JPH0346407B2 - - Google Patents

Info

Publication number
JPH0346407B2
JPH0346407B2 JP57215208A JP21520882A JPH0346407B2 JP H0346407 B2 JPH0346407 B2 JP H0346407B2 JP 57215208 A JP57215208 A JP 57215208A JP 21520882 A JP21520882 A JP 21520882A JP H0346407 B2 JPH0346407 B2 JP H0346407B2
Authority
JP
Japan
Prior art keywords
solid solution
sol
zirconia
dispersed
hydroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57215208A
Other languages
Japanese (ja)
Other versions
JPS59107969A (en
Inventor
Etsuro Kato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP57215208A priority Critical patent/JPS59107969A/en
Publication of JPS59107969A publication Critical patent/JPS59107969A/en
Publication of JPH0346407B2 publication Critical patent/JPH0346407B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 ジルコニアに酸化イツトリウムを3〜10mol/
%固溶させた多結晶体セラミツクスが、最近フ
アインセラミツクス、特に自動車排ガス用や溶鋼
用の酸素センサー並びにエンジン内張等の高強靭
性などとして使用され始めている。これらはジル
コニアの正方または立方型固溶体結晶の特性を利
用するもので、Y2O3の他、Ca、Mg、およびSc
やYb、La、Nd、Gdなどの稀土類元素の酸化物
が同様な効果を持つことが知られている。
[Detailed description of the invention] Adding 3 to 10 mol/yttrium oxide to zirconia
% solid solution polycrystalline ceramics have recently begun to be used as fine ceramics, especially oxygen sensors for automobile exhaust gas and molten steel, and high strength and toughness for engine linings. These utilize the properties of square or cubic solid solution crystals of zirconia, and in addition to Y 2 O 3 , Ca, Mg, and Sc
It is known that oxides of rare earth elements such as Yb, La, Nd, and Gd have similar effects.

これらの固溶体フアインセラミツクスの製造、
特に強靭性や耐熱衝撃性のジルコニアセラミツク
スでは均一な立方型または正方型固溶体微粒子の
調製が最重要課題であり、出発原料が300Å以下
の超微結晶でかつ強固な2次凝集粒子を形成して
いないことが特に望まれているが、従来このよう
な固溶体単結晶超微粒子の分散したゾルは生成さ
れていない。
Production of these solid solution fine ceramics,
In particular, for zirconia ceramics with strong toughness and thermal shock resistance, the most important issue is the preparation of uniform cubic or square solid solution fine particles, and the starting materials are ultrafine crystals of 300 Å or less and form strong secondary agglomerated particles. Although it is particularly desired that there be no solid solution single crystal ultrafine particles, such a sol in which solid solution single crystal ultrafine particles are dispersed has not been produced so far.

現在ジルコニア系固溶体微粒子の一般的製造方
法はジルコニウムと他の金属の混合塩または混合
水酸化物を数百℃で仮焼熱分解するものである。
しかしこの方法では出発塩や水酸化物の形骸が残
り、粗大な2次凝集粒子しか得られず、機械的摩
砕が不可欠であり、また純度を保つて500Å以下
に分散した状態にすることはほとんど不可能であ
る。現在知られている最も優れた固溶体微粒子は
混合アルコキシドの加水分解によつて生成する非
晶質ゾルを乾燥、仮焼するものであるが若干の粒
子凝集は不可避である。また結晶性の微粒子を溶
液中に生成させる方法として水溶性ジルコニウム
塩の常圧下での加熱加水分解および水熱加圧下で
の加水分解が知られており、何れも結晶性の微粒
子の分散したゾルを与えるが、生成結晶は単斜型
であり、価または価の塩基性金属イオンを共
存させて加水分解しても析出物はそれらを固溶し
た正方型もしくは立方型結晶とならず、単斜型結
晶しか得られていなかつた。最近に到り、この方
法を改良して、共沈水酸化物をPH10の塩基性領域
で190℃に水熱処理することによつて固溶体結晶
微粒子を調製可能であることが報告された
(Trans.J.Brit.Ceram.Soc.,79 105(1980))。
Currently, the general method for producing zirconia-based solid solution fine particles is to calcinate and thermally decompose a mixed salt or mixed hydroxide of zirconium and other metals at several hundred degrees Celsius.
However, with this method, traces of the starting salt and hydroxide remain, and only coarse secondary agglomerated particles are obtained. Mechanical grinding is essential, and it is difficult to maintain purity and obtain a dispersed state of less than 500 Å. Almost impossible. The best solid solution fine particles currently known are those produced by drying and calcining an amorphous sol produced by hydrolysis of mixed alkoxides, but some particle aggregation is unavoidable. In addition, as methods for producing crystalline fine particles in a solution, heating hydrolysis of water-soluble zirconium salts under normal pressure and hydrothermal hydrolysis under pressure are known, and both methods produce a sol in which crystalline fine particles are dispersed. However, the formed crystals are monoclinic, and even if hydrolyzed in the coexistence of valent or valent basic metal ions, the precipitates do not form square or cubic crystals with these metals dissolved in solid solution, but are monoclinic. Only type crystals were obtained. Recently, it has been reported that solid solution crystalline particles can be prepared by improving this method and hydrothermally treating coprecipitated hydroxide at 190°C in the basic range of PH10 (Trans.J .Brit.Ceram.Soc., 79 105 (1980)).

