥した物は、凝集
の激しい塊状物となり、これを加熱し、固溶を行った後
の製品は極めて凝集の激しい塊状物となり、■の粉体混
合物と同様、粉砕を行なわないと、実用性ある原料粉と
はなり得なかった。
Furthermore, the product obtained by drying the above co-precipitated mixed hydroxide becomes a highly agglomerated lump, and after heating this to form a solid solution, the product becomes an extremely agglomerated lump. Similarly, without pulverization, it could not be used as a practical raw material powder.

上記の凝集を防ぐ意味で、共沈混合水酸化物を有機溶媒
、たとえばアセトン、メタノール等で洗浄し、水分除去
を行った後、乾燥、および固溶の為の加熱を行なう方法
も提案されているが、当然操作は煩雑なものとなる。
In order to prevent the above-mentioned agglomeration, a method has also been proposed in which the coprecipitated mixed hydroxide is washed with an organic solvent such as acetone or methanol to remove water, followed by drying and heating to form a solid solution. However, the operation is naturally complicated.

本発明者等は先に、固溶に必要な加熱温度が低く、簡単
な操作で組成の均一なイツトリウムを固溶した酸化ジル
コニウム粉を作り得る新規な製法を発明し、特許出願し
た。(特願昭58−99307号、特願昭58−107
910号、%[昭58−118250号、特願昭58−
156279号) 本発明者等はイツトリウム以外の希土類元素についても
先の発明技術を適用する事を検討した結果、イツトリウ
ムと同様に酸化ジルコニウム中に固溶させる事が出来る
事、および、該希土類元素を固溶した酸化ジルコニウム
は、イツトリウム、カルシウムあるいはマグネシワムを
固溶した酸化ジルコニウムと同様、結晶相を立方晶、正
方晶、正方晶と単斜晶、あるいは立方晶と正方晶のそれ
ぞれに調整し得る事、したがって、いわゆる安定化ジル
コニア、あるいは部分安定化ジルコニアとなり得る参を
見出し、本発明を完成した。
The present inventors have previously invented a new manufacturing method that requires a low heating temperature for solid solution and can produce zirconium oxide powder with a uniform composition of yttrium in a solid solution using simple operations, and has filed a patent application for this method. (Patent Application No. 58-99307, Patent Application No. 107-1982)
No. 910, % [1982-118250, patent application 1982-
(No. 156279) As a result of considering the application of the above invention technology to rare earth elements other than yttrium, the present inventors found that they can be solid-dissolved in zirconium oxide in the same way as yttrium, and that the rare earth elements can be solid-dissolved in zirconium oxide. Similar to zirconium oxide containing yttrium, calcium, or magnesium as a solid solution, the crystal phase of zirconium oxide dissolved in solid solution can be adjusted to cubic, tetragonal, tetragonal and monoclinic, or cubic and tetragonal. Therefore, they found a material that can be used as so-called stabilized zirconia or partially stabilized zirconia, and completed the present invention.

即ち、本発明は、ランタン、セリクム、ゾラセオジム、
サマリウム、ユーロピウム、ガドリニウム、テルビウム
、ティスゾロシクム、ホルミウム、エルビウム、ツーリ
ウム、イッテルビウム、ルテチウムより選ばれた少くと
も1種の希土類元素のゲル状不定形水酸化物を表面に付
着した酸化ジルコニウム粉、あるいは該希土類元素のゲ
ル状不定形水酸化物を表面に付着した水酸化ジルコニウ
ム粉を焙焼する希土類元素を固溶した酸化ジルコニウム
粉の製造法である。
That is, the present invention provides lanthanum, sericum, zoraceodymium,
Zirconium oxide powder with a gel-like amorphous hydroxide of at least one rare earth element selected from samarium, europium, gadolinium, terbium, tiszolocicum, holmium, erbium, thulium, ytterbium, and lutetium attached to the surface, or the rare earth element. This is a method for producing zirconium oxide powder containing a rare earth element as a solid solution, in which zirconium hydroxide powder with a gel-like amorphous hydroxide of the element attached to its surface is roasted.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明に使用する希土類元素のゲル状不定形水酸化物と
は、希土類元素の水溶性塩、例えば、塩#塙、硝酸塩、
酢酸塩、ギ#塩等の水溶液中でアルカリ、例えば、アン
モニア、力性ソーダ、力性カリ等の水溶液を反応させて
得られる牛透明のノリ状物である。該希土類元素のゲル
状不定形水酸化物のX線回折図は、希土類元素の種類に
関係無く、すべて第1図に示すように、非晶質物特有の
・ぞターンを示す。また、該希土類元素のゲル状不定形
水酸化物を常温真空乾燥した物の赤外線吸収スペクトル
は、希土類元素の種類に関係無く、すべて第2図に示す
ように結晶質希土類水酸化物が有する水酸基に基づ(3
500cm ”付近のシャープな吸収ピークを有してい
ない。また、該希土類元素のゲル状不定形水酸化物を再
度鉱酸に溶解して得られる水hM中には、希土類元素イ
オンの対イオンとして、溶解に用いた酸の陰イオン以外
は検知されず、該希土類元素のゲル状不定形水r投化物
は、希土類元素と酸素、あるいは、酸素と水素から構成
されており、ゲル状を程する事より、希土類元素の水酸
化物が脱水縮合して出来た高分子に、水が吸着あるいは
結合した物である事が予想される。
The gel-like amorphous hydroxide of rare earth elements used in the present invention refers to water-soluble salts of rare earth elements, such as salts, nitrates,
It is a transparent paste-like substance obtained by reacting an aqueous solution of an alkali, such as ammonia, aqueous soda, or aqueous potash, in an aqueous solution of acetate, formic acid, or the like. As shown in FIG. 1, the X-ray diffraction diagrams of the gel-like amorphous hydroxides of rare earth elements all exhibit the diagonal pattern characteristic of amorphous materials, regardless of the type of rare earth element. In addition, the infrared absorption spectra of gel-like amorphous hydroxides of rare earth elements vacuum-dried at room temperature are as shown in Figure 2, regardless of the type of rare earth element. Based on (3
It does not have a sharp absorption peak around 500cm''.In addition, water hM obtained by dissolving the gelled amorphous hydroxide of the rare earth element in mineral acid again contains ions as counter ions to the rare earth element ions. , No substances other than the anions of the acid used for dissolution are detected, and the gel-like amorphous water charge of the rare earth element is composed of the rare earth element and oxygen, or oxygen and hydrogen, and the gel-like substance is dissolved. Therefore, it is expected that water is adsorbed or bonded to a polymer formed by dehydration condensation of rare earth element hydroxides.

