JPS60166008A - Preparation of hollow yarn for dialysis - Google Patents

Preparation of hollow yarn for dialysis

Info

Publication number
JPS60166008A
JPS60166008A JP2062284A JP2062284A JPS60166008A JP S60166008 A JPS60166008 A JP S60166008A JP 2062284 A JP2062284 A JP 2062284A JP 2062284 A JP2062284 A JP 2062284A JP S60166008 A JPS60166008 A JP S60166008A
Authority
JP
Japan
Prior art keywords
spinning
liquid
dialysis
steam
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2062284A
Other languages
Japanese (ja)
Other versions
JPH0330414B2 (en
Inventor
Yukirou Shimooki
下起 幸郎
Tamotsu Takeuchi
保 竹内
Michio Hotta
堀田 道夫
Toshikatsu Oshima
大島 敏克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Terumo Corp
Original Assignee
Terumo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terumo Corp filed Critical Terumo Corp
Priority to JP2062284A priority Critical patent/JPS60166008A/en
Publication of JPS60166008A publication Critical patent/JPS60166008A/en
Publication of JPH0330414B2 publication Critical patent/JPH0330414B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • External Artificial Organs (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Artificial Filaments (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

PURPOSE:To prepare hollow yarn for dialysis having high water-removing capacity but causing only slight shrinkage during sterilization with steam by introducing and filling non-coaqulative liquid into the inside of hollow yarn at the stage of spinning cellulosic hollow yarn from its spinning soln. coagulating, regenerating, and then washing with water, further allowing to contact with steam and then plasticizing, and finally drying. CONSTITUTION:Spinning solution such as cupro-amminium cellulose soln. is extruded into non-coagulative liquid 3 in the bottom layer of a bath 2 from an annular spinning orifice in a spinning nozzle device 6 through a pipe 5. The non- coagulative liquid is fed simultaneously from a pipe 7 as inside liquid of the spinning soln. to the central part of the inside of the extruded linear spinning soln. 8, which is passed through coagulative liquid 4 comprising the upper layer of the bath 2. Coagulated and regenerated hollow yarn pulled up by a roll 10 is washed with alkali, water, and acid, and with water again to cause recoagulation and decoppering. The yarn is allowed to contact with steam in a steam treatment device 18, then treated with glycerin in a plasticizing tank 17, and dried finally in a drying furnace 18.

Description

【発明の詳細な説明】 1、Te明の背景 (技術分野) 本発明は、透析用中空繊維の製造方法に関するものであ
る。詳しく述べると、水蒸気滅菌処理時に収縮の少ない
透析用中空繊維の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION 1. Background of Te Ming (Technical Field) The present invention relates to a method for producing hollow fibers for dialysis. More specifically, the present invention relates to a method for producing hollow fibers for dialysis that have little shrinkage during steam sterilization.

(先行技術) 最近、浸透作用、限外濾過作用等を利用する人工腎臓装
置の発展はめざましく、医療界において広く使用されて
いる。しかして、このような人工腎臓装置においては、
極めて細い透析用中空繊維が最も重要な部材となってい
る。
(Prior Art) Artificial kidney devices that utilize osmotic action, ultrafiltration action, etc. have recently made remarkable progress and are widely used in the medical world. However, in such an artificial kidney device,
The most important component is the extremely thin hollow fiber for dialysis.

このような中空繊維は、いずれも銅アルモニアセルロー
ス溶液等のセルロース溶液または合成繊維溶液よりなる
紡糸原液とIW状紡糸几がら空気中に押出し、その下方
に自重落下させ、その際、線状に膨出される紡糸原液の
内部中央部に該紡糸原液に対する非凝固性液体を導入充
填して吐出させ、それから自重落下により充分伸張した
のち、酸またはアルカリ溶液中に浸漬して凝固再生を行
ない、ついで、洗浄を行ない、さらに必要によりグリセ
リン処理を行なったのち、乾燥することにより製造され
ている。
Such hollow fibers are extruded into the air from a spinning dope made of a cellulose solution such as a copper alumonia cellulose solution or a synthetic fiber solution and an IW-shaped spinning chamber, and are allowed to fall under their own weight, at which time they expand linearly. A non-coagulable liquid for the spinning dope is introduced into the center of the spinning dope to be discharged and discharged, and after being sufficiently expanded by falling under its own weight, it is immersed in an acid or alkaline solution to perform coagulation and regeneration, and then, It is manufactured by washing, further performing glycerin treatment if necessary, and then drying.

このような中空繊維は所定の長さに切断したのち、その
束を人工腎臓の筒状本体に挿入し、その両者をポツティ
ング材により固定して隔壁を形成させ、該隔壁の両件側
にヘッダーを取付けることにより人工腎臓が形成されて
いる。
After cutting such hollow fibers to a predetermined length, the bundle is inserted into the cylindrical body of the artificial kidney, and both are fixed with potting material to form a partition, and headers are attached on both sides of the partition. An artificial kidney is formed by attaching the

しかしながら、このような人工腎臓は、オートクレーブ
内で水蒸気滅菌される場合に収縮するために、前記筒状
本体内で比較的緩んだ状態で嵩高く挿入されていた中空
繊維が前記収縮によりビンと張ることになる。このため
、前記筒状本体内面と前記中空m紐束との間および各中
空II雑同志の間隙が広くなり、該人工腎臓を使′用し
て透析を行なう際に、透析液が中空繊維と充分接触する
ことなく、通過する恐れがあり、このため充分な透析効
果が得られないという