しかし反応生成物は1500±35Åとかなり粗粒で
あり、しかも共沈水酸化物の形骸が残り、組成は
必ずしも均一でなく、孤立した単結晶微粒子とな
らないことは上記の報告の記載からも明らかであ
る。
However, it is clear from the description in the above report that the reaction product is quite coarse grained at 1500±35 Å, and remains of coprecipitated hydroxide, and the composition is not necessarily uniform and does not form isolated single-crystal fine particles. be.

本発明は上述したジルコニウム塩の加熱加水分
解法(100℃附近でかつPH3以下の低PH領域)と
共沈水酸化物の高温水熱反応法(190℃でかつPH
10の高PH領域)の中間領域に、正方型または立方
型の固溶体単結晶超微粒子の生成領域のあること
を発見し、300Å以下のほぼ均一粒径の孤立した
ジルコニア系固溶体単結晶超微粒子の分散したゾ
ルを始めて生成したものである。すなわち、含水
状態の水酸化ジルコニウムおよびイツトリウム、
スカンジウム、稀土類元素の少くとも1種を含む
水酸化物の共沈物を合量で0.2mol/以上の割
合で含有し、そのPH値が7〜11の範囲にある混合
懸濁液または糊状物を80〜180℃の温度に加熱し、
十分な時間保持した後これに十分量の強酸を加え
て可溶性の非晶質部分を溶解分離除去することを
特徴とするものである。この方法によつて生成す
るゾルは従来如何なる方法によつても生成されな
かつた種類のものであり、後述するように極めて
優れた特性と応用を持つものである。なお上述に
おいて、水酸化ジルコニウム、ジルコニア等の言
葉は、普通に含有される10%以下のHfO2および
その他の微量不純物を含有する一般的な意味のも
のを含めて意味することは勿論である。
The present invention is based on the above-mentioned thermal hydrolysis method of zirconium salt (nearly 100℃ and low PH region of 3 or less) and high-temperature hydrothermal reaction method of coprecipitated hydroxide (at 190℃ and PH 3 or less).
We discovered that there is a region in which square or cubic solid solution single crystal ultrafine particles are generated in the middle region of the high pH region of This was the first time a dispersed sol was produced. That is, zirconium hydroxide and yttrium in a hydrous state,
A mixed suspension or glue containing a coprecipitate of hydroxide containing at least one of scandium and rare earth elements in a total ratio of 0.2 mol or more, and whose PH value is in the range of 7 to 11. Heat the material to a temperature of 80 to 180℃,
After holding for a sufficient period of time, a sufficient amount of strong acid is added to dissolve and separate the soluble amorphous portion. The sol produced by this method is of a type that has not been produced by any conventional method, and has extremely excellent properties and applications as will be described later. In the above description, the words zirconium hydroxide, zirconia, etc. are of course meant to include those containing 10% or less of HfO 2 and other trace impurities that are normally contained.