希土類元素の上記塩の水溶液とアルカリの水溶液との反
応は、温度、濃度、pH等を変化させる事で生成物の種
類が変わるものであり、本発明に使用する希土類元素の
ゲル状不定形水酸化物を選択的に作る方法としては、反
応温度を好ましくは40℃以下に調整し、希土類元素の
濃度を好ましくは希土類元素イオン濃度としてo、2M
/を以下に調整し、pHを好ましくは8.5以上に保ち
、反応させる事により製造される。
In the reaction between the above salt aqueous solution of a rare earth element and an alkali aqueous solution, the type of product changes by changing the temperature, concentration, pH, etc. As a method for selectively producing oxides, the reaction temperature is preferably adjusted to 40°C or lower, and the concentration of the rare earth element is preferably set to 0.2M as the rare earth element ion concentration.
/ is adjusted to the following, the pH is preferably maintained at 8.5 or higher, and the reaction is performed.

また、アルカリの必要量は、希土類元素1原子に対して
、3当量以上である事が必要である。
Further, the required amount of alkali needs to be 3 equivalents or more per 1 atom of the rare earth element.

希土類元素の上記塩の水溶液とアルカリの水溶液とを反
応させる際に、反応温度と40℃以上にした場合あるい
はp)(を8以下に保つよう反応させた場合、あるいは
希土類元素イメンの濃度’i 0.2M/を以上に保ち
反応させた場合には得られる希土類元素のゲル状不定形
水酷′化物中に、希土類元素の権化物あるいは原料とし
て用いた希土類元素塩の塩基性塩が混入しやすくなるが
、本発明に使用する希土類元素のゲル状不定形水酸化物
は、純粋にゲル状不定形水酸化物のみから構成される物
でなく本発明で利用する酸化ジルコニウム粉 あるいは
水酸化ジルコニウム粉は%に限定するものでは無いが、
本発明の目的が、希土類元素を固溶した酸化ジルコニウ
ム粉を作る事にあるので、その粒径は小さな物の方が好
ましいわけである。捷た、酸化ジルコニウムと水酸化ジ
ルコニウムとを比べると、希土類元素の固溶速度は、・
水酸化、ジルコニウムの方が数段大である事が実施例か
ら判る。
When the aqueous solution of the above-mentioned salt of a rare earth element is reacted with an aqueous alkali solution, if the reaction temperature is kept at 40°C or higher, or if the reaction is carried out so that p) is kept at 8 or less, or if the concentration of the rare earth element i is If the reaction is carried out while maintaining the concentration above 0.2M/, the resulting gel-like amorphous hydrolyzed product of the rare earth element will be contaminated with the rare earth element crystal or the basic salt of the rare earth element salt used as the raw material. Although it may be easier to use, the gelled amorphous hydroxide of rare earth elements used in the present invention is not composed purely of gelled amorphous hydroxide, but rather the zirconium oxide powder or zirconium hydroxide used in the present invention. Although powder is not limited to %,
Since the purpose of the present invention is to produce zirconium oxide powder containing rare earth elements as a solid solution, it is preferable that the particle size is small. Comparing shredded zirconium oxide and zirconium hydroxide, the solid solution rate of rare earth elements is...
It can be seen from the examples that hydroxide and zirconium are several orders of magnitude larger.

この希土類元素のゲル状不足形水酸化物は、通常の有機
高分子、特に水酸基を多数有するボッ々−ルなどと同様
にこれを懸濁させた水中に、酸化ジルコニウム粉あるい
は水酸化ジルコニウム粉を加え、攪拌を行った後放置す
ると、該溶液中に自由に分散した状態の希土類元素のゲ
ル状不定形水酸化物は無くなり、酸化ジルコニウム粉あ
るいは水et化jルコニクム粉の表面に吸着する。その
結果、該溶液の上ずみ液は透明lものとなる。この場合
の固形分沈降体積は、酸化ジルコニウム粉あるいは水T
ty化ジルコニウム粉のみのスラリーが示す沈降体積と
#!ll’!同じであり、もちろん、希土類元素のゲル
状不定形水酸化物のみが示す沈降体積よりも小さい。
This gel-like deficient hydroxide of rare earth elements can be prepared by adding zirconium oxide powder or zirconium hydroxide powder to water in which it is suspended in the same way as ordinary organic polymers, especially bottol, which has a large number of hydroxyl groups. In addition, when the solution is left to stand after stirring, the gel-like amorphous hydroxide of the rare earth element that is freely dispersed in the solution disappears and is adsorbed onto the surface of the zirconium oxide powder or the hydrated zirconium powder. As a result, the resulting solution becomes transparent. In this case, the solid content sedimentation volume is zirconium oxide powder or water T
Sedimentation volume and #! of a slurry of tyed zirconium powder only! ll'! It is the same, and of course smaller than the sedimentation volume exhibited only by gel-like amorphous hydroxides of rare earth elements.

本発明の酸化ジルコニウム粉おるいは水酸化ジルコニウ
ム粉の表面に、希土類元素のゲル状不定形水酸化物を付
着させる方法は、所定量のゲル状不定形水酸化物を先に
用意して、酸化ジルコニウム粉あるいは水酸化ジルコニ
ウム粉と混合する方法、アルカリ水溶液中に酸化ジルコ
ニウム粉あるいは水酸化ジルコニウム粉を懸濁させたの
ち、該懸濁液中に所定量の°希土類塩水溶液を添加し、
ゲル状不定形水酸化物を析出させると同時に酸化ジルコ
ニウム粉あるいは水酸化ジルコニウム粉の表面に付着さ
せる方法、 あるいは、希土類塩の水溶液中に酸化ジルコニウム粉、
あるいは水酸化ジルコニウム粉を懸濁させておいて、該
懸濁液中にアルカリの水溶液を加え、希土類元素のゲル
状不定形水酸化物を析出させると同時に、酸化ジルコニ
ウム粉あるいは水酸化ジルコニウム粉表面に付着させる
方法などがある。また、酸化ジルコニウム粉あるいは水
酸化ジルコニウム粉の表面に付着させる希土類元素のゲ
ル状不定形水酸化物の量は、酸化ジルコニウム中に固溶
する希土類元素の量より決めれば良く、製品の使用目的
により随意法められる。例えは、部分安定化ジルコニア
焼結体用の原料粉としての場合には、酸化ジルコニウム
あるいは水酸化ジルコニウム粉の表面に付着させる希土
類元素のゲル状不定形水酸化物奪、該希土類元素の酸化
物(LnzO3と記す)に換算して、Lnz03/ z
rOxのモル比が(2〜6 ) / (98〜94)の
範囲の内から選はれるある比率になる量を用いれは良く
、また、安定化ジルコニア焼結体用原料粉としての場合
は、同様に、Ln2O3/ Zr(hのモル比が(6〜
12 )/(94〜88 )の範囲の内から選ばれるあ
る比率の量を用いればよい。
The method of attaching the gelled amorphous hydroxide of a rare earth element to the surface of the zirconium oxide powder or zirconium hydroxide powder of the present invention is to first prepare a predetermined amount of the gelled amorphous hydroxide, A method of mixing with zirconium oxide powder or zirconium hydroxide powder, after suspending zirconium oxide powder or zirconium hydroxide powder in an alkaline aqueous solution, adding a predetermined amount of rare earth salt aqueous solution to the suspension,
A method in which gel-like amorphous hydroxide is precipitated and simultaneously attached to the surface of zirconium oxide powder or zirconium hydroxide powder, or a method in which zirconium oxide powder is deposited in an aqueous solution of a rare earth salt.
Alternatively, zirconium hydroxide powder is suspended, and an aqueous alkali solution is added to the suspension to precipitate a gel-like amorphous hydroxide of a rare earth element. There are many ways to attach it to. In addition, the amount of gel-like amorphous hydroxide of rare earth elements to be attached to the surface of zirconium oxide powder or zirconium hydroxide powder may be determined based on the amount of rare earth elements dissolved in zirconium oxide, and depends on the purpose of use of the product. voluntary law is allowed. For example, in the case of raw material powder for partially stabilized zirconia sintered bodies, the gel-like amorphous hydroxide of a rare earth element attached to the surface of zirconium oxide or zirconium hydroxide powder is removed, and the oxide of the rare earth element is removed. (written as LnzO3), Lnz03/z
It is preferable to use an amount such that the molar ratio of rOx is a certain ratio selected from the range of (2 to 6) / (98 to 94), and when used as a raw material powder for a stabilized zirconia sintered body, Similarly, when the molar ratio of Ln2O3/Zr(h is (6~
12)/(94-88) may be used.

さらに、Ln 203 A’Oxのモル比が大なる組成
に関しても本発明の方法が適用できることは、実施例か
らも判る。
Furthermore, it can be seen from the examples that the method of the present invention can be applied to compositions having a large molar ratio of Ln 203 A'Ox.

上記の水溶液から希土類元素のゲル状不定形水酸化物を
吸着した酸化ジルコニウム粉、あるいは水酸化ジルコニ
ウム粉の分離は、通常実施されている方法、例えば遠心
濾過機、プレスフィルター等を用いた固溶分離の方法で
分離される。
The separation of zirconium oxide powder or zirconium hydroxide powder that has adsorbed gel-like amorphous hydroxide of rare earth elements from the above aqueous solution can be carried out using a conventional method such as solid solution using a centrifugal filter, press filter, etc. Separated by the method of separation.

本発明の表面に希土類元素のゲル状不足形水酸化物を付
着した酸化ジルコニウム粉あるいは水酸化ジルコニウム
粉を焙焼する温度は、粉体混合法に比べて低い温度で良
く、具体的には900〜1300℃程度で良い。また、
焙焼時間も0.25〜2時間で充分である。特に、水酸
化ジルコニウム粉を原料として用いた場合には、さらに
短時間、具体的には、2〜3分の焙焼で充分、希土類元
素を固溶させる事が出来る。
The temperature for roasting the zirconium oxide powder or the zirconium hydroxide powder on which the gel-like deficient hydroxide of a rare earth element is attached to the surface of the present invention may be lower than that in the powder mixing method, and specifically, the temperature is lower than that in the powder mixing method. ~1300°C is sufficient. Also,
A roasting time of 0.25 to 2 hours is also sufficient. In particular, when zirconium hydroxide powder is used as a raw material, even shorter roasting time, specifically 2 to 3 minutes, is enough to dissolve the rare earth element.

この理由として考えられるのは、本発明で使用する希土
類元素のゲル状不定形水酸化物を付着した構造の酸化ジ
ルコニウム粉あるいは水酸化ジルコニウム粉は、粉粒の
表面のかなシの部分をゲル状不定形水酸化物が薄い層状
に被覆しており、従来の粉体混合法で用いられる1a化
イツトリウム、酸化カルシウムあるいは酸化マグネシウ
ムと酸化ジルコニウム粉末どうしの接触面積に比べ極め
て大きな接触面積を有する為、固溶速度が犬きくなるた
めと考えられる。
A possible reason for this is that the zirconium oxide powder or zirconium hydroxide powder used in the present invention, which has a gel-like amorphous hydroxide of a rare earth element, has a gel-like structure on the surface of the powder. It is coated with a thin layer of amorphous hydroxide, and has an extremely large contact area compared to the contact area between yttrium 1a, calcium oxide, or magnesium oxide and zirconium oxide powder used in conventional powder mixing methods. This is thought to be because the solid solution rate becomes faster.

また、酸化ジルコニウム粉あるいは水酸化ジルコニウム
粉の界面に付着したゲル状不定形水酸化物は、かなり強
固に付着しており、スラリー状態で激しく攪拌しても、
水分の濾過操作、あるいは乾燥などの操作を行っても分
離することはない。
In addition, gel-like amorphous hydroxide adhering to the interface of zirconium oxide powder or zirconium hydroxide powder is quite firmly attached, and even when vigorously stirred in a slurry state,
It does not separate even when water is filtered or dried.

従って、これらの操作を行なう事による組成の変動は見
られない。
Therefore, no change in composition is observed due to these operations.