詳細は明らかではないが、PH7〜11の領域では
非晶質の含水状態共沈水酸化物の各所で局部的な
溶解・析出過程もしくは局部的な微小結晶化過程
が起るものと考えられ、強酸処理は残余の非晶質
部分を溶解することによつて完全に孤立した超微
結晶粒子のみを分散状態で残すものと思われる。
Although the details are not clear, it is thought that in the pH range of 7 to 11, local dissolution/precipitation processes or local microcrystalization processes occur at various locations in the amorphous water-containing co-precipitated hydroxide. The treatment appears to dissolve the remaining amorphous portion, leaving only completely isolated ultrafine crystalline particles in a dispersed state.

加熱処理温度は80℃以下では生成に長大な時間
が要し経済的にも実際的でない。一方180℃以上
では反応時間は短縮されるが、装置および処理費
が高価となるばかりでなく生成結晶が粗大とな
り、生成物は組成、粒度ともに不均一となる。本
発明方法における実際的温度範囲は80℃〜180℃
であり、最も効率的経済的な温度範囲は90℃〜
120℃である。
If the heat treatment temperature is 80° C. or lower, it will take a long time to form and is not economically practical. On the other hand, at 180° C. or higher, the reaction time is shortened, but not only do the equipment and processing costs become expensive, but the crystals formed become coarse and the product becomes non-uniform in both composition and particle size. The practical temperature range for the method of the present invention is 80°C to 180°C
The most efficient and economical temperature range is 90℃~
The temperature is 120℃.

本発明の最大の特徴はジルコニア系の正方型ま
たは立方型の固溶体が、完全に孤立した単結晶の
超微粒子として分散状態で得られることである。
この様なものは従来全く得られていないし、報告
もない。しかしながら孤立化超微粒子であること
は以下に述べるように極めて優れた特徴を持つの
である。
The greatest feature of the present invention is that a zirconia-based square or cubic solid solution can be obtained in a dispersed state as completely isolated single-crystal ultrafine particles.
Nothing like this has ever been obtained or reported. However, the fact that they are isolated ultrafine particles has extremely excellent characteristics as described below.

本発明によつて得られるジルコニア系固溶体単
結晶超微粒子ゾルは完全に孤立化した超微粒子か
ら成るので、凝集、解膠が容易であり、簡単に水
系あるいは有機溶媒系の濃厚ゾルを得ることがで
きる特徴を持つ。例えば生成する水系ゾルに塩酸
を加え軟凝集沈降させ、過脱水し、アルコール
で洗滌後、乾燥したゲル状物は水または水系の調
合物中に容易に分散する特性を持つ。従つて従来
得られなかつた50%以上の高濃度ゾルが容易に調
製でき、また例えば水性の有機高分子溶液中に分
散させて繊維状もしくは薄膜状に成形し、乾燥、
脱脂、焼成すれば、正方型または立方型のジルコ
ニア系固溶体の緻密な多結晶繊維や多結晶膜また
は薄板を得ることが可能である。しかも成形時、
従来得られた如何なるジルコニア系固溶体多結晶
繊維やフイルムよりも緻密であり、微粒子組織で
あり、均一であるので、焼成温度は700〜1300℃
と極めて低温で済み、焼結体の組織も0.2μ以下と
極めて超微粒子が可能等の優れた特徴を持つ。本
発明ゾルは完全孤立化超微粒子から成るので、電
気泳動電着などによる皮膜形成にも極めて適して
いる。またゾル・ゲル法や凍結乾燥法などによる
造粒装作により極めて優れた焼結体用微粉末が得
られ、乾式プレス用の原料粉末の調製も容易であ
り、しかも1次超微粒子がそれぞれ固溶体である
から粉末粒子の組成変動は全く生じない極めて均
質な易焼結性粉末となる。
Since the zirconia-based solid solution single crystal ultrafine particle sol obtained by the present invention is composed of completely isolated ultrafine particles, it is easy to flocculate and deflocculate, and it is possible to easily obtain a concentrated aqueous or organic solvent-based sol. have the characteristics of being able to For example, hydrochloric acid is added to the resulting aqueous sol to cause soft coagulation and sedimentation, excessive dehydration is performed, and after washing with alcohol, the dried gel-like material has the property of being easily dispersed in water or an aqueous formulation. Therefore, it is possible to easily prepare a high concentration sol of 50% or more, which could not be obtained conventionally, and for example, it can be dispersed in an aqueous organic polymer solution, formed into a fiber or thin film, dried,
By degreasing and firing, it is possible to obtain dense polycrystalline fibers, polycrystalline films, or thin plates of square or cubic zirconia solid solution. Moreover, during molding,
It is denser than any conventionally obtained zirconia solid solution polycrystalline fiber or film, has a fine grain structure, and is uniform, so the firing temperature is 700 to 1300℃.
It has excellent features such as requiring extremely low temperatures, and the structure of the sintered body is 0.2μ or less, making it possible to form extremely ultrafine particles. Since the sol of the present invention is composed of completely isolated ultrafine particles, it is extremely suitable for film formation by electrophoretic electrodeposition. In addition, extremely excellent fine powder for sintered bodies can be obtained by granulation using the sol-gel method or freeze-drying method, and raw material powder for dry pressing can be easily prepared, and the primary ultrafine particles are each formed in a solid solution. Therefore, the composition of the powder particles does not change at all, resulting in an extremely homogeneous and easily sinterable powder.