さらに驚くべき事には、酸化、ジルコニウム粉あるいは
水酸化、)ルコニウム粉とイσ土類元素のゲル状不定形
水11に化物とを水中ffa ?R1状態で混合し、表
(2)にゲル状不冗形水r+支化物を付着した酸化ジル
コニウム粉あるいは水酸化ジルコニウム粉を、4−別し
−C150℃〜150℃の熱風乾燥後で乾燥した物+I
t。
What is even more surprising is that oxidation, zirconium powder or hydroxide, ) ruconium powder and sigma earth element gel-like amorphous water 11 and the compound in water ffa? The zirconium oxide powder or zirconium hydroxide powder mixed in the R1 state and adhering to the gel-like non-redundant water r+supporting material shown in Table (2) was 4-separated and dried with hot air at 150°C to 150°C. thing + I
t.

凝集の少ない、流動性ケ有した粉体となる事である。The result is a powder with little agglomeration and fluidity.

本発明の方法で作られた希土類元素を固溶した酸化ノル
コニ9ム粉は、固溶の為の焙焼會終えた段階で凝集は少
なく、粉砕操作奢必安とせず、そのまま、成形材料用原
料粉として用いる墨も可能である。また、子の粒度分布
は、原料として用いる酸化ジルコニウム粉あるいは水酸
化ジルコニウム粒を焙焼して得られる酸化ジルコニウム
粉の粒度分布と#1とんど同じであり、その使用目的に
応じて原料となる酸化ジルコニウム粉、あるいは水酸化
ジルコニウム粉の粒度分布を選択すれば良い事になる。
The norconium oxide powder produced by the method of the present invention containing rare earth elements as a solid solution has little agglomeration after the roasting process for solid solution, and can be used as a molding material without requiring an expensive pulverization operation. It is also possible to use ink as the raw material powder. In addition, the particle size distribution of #1 is almost the same as the particle size distribution of zirconium oxide powder obtained by roasting zirconium oxide powder or zirconium hydroxide particles used as a raw material, and depending on the purpose of use, it depends on the raw material. It is sufficient to select the particle size distribution of zirconium oxide powder or zirconium hydroxide powder.

本発明で言う所の希土類元素を固溶した酸化ジルコニウ
ム粉とは、該粉中の元素の組成が、ジルコニウム、酸素
 および希土類元素から成り、しかも、該粉のX1#回
折チャートは、純粋な酸化ジルコニウムが示す単斜晶の
回折ピークと異なり、固溶した希土類元素の量に応じ、
正方品の回折ピーク、立方晶の回折ピーク、単斜晶子正
方晶、単斜晶十正方晶十立方晶、あるいは正方晶子立方
晶の回折ピークを示す。
In the present invention, the zirconium oxide powder containing rare earth elements as a solid solution has a composition of elements in the powder consisting of zirconium, oxygen, and rare earth elements, and the X1# diffraction chart of the powder shows that the powder contains pure oxide. Unlike the monoclinic diffraction peak shown by zirconium, depending on the amount of rare earth elements dissolved in solid solution,
It shows the diffraction peak of a tetragonal product, the diffraction peak of a cubic crystal, the diffraction peak of a monoclinic crystallite tetragonal crystal, a monoclinic crystal ten tetragonal ten cubic crystal, or a tetragonal crystallite cubic crystal.

実施例1 〔A) 希土類元素のゲル状不定形水ば化物の作成ラン
タン、セリウム、プラセオジム、ネオジウム、サマリウ
ム、ユーロぎラム、ガPリニウム、テルビウム、テイス
プロシウム、ホルミウム、エルビウム、ツーリウム、イ
ッテルビウム、ルテチウムの各塩酸塩を、それぞれ水に
溶解し、0.1モル/lの水溶液を各2を作つだ。
Example 1 [A] Creation of gel-like amorphous hydroxides of rare earth elements Lanthanum, cerium, praseodymium, neodymium, samarium, eurogyrum, gallinium, terbium, theisprosium, holmium, erbium, thulium, ytterbium, Dissolve each lutetium hydrochloride in water to make two 0.1 mol/l aqueous solutions.

上記の各溶液に、10モル/lの濃度のアンモニア水を
70me一度に加え、激しく攪拌した後、生じたノリ状
物f、G−4のガラスフィルターで吸引濾過した。得ら
れたノリ状物を1tの水で3回水洗し、それぞれのX線
回折スはクトルを6111定しだところ、各ノリ状物と
も第1図に示した。eターンを示した。
To each of the above solutions, 70 me of ammonia water having a concentration of 10 mol/l was added at once, and after stirring vigorously, the resulting paste-like substance f was suction-filtered through a G-4 glass filter. The obtained paste-like material was washed three times with 1 ton of water, and each X-ray diffraction spectrum was determined to have a coefficient of 6111, as shown in FIG. 1 for each paste-like material. Showed an e-turn.

また、上記の水洗した各ノリ状物を一部取出し、室温で
真空乾燥した後、それぞれの赤外吸収スペクトルを測定
したところ、それぞれが、第2図に示したパターンを示
した。
In addition, a portion of each of the above water-washed paste-like materials was taken out and vacuum-dried at room temperature, and the infrared absorption spectra of each were measured, and each exhibited the pattern shown in FIG. 2.

また、上記の水洗したノリ状物を一部取り、それぞれを
希硝酸に溶解し、該溶液中のアンモニス9ムイオン、お
よび、塩素イオンの歓を測定したところ、各イオンとも
希土類元素イオン一度の1/1000以下であった。
In addition, we took a portion of the water-washed glue-like material, dissolved each in dilute nitric acid, and measured the concentration of ammonium ion and chlorine ion in the solution. /1000 or less.

〔)3〕 希土類元素のゲル状不定形水酸化物の、酸化
ジルコニウム粉および水酸化ジルコニウム粉表面への付
着 (A、)で作成した各希土類元素のゲル状不定形水酸化
物スラリー 61 (各スラリーの24時間放置後の沈
降体積は3.5〜4tであった)中に、酸化ジルコニウ
ム粉(平均粒径1.θμm1純度99.5%)を1.2
kV加え、充分攪拌し均質なスラリーとした後、−昼夜
静置した。スラリーの沈降体積は各場合とも2〜2.2
tであり、上部の液は透明でゲル状物は見られなかった
[)3] Gel-like amorphous hydroxide slurry of each rare earth element prepared by adhering gel-like amorphous hydroxide of rare earth element to the surface of zirconium oxide powder and zirconium hydroxide powder (A,) 61 (each The sedimentation volume of the slurry after standing for 24 hours was 3.5 to 4 tons), and 1.2 zirconium oxide powder (average particle size 1.θ μm 1 purity 99.5%) was added to the slurry.
After adding kV and sufficiently stirring to obtain a homogeneous slurry, the slurry was allowed to stand overnight. The sedimentation volume of the slurry is 2 to 2.2 in each case.
The upper liquid was clear and no gel-like substance was observed.