本発明方法では従来全く得られていなかつた、
分散性、混合性に優れた完全に孤立した正方乃至
立方型の結晶格子を持つジルコニア系固溶体単結
晶の超微粒子が得られるが、なお次に述べるよう
に、製造が高効率であり工業的大量生産が可能な
点で極めて経済的価値の高いものである。すなわ
ち本発明ではジルコニウム及び添加金属の出発原
料をそれらの水酸化物の懸濁状態で処理するため
取扱いが容易であり、また1mol/以上の濃厚
液に相当する量が簡単に処理可能となり、同一容
量の容器で大量の処理が可能である。
The method of the present invention has not previously been able to obtain
Ultrafine particles of zirconia-based solid solution single crystals with completely isolated square or cubic crystal lattices with excellent dispersibility and mixability can be obtained, but as described below, production is highly efficient and it is not possible to produce large quantities for industrial production. It has extremely high economic value in that it can be produced. In other words, in the present invention, the starting materials of zirconium and additive metals are processed in a suspended state of their hydroxides, so handling is easy, and an amount equivalent to 1 mol/or more of a concentrated liquid can be easily processed, and the same It is possible to process a large amount with a large capacity container.

実施例 1 試薬塩化ジルコニル(ZrOCl2・8H2O)87gお
よび酸化イツトリウム(Y2O3)6.8g(ZrO2に対
しY2O310mol%に相当する)を水約500mlに溶解
し、これに1:1アンモニア水を十分量加えて水
酸化ジルコニウムと水酸化イツトリウムの共沈を
生成させた。これを吸引過して得られる含水状
態のケーキに試薬塩化ジルコニルを1.0gおよび
10mlの蒸留水を加えて糊状スラリーとした。この
状態でPH約8である。この混合物を97℃で10日間
保持したところ、粘性の少い乳濁液を得た。これ
に12N塩酸約30mlを加えて放置すると、透明液部
分と沈澱に分離してくるのでこれを過し、稀塩
酸で洗滌後、アルコール中に分散し2回デカンテ
ーシヨンした後60℃で半乾燥して固体塊を得た。
この固体塊は水に容易に分散して任意の濃度のゾ
ルを与える。このゾルは稀薄の場合はほとんど透
明であるが、塩酸によつて軟凝集し沈降する。半
乾燥固体塊はX線回析によれば立方型の結晶格子
を持つジルコニア固溶体結晶超微粒子の集合物で
あり、その回析ピークの半価幅から結晶粒径は約
100Å、(111)および(220)の回析角から格子定
数はa=5.16Åであつた。これからY2O3の固溶
量は10mol/以上であることが計算される。ま
たゾル分散状態の電子顕微鏡写真は第1図に示す
ようで、これから各粒子は1辺約100Åのきれい
な立方体をした単結晶で互に孤立、分散している
ことが確められた。
Example 1 Reagents 87 g of zirconyl chloride (ZrOCl 2 .8H 2 O) and 6.8 g of yttrium oxide (Y 2 O 3 ) (corresponding to 10 mol % of Y 2 O 3 based on ZrO 2 ) were dissolved in about 500 ml of water. A sufficient amount of 1:1 ammonia water was added to produce a coprecipitate of zirconium hydroxide and yttrium hydroxide. 1.0g of reagent zirconyl chloride and
10 ml of distilled water was added to form a pasty slurry. In this state, the pH is about 8. When this mixture was kept at 97°C for 10 days, a less viscous emulsion was obtained. When about 30ml of 12N hydrochloric acid is added to this and left to stand, it will separate into a clear liquid and a precipitate, which will be filtered, washed with diluted hydrochloric acid, dispersed in alcohol, decanted twice, and then heated at 60°C for half a time. Drying yielded a solid mass.
This solid mass is easily dispersed in water to give a sol of any concentration. This sol is almost transparent when diluted, but it softens and precipitates when exposed to hydrochloric acid. According to X-ray diffraction, the semi-dry solid mass is an aggregate of ultrafine particles of zirconia solid solution crystals with a cubic crystal lattice, and the crystal grain size is approximately
From the diffraction angles of 100 Å, (111) and (220), the lattice constant was a=5.16 Å. From this, it is calculated that the solid solution amount of Y 2 O 3 is 10 mol/or more. Furthermore, an electron micrograph of the sol dispersion state is shown in Figure 1, and it was confirmed from this that each particle was isolated and dispersed as a neat cubic single crystal with a side of approximately 100 Å.