また、同様な方法で、酸化ジルコニウムに代えて、水酸
化ジルコニウム粉(該粉を焙焼して得られる酸化ジルコ
ニウム粉が、先に用いた酸化ジルコニウム粉である)を
、酸化ジルコニウム換算で1.2 kg用い、各希土類
元素のゲル状不定形水酸化物スラ’J−61中に加え、
攪拌後、−昼夜放置した。スラリーの沈降体積は各場合
とも2.4〜3.11であり、上部の液は透明でゲル状
物は見られなかつた。
In addition, in the same manner, instead of zirconium oxide, zirconium hydroxide powder (the zirconium oxide powder obtained by roasting this powder is the zirconium oxide powder used earlier) was used in terms of zirconium oxide equivalent to 1. Using 2 kg, add it to gel-like amorphous hydroxide slurry 'J-61 of each rare earth element,
After stirring, the mixture was left for day and night. The sedimentation volume of the slurry was 2.4 to 3.11 in each case, and the upper liquid was transparent and no gel-like substance was observed.

上記の各スラリーをG−4のガラスフィルターで濾別し
、それぞれの含水ケークを150℃に調温した熱風乾燥
機で8時間乾燥したところ、それぞれのケークは、凝集
の少ない流動性の良い粉状物となっていた。
Each of the above slurries was filtered through a G-4 glass filter, and each of the water-containing cakes was dried for 8 hours in a hot air dryer at a temperature of 150°C. It had become a state of affairs.

(0) 固溶の為の焙焼 〔B〕で作成した各粉体を、回転炉を用い、次の条件で
焙焼した。
(0) Each powder prepared in the roasting for solid solution [B] was roasted under the following conditions using a rotary furnace.

イ) 900℃×5分 口) 900℃×30分 ハl 1100℃×30分 二) 1100℃×2時間 ホ) 1300℃×30分 一\) 1300℃×2時間 得られた各焙焼物の希土類元素とジルコニアの組成比を
ケイ光X線法で測定したところ、それぞれがLn2O3
/ Z r02のモル比で表わして、(o、o3±0.
001 )/(0,97±0.002 )の範囲にあっ
た。
a) 900°C x 5 minutes) 900°C x 30 minutes 1100°C x 30 minutes 2) 1100°C x 2 hours e) 1300°C x 30 minutes\) 1300°C x 2 hours Each roasted product obtained When the composition ratio of rare earth elements and zirconia was measured by fluorescent X-ray method, each of them was found to be Ln2O3.
/Z expressed as molar ratio of r02, (o, o3±0.
001)/(0.97±0.002).

また、各焙焼物のX線回折を行ったところ、酸化ジルコ
ニウム中へ固溶していない希土類酸化物の単独ピークが
測定されたものは、原料として酸化ジルコニウム粉を用
い、上記焙焼条件のイ)。
In addition, when X-ray diffraction was performed on each roasted product, those in which a single peak of rare earth oxides that were not solidly dissolved in zirconium oxide were measured were found using zirconium oxide powder as the raw material and under the above roasting conditions. ).

口)、ハ)、二)で焙焼を行った物であシ、使用した希
土類元素の種類の違いによる差は見られなかった。
No difference was observed between the types of rare earth elements used.

原料として水酸化ジルコニウム粉を用いた試料では、上
記焙焼条件のどれであっても希土類元素の酸化物単独の
ピークは測定されなかった。
In the sample using zirconium hydroxide powder as a raw material, no peak of the rare earth element oxide alone was measured under any of the above roasting conditions.

また、未固溶の希土類酸化物を有する試料中の未固浴量
を測定する為、ヌ料を一定量採取し、これに一定量の酸
化ビスマスを内部標準として加え混合した試料のX線回
折チャートを作り、希土類酸化物の主回折ピークの高さ
と、酸化ビスマスの主回折ピークの高さとの比を測定す
る方法で、各試料中に存在する未固溶希土類酸化物の量
を概略測定した。結果は、使用した希土類酸化物の種類
に関係無く、焙焼条件により#1は決った値をと妙、東
件イ)の物で約90wt%、条件口)で70wt%、条
件ハ)で2Qwt%、条件二)で9wt%であった。
In addition, in order to measure the amount of unsolidified bath in a sample containing undissolved rare earth oxides, we collected a certain amount of nitrogen and mixed it with a certain amount of bismuth oxide as an internal standard. The amount of undissolved rare earth oxides present in each sample was approximately measured by making a chart and measuring the ratio of the height of the main diffraction peak of rare earth oxides to the height of the main diffraction peaks of bismuth oxide. . The results show that, regardless of the type of rare earth oxide used, #1 has a fixed value depending on the roasting conditions; the value of #1 is approximately 90 wt% for the one in A), 70 wt% for the one in Condition A), and 70 wt% in Condition C). 2Qwt%, and 9wt% under condition 2).

また得られた各粉のX線回折スペクトルから判断すると
、希土類酸化物を固溶した酸化ジルコニウムの構造は、
固溶が完結した物では正方晶、あるいは正方晶に少しの
単斜晶または立方晶を含んだ形であり、未固溶の希土類
酸化物金多く含む物はど、単斜晶成分を多く含む事が判
った。
Judging from the X-ray diffraction spectra of each powder obtained, the structure of zirconium oxide containing rare earth oxides as a solid solution is as follows:
Items with complete solid solution are tetragonal, or tetragonal with a small amount of monoclinic or cubic crystals, and items that contain a large amount of rare earth oxide gold that is not solid dissolved contain a large amount of monoclinic component. I found out what happened.

例として、水酸化ジルコニウム粉を原料として条件イ)
で焙焼して得た粉、醇化ジルコニウム粉を原料として条
件ハ)で焙焼して得た粉、訃よび酸化ジルコニウム粉を
原料として条件−\)で焙焼して得た粉のX線回折チャ
ートラ、それぞれ、第3図、第4図、第5図に示す。ま
た、それぞれの条件で焙焼して得だ粉のX線回折チャー
トで、使用した希土類元素の種類の違いによる差は観測
されなかった。
As an example, using zirconium hydroxide powder as a raw material, condition A)
X-rays of powder obtained by roasting under condition C) using zirconium oxide powder as raw material, powder obtained by roasting under condition C using zirconium oxide powder as raw material, and powder obtained by roasting under condition -\) using zirconium oxide powder as raw material The diffraction charts are shown in FIGS. 3, 4, and 5, respectively. Furthermore, in the X-ray diffraction charts of the starch powder roasted under each condition, no difference was observed due to the difference in the type of rare earth element used.