実施例 2 実施例1と同様な実験において、共沈物の含水
状態ケーキに対し塩化ジルコニルの代りに塩化イ
ツトリウム、硝酸イツトリウムまたは塩酸を加え
て実験し、ほぼ類似の結果を得た。しかし共沈物
として水酸化イツトリウムの代りに水酸化カルシ
ウムまたは水酸化マグネシウムを用いた場合には
PH値は9以下とならず、正方型または立方型の結
晶は析出しなかつた。
Example 2 In an experiment similar to Example 1, yttrium chloride, yttrium nitrate, or hydrochloric acid was added instead of zirconyl chloride to the water-containing coprecipitate cake, and almost similar results were obtained. However, when calcium hydroxide or magnesium hydroxide is used instead of yttrium hydroxide as a coprecipitate,
The pH value did not fall below 9, and no square or cubic crystals were precipitated.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法によつて得られたジルコニ
ア・イツトリア系固溶体単結晶超微粒子の分散し
たゾルの乾燥物の電子顕微鏡写真である。
FIG. 1 is an electron micrograph of a dried sol in which zirconia-yttoria solid solution single crystal ultrafine particles obtained by the method of the present invention are dispersed.

Claims (1)

【特許請求の範囲】 1 正方または立方型の結晶格子を持ち、300Å
以下のほぼ均一粒径の孤立したジルコニア系固溶
体単結晶超微粒子の分散したゾル。 2 含水状態の水酸化ジルコニウムおよびイツト
リウム、スカンジウム、稀土類元素の少くとも1
種を含む水酸化物の共沈物を合量で0.2mol/
以上の割合で含有し、そのPH値が7〜11の範囲に
ある混合懸濁液または糊状物を80〜180℃の温度
に加熱し、十分な時間保持した後これに十分量の
強酸を加えて可溶性の非晶質部分を溶解分離除去
することを特徴とするジルコニア系固溶体単結晶
超微粒子の分散したゾルの製造方法。
[Claims] 1. Having a square or cubic crystal lattice, 300 Å
A sol in which isolated zirconia-based solid solution single crystal ultrafine particles of approximately uniform particle size are dispersed. 2 At least one of zirconium hydroxide and yttrium, scandium, and rare earth elements in a hydrated state
The total amount of hydroxide coprecipitate containing seeds is 0.2 mol/
A mixed suspension or paste containing the above proportions and a pH value in the range of 7 to 11 is heated to a temperature of 80 to 180°C, held for a sufficient period of time, and then a sufficient amount of strong acid is added to it. A method for producing a sol in which zirconia-based solid solution single-crystal ultrafine particles are dispersed, the method further comprising dissolving and separating a soluble amorphous portion.
JP57215208A 1982-12-08 1982-12-08 Zirconia solid solution single crystal super fine particle-dispersed sol and manufacture Granted JPS59107969A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57215208A JPS59107969A (en) 1982-12-08 1982-12-08 Zirconia solid solution single crystal super fine particle-dispersed sol and manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57215208A JPS59107969A (en) 1982-12-08 1982-12-08 Zirconia solid solution single crystal super fine particle-dispersed sol and manufacture