実施例2 ランタン、セリウム、プラセオジム、ネオジウム、サマ
リウム、ユーロピウム、ガドリニウム、テルビウム、デ
ィスプロシウム、ホルミウム、エルビクム、ツーリウム
、イッテルビウム、ルテチラムの各硝酸塩を、それぞれ
水に溶解し、0.2モル/lの水溶液を各8を作った。
Example 2 Each of the nitrates of lanthanum, cerium, praseodymium, neodymium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbicum, thulium, ytterbium, and lutethyram was dissolved in water and the concentration was 0.2 mol/l. Eight aqueous solutions were prepared.

実施例1で用いた水酸化ジルコニウム粉1.14A9を
上記の各水浴液中に加え、充分に攪拌し均質なスラリー
を作った。
The zirconium hydroxide powder used in Example 1, 1.14A9, was added to each of the above water bath solutions and sufficiently stirred to form a homogeneous slurry.

該スラリー中に、10モル/lの濃度のアンモニア水5
00m1を一度に加え、激しく攪拌した後固形分を濾別
した。濾液中の希土類元素イオン濃度をEDTA滴定法
で測定したところ、#1は0wt%であった。
In the slurry, aqueous ammonia with a concentration of 10 mol/l 5
00 ml was added at once, and after vigorous stirring, the solid content was filtered off. When the rare earth element ion concentration in the filtrate was measured by EDTA titration method, #1 was found to be 0 wt%.

得られた各ケークをそのまま匣鉢へ入れ、1100℃に
調温した焙焼炉へ入れ、約30分焙焼した。
Each of the obtained cakes was put into a sagger as it was, put into a roasting furnace whose temperature was adjusted to 1100°C, and roasted for about 30 minutes.

得られた物はそれぞれ凝集の11とんど見られない流動
性ある粉体であり、そのX線回折スペクトルは各試料と
も同じであり、第6図の通りであった。
The obtained materials were fluid powders with hardly any agglomeration observed, and the X-ray diffraction spectra were the same for each sample, as shown in FIG.

第6図より各試料中には、使用した希土類元素の酸化物
が無く、完全に酸化ジルコニウム中に固溶しており、か
つ、酸化ジルコニウムは立方晶構造を持つ、いわゆる安
定化ジルコニアとなっCいる事が判った。
Figure 6 shows that there is no oxide of the rare earth element used in each sample, and that it is completely dissolved in the zirconium oxide, and the zirconium oxide has a cubic crystal structure, forming so-called stabilized zirconia. I found out that there was.

硝酸ガドリニウムの0.1モル/を濃度の水溶液6を中
に10モル/lの濃度のアンモニア水200ゴを加え、
泳しく攪拌した後、生成したゲル状物を遠心分離機で濾
別し、ノリ状ケークを得た。
Add 200 g of ammonia water with a concentration of 10 mol/l to an aqueous solution of gadolinium nitrate with a concentration of 0.1 mol/l,
After stirring vigorously, the gel-like substance formed was filtered out using a centrifuge to obtain a paste-like cake.

水酸化ジルコニウム粉9.7モル(焙焼し酸化ジルコニ
ウム粉にした場合の平均粒径が0.7μmの物)と、上
記で得られたノリ状ケーク全部をニーグーで30分間混
練し、得られた投−スト状物を匣鉢に入れ900℃に調
温した焙焼炉中に入れ、2時間焙焼した。
9.7 mol of zirconium hydroxide powder (with an average particle size of 0.7 μm when roasted to form zirconium oxide powder) and the entire paste-like cake obtained above were kneaded for 30 minutes in a Ni-gu. The cast material was placed in a sagger, placed in a roasting furnace whose temperature was controlled to 900°C, and roasted for 2 hours.

得られた物は凝集の無い流動性有る粉であり、その平均
粒径は0.75μmであった。
The obtained product was a fluid powder without agglomeration, and its average particle size was 0.75 μm.

また得られた粉のX11!!回折チャートは実施例1で
、水酸化ジルコニウム粉を原料とし、回転炉を用い90
0℃×5分の焙焼条件で焙焼して得られた粉のX線回折
チャート(第3図)と一致した。
The obtained powder is X11! ! The diffraction chart is from Example 1, using zirconium hydroxide powder as a raw material and using a rotary furnace at 90%
The results matched the X-ray diffraction chart (Figure 3) of the powder obtained by roasting at 0°C for 5 minutes.

実施例4 実飛例1と同様な方法でゲル状不足形水酸化ディスプロ
シム全作り、実施例1で用いたのと同じ水酸化ジルコニ
ウム粉に、次の組成比になるよう実施例1と同様な方法
で付着した。
Example 4 Complete preparation of gel-like deficiency dysprosium hydroxide using the same method as in Example 1. Adding the same zirconium hydroxide powder as used in Example 1 to the same composition ratio as in Example 1 so as to have the following composition ratio. Attached by method.

イ) DyxOs/Zr(h (モル比)=8/920
) l =16/84 ハ) p = 32/68 二) tt = 40 /60 各試料を、実施例1と同様な方法で乾燥し、ついで焙焼
(温度;11001:、時間;4時間)を行った。
b) DyxOs/Zr (h (molar ratio) = 8/920
) l = 16/84 c) p = 32/68 d) tt = 40/60 Each sample was dried in the same manner as in Example 1, and then roasted (temperature: 11001, time: 4 hours). went.

得られた粉状物は、それぞれ凝集の無い流動性のある粉
であった。また、冬物の平均粒径は、それぞれが1.0
fim〜1.14μmの範囲にあった。
The obtained powders were free-flowing powders without agglomeration. In addition, the average particle size of winter products is 1.0
fim to 1.14 μm.