Publications (2)

Publication Number Publication Date
JPS59107969A JPS59107969A (en) 1984-06-22
JPH0346407B2 true JPH0346407B2 (en) 1991-07-16

Family

ID=16668478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57215208A Granted JPS59107969A (en) 1982-12-08 1982-12-08 Zirconia solid solution single crystal super fine particle-dispersed sol and manufacture

Country Status (1)

Country Link
JP (1) JPS59107969A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008031023A (en) * 2006-07-28 2008-02-14 Daiichi Kigensokagaku Kogyo Co Ltd Zirconia sol and method for producing the same

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1262813A (en) * 1986-06-26 1989-11-14 Corning Glass Works Preparation of high purity, homogeneous zirconia mixtures
US4719091A (en) * 1986-07-01 1988-01-12 Corning Glass Works Preparation of mono-sized zirconia powders by forced hydrolysis
JP2560490B2 (en) * 1988-09-30 1996-12-04 日産化学工業株式会社 Method for producing zirconia sol
US5223176A (en) * 1988-09-30 1993-06-29 Nissan Chemical Industries, Ltd. Zirconia sol and method for making the same
US7241437B2 (en) 2004-12-30 2007-07-10 3M Innovative Properties Company Zirconia particles
WO2006098899A2 (en) 2005-03-11 2006-09-21 3M Innovative Properties Company Light management films with zirconia particles
JP4963820B2 (en) * 2005-09-02 2012-06-27 第一稀元素化学工業株式会社 Method for producing sol using Zr-O-based particles as dispersoid
JP5362416B2 (en) * 2009-04-15 2013-12-11 旭化成ケミカルズ株式会社 Organic / inorganic composite composition
JP2012086104A (en) * 2010-10-15 2012-05-10 Asahi Kasei Chemicals Corp Photocatalyst composition
JP5494746B2 (en) * 2012-07-17 2014-05-21 住友大阪セメント株式会社 Method for producing particle aggregate

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6143286A (en) * 1984-08-08 1986-03-01 Matsushita Refrig Co Sealed type compressor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6143286A (en) * 1984-08-08 1986-03-01 Matsushita Refrig Co Sealed type compressor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008031023A (en) * 2006-07-28 2008-02-14 Daiichi Kigensokagaku Kogyo Co Ltd Zirconia sol and method for producing the same

Also Published As

Publication number Publication date
JPS59107969A (en) 1984-06-22

Similar Documents

Publication Publication Date Title
US4619817A (en) Hydrothermal method for producing stabilized zirconia
JP2523776B2 (en) Composition for zirconia ceramic material
US4810680A (en) Preparation of high purity, homogeneous zirconia mixtures
JP3284413B2 (en) Method for producing hydrated zirconia sol and zirconia powder
US4873064A (en) Powder of coagulated spherical zirconia particles and process for producing them
JPH0346407B2 (en)
AU609280B2 (en) Process for preparing submicronic powders of zirconium oxide stabilized with yttrium oxide
JP2004517020A (en) Zirconia in the form of fine powder, zirconia hydroxycarbonate and methods for producing them
JPH04295014A (en) Stabilized metal oxide composition and method of preparing same
JPH02258624A (en) Rare earth element oxide with new morphological feature and preparation thereof
JPH0472772B2 (en)
JPH06305726A (en) Production of powdery oxide of rare earth element
US4786486A (en) Stabilized zirconia particulates
JPS60210508A (en) Manufacture of sinterable ceramic fine powder
RU2600636C2 (en) Method of producing nanocrystalline powder of zirconium dioxide
JPS61141619A (en) Production of zirconia fine powder
JPH0230663A (en) Sintered material of zirconia and production thereof
JPH0420851B2 (en)
KR100473399B1 (en) Process for the preparation of fine ceramic powders
JPS6172626A (en) Production of zirconia fine powder
JPH06171944A (en) Production of zirconium oxide powder
JP2882040B2 (en) Method for producing hydrated zirconia sol
JP2607519B2 (en) Manufacturing method of optical ceramics
JPS62212224A (en) Production of zirconia solid solution crystal fine powder
JP3394071B2 (en) Method for producing rare earth oxide fine powder