得られた冬物のX線回折を行ないディスプロシウムの固
溶の状態を実施例1と同様の方法で測置した。結果は、
イ)、口)、ハ)は共に未固溶酸化ディスプロシウムの
単独ビークtよ無く、それぞれ第6図に示したチャート
であった。二)の条件で作った物は未固溶酸化ディスプ
ロシウムが10 wt ′Aであった。
The obtained winter material was subjected to X-ray diffraction, and the state of solid solution of dysprosium was measured in the same manner as in Example 1. Result is,
A), A), and C) all had no single peak of undissolved dysprosium oxide, and were the charts shown in FIG. 6, respectively. The product made under the conditions of 2) contained 10 wt'A of undissolved dysprosium oxide.

実施例5 塩化ガドリニウム、塩化エルビウム、塩化ネオジウムお
よび塩化ディスプロシウムの各0.2モル/を濃度の水
溶液2tを混合し、8tの混合希土類元素塩酸塩溶液を
作った。該水溶液に10モルフtの濃度のアンモニア水
soomle一度に加え、激しく攪拌しノリ状物を得た
。該ノリ状物中に、実施例1で用いたのと同じ水酸化ジ
ルコニウム粉を、酸化ジルコニウム換算で1.2館加え
、混合物が均等になるまで充分攪拌を行った。
Example 5 2 tons of aqueous solutions of gadolinium chloride, erbium chloride, neodymium chloride, and dysprosium chloride each having a concentration of 0.2 mol were mixed to prepare 8 tons of a mixed rare earth element hydrochloride solution. Ammonia water having a concentration of 10 molt was added at once to the aqueous solution and stirred vigorously to obtain a paste-like substance. The same zirconium hydroxide powder as used in Example 1 was added to the paste-like material in an amount of 1.2 kg (calculated as zirconium oxide), and the mixture was thoroughly stirred until the mixture became uniform.

得られたスラリーを一昼夜放置し、遠心分離機を用い、
固形分を取り出した後、乾燥すること無〈実施例1と同
様の回転炉を用い、900℃×30分の焙焼条件で焙焼
を行った。
The resulting slurry was left overnight and then centrifuged.
After removing the solid content, there was no need to dry it. Using the same rotary furnace as in Example 1, roasting was performed at 900° C. for 30 minutes.

得られた粉のX線回折・ξターンは、実施例2で得られ
た粉のそれと全く同じで、46図のllぽ1シであった
The X-ray diffraction/ξ turn of the obtained powder was exactly the same as that of the powder obtained in Example 2, as shown in Figure 46.

比較例1 純度が99.9wt%、平均粒径が0.5timの酸化
ガ)4 リニウム粉と、実施例1で用いだのと同じ酸化
ジルコニウム粉とを用い、モル比がGd20H/ Zr
C+2=3/97、および8/92になるように計量混
合し、それぞれボールミルに入れ24時間分散、混合し
口) 110.0℃×4時間 ハ) 1300℃×2時間 二) l X24時間 上記のハ)および二)の条件で得られた物は、凝集が大
であシ、粉状では無く塊状物であった。
Comparative Example 1 Using 4 linium oxide powder with a purity of 99.9 wt% and an average particle size of 0.5 tim and the same zirconium oxide powder as used in Example 1, the molar ratio was Gd20H/Zr.
Measure and mix so that C+2 = 3/97 and 8/92, put each in a ball mill, disperse for 24 hours, mix (c) 110.0°C x 4 hours c) 1300°C x 2 hours 2) l x 24 hours above The products obtained under the conditions c) and 2) had a large amount of agglomeration, and were not powdery but lumpy.

また、それぞれの焙焼物のXNM回折を行ない、ガ)4
 +)ニウムの固溶の程1jtf−1実施例1と同じ酸
化ビスマスを用いた内部標準法で測定したところ表−1
のような結果となった。
In addition, we performed XNM diffraction of each roasted product.
+) Degree of solid solution of nium 1jtf-1 Measured using the same internal standard method using bismuth oxide as in Example 1 Table-1
The result was as follows.

また、Gd、03/ZrO,=8792の混合粉をイ)
および口)の条件で処理した物のX線回折チャートを、
第7図−(a) 、 (b)に示す。
In addition, a mixed powder of Gd, 03/ZrO, = 8792 a)
The X-ray diffraction chart of the product treated under the conditions of
Shown in Figure 7-(a) and (b).

以下余白 表 −1 実施例および比較例から判るように、本発明の方法は、
希土類元素の固溶速度が速く、かつ、得られた物に凝集
が見られず、原料として用いる酸化ジルコニウム粉ある
いは水酸化ジルコニウム粉を焙焼して得られる酸化、ジ
ルコニウム粉の粒径を#1とんど維持するものである。
Margin Table-1: As can be seen from the Examples and Comparative Examples, the method of the present invention:
The particle size of the oxidized zirconium powder obtained by roasting the zirconium oxide powder or zirconium hydroxide powder used as a raw material is #1 because the rate of solid solution of rare earth elements is fast and no agglomeration is observed in the obtained product. It is something to be maintained.

さらに、実施例4から判るように、本発明の方法では、
酸化ジルコニウム中に希土類酸化物をLi2O2/ Z
 ro! (モル比) = 30/70程度まで、極め
て容易に固溶しうる。
Furthermore, as can be seen from Example 4, in the method of the present invention,
Rare earth oxide Li2O2/Z in zirconium oxide
ro! (Molar ratio) = about 30/70, it is possible to form a solid solution very easily.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、希土類元素のゲル状不定形水酸化物のX線回
折チャート、 第2図は、常温真空乾燥後の希土類元素のゲル状不定形
水酸化物の赤外吸収スペクトル、第3図は、実施例1に
おいて、水酸化ジルコニウム粉を原料として用い、条件
イ) (900℃・5分)で焙焼して得られた製品のX
線回折チャート、第4図は、実施例1において、酸化ジ
ルコニウム粉を原料として用い、条件ハ)(1000℃
・30分)で焙焼して得られた製品のX線回折チャート
、第5図は、実施例1において、酸化ジルコニウム粉t
l−原料として用い、条件−\)(1300’C・2時
間)で焙焼して得られた製品のX線回折チャート、第6
図は、実施例2で得られた製品のX線回折チャート、 第7図(a)は、比較例1において、イ)の条件(焙焼
無し)で処理した物のX線回折チャート、第7図(b)
は、比較例1において、口)の条件(1100℃・4時
間)で焙焼して得られた製品のX線回折チャートである
。 特許出願人 旭化成工業株式会社 第1図 to 20 30 40 50 (2e) 第2図 シL a (xlo”cm−’ ) 第3図 28 30 32 34 36 38 40 42 4
40 第4図 26 28 30 32 34 36 e 第5図 28 30 32 34 36 38 40 42 4
40 第6図 30 40 50 60 0
Figure 1 is an X-ray diffraction chart of a gelled amorphous hydroxide of a rare earth element. Figure 2 is an infrared absorption spectrum of a gelled amorphous hydroxide of a rare earth element after vacuum drying at room temperature. Figure 3. In Example 1, using zirconium hydroxide powder as a raw material,
The line diffraction chart, FIG.
Figure 5 shows the X-ray diffraction chart of the product obtained by roasting for 30 minutes).
X-ray diffraction chart of the product obtained by roasting under conditions -\) (1300'C, 2 hours), No. 6
The figure shows an X-ray diffraction chart of the product obtained in Example 2. Figure 7(b)
is an X-ray diffraction chart of a product obtained by roasting under the conditions (1100° C. for 4 hours) in Comparative Example 1. Patent applicant Asahi Kasei Kogyo Co., Ltd. Figure 1 to 20 30 40 50 (2e) Figure 2 La (xlo"cm-') Figure 3 28 30 32 34 36 38 40 42 4
40 Fig. 4 26 28 30 32 34 36 e Fig. 5 28 30 32 34 36 38 40 42 4
40 Figure 6 30 40 50 60 0

Claims (1)

【特許請求の範囲】[Claims] ランタン、セリウム、プラセオジム、ネオジウム、サマ
リワム、ユーロピウム、ガドリニウム、テルビウム、デ
ィスプロシウム、ホルミウム、エルビウム、ツーリウム
、イッテルビウム、ルテチウムより選ばれた少くとも1
種の希土類元素のゲル状不定形水酸化物を表面に付着し
た酸化ジルコニウム粉、あるいは該希土類元素のゲル状
不定形水酸化物を表面に付着した水酸化ジルコニウム粉
を焙焼する事を特徴とする希土類元素を固溶した酸化ジ
ルコニウム粉の製造法
At least one selected from lanthanum, cerium, praseodymium, neodymium, samariwam, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium.
It is characterized by roasting zirconium oxide powder with a gel-like amorphous hydroxide of a rare earth element attached to the surface, or zirconium hydroxide powder with a gel-like amorphous hydroxide of the rare earth element attached on its surface. Production method of zirconium oxide powder containing rare earth elements as a solid solution
JP59017143A 1984-02-03 1984-02-03 Preparation of zirconium oxide powder containing rare earth element as solid solution Pending JPS60166226A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59017143A JPS60166226A (en) 1984-02-03 1984-02-03 Preparation of zirconium oxide powder containing rare earth element as solid solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59017143A JPS60166226A (en) 1984-02-03 1984-02-03 Preparation of zirconium oxide powder containing rare earth element as solid solution

Publications (1)

Publication Number Publication Date
JPS60166226A true JPS60166226A (en) 1985-08-29

Family

ID=11935774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59017143A Pending JPS60166226A (en) 1984-02-03 1984-02-03 Preparation of zirconium oxide powder containing rare earth element as solid solution

Country Status (1)

Country Link
JP (1) JPS60166226A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6291468A (en) * 1985-10-01 1987-04-25 タイオキシド グル−プ ピ−エルシ− Composition for manufacturing ceramic substance and manufacture
JPS62168544A (en) * 1986-01-20 1987-07-24 Toyota Central Res & Dev Lab Inc Zirconia carrier and its preparation
JPS63185821A (en) * 1986-09-27 1988-08-01 Nissan Chem Ind Ltd Production of zirconium oxide fine powder
CN102153892A (en) * 2010-12-03 2011-08-17 西南科技大学 (La, gd)2Zr2O7-(Zr, gd) O2-δcomplex phase thermal barrier coating material and its preparation method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6291468A (en) * 1985-10-01 1987-04-25 タイオキシド グル−プ ピ−エルシ− Composition for manufacturing ceramic substance and manufacture
JPH0573712B2 (en) * 1985-10-01 1993-10-14 Tioxide Group Plc
JPS62168544A (en) * 1986-01-20 1987-07-24 Toyota Central Res & Dev Lab Inc Zirconia carrier and its preparation
JPS63185821A (en) * 1986-09-27 1988-08-01 Nissan Chem Ind Ltd Production of zirconium oxide fine powder
CN102153892A (en) * 2010-12-03 2011-08-17 西南科技大学 (La, gd)2Zr2O7-(Zr, gd) O2-δcomplex phase thermal barrier coating material and its preparation method

Similar Documents

Publication Publication Date Title
AU601275B2 (en) Stabilised metallic oxides
US4880757A (en) Chemical preparation of zirconium-aluminum-magnesium oxide composites
EP1625097B1 (en) Process for preparing zirconium oxides and zirconium-based mixed oxides
JPS60166226A (en) Preparation of zirconium oxide powder containing rare earth element as solid solution
JPH0346407B2 (en)
JPH04295014A (en) Stabilized metal oxide composition and method of preparing same
JP5611382B2 (en) Method for producing stabilized zirconia powder and precursor thereof
KR101747901B1 (en) Preparation method of yttria-stabilized zirconia
JPH0665603B2 (en) Method for producing composite oxide ceramic powder
JPS61141619A (en) Production of zirconia fine powder
JPH01294527A (en) Production of metallic oxide of perovskite type of abo3 type
JPS6016819A (en) Production of zirconium oxide powder containing yttrium as solid solution
JPS60171223A (en) Manufacture of zirconium oxide containing solubilized rare earth element
JPS59227725A (en) Preparation of powder of zirconium oxide having yttrium as solid solution
JPH0818870B2 (en) Method for manufacturing lead zirconate titanate-based piezoelectric ceramic
SU1114617A1 (en) Method for producing oxide powders
JPH01294528A (en) Production of oxide of perovskite type of abo3 type
JPS61251517A (en) Production of perovskite type oxide
JP3531678B2 (en) Method for producing zirconia powder containing solid solution of stabilizer
JPS59232920A (en) Manufacture of zirconium oxide powder containing yttrium as solid solution
JPH06171943A (en) Production of zirconium oxide powder
JPH06171944A (en) Production of zirconium oxide powder
JP2001270714A (en) Method for producing yag fine powder
JP2001080919A (en) Fine powdery zirconia and its production
JPS6051617A (en) Preparation of zirconium oxide powder containing yttrium in the state of solid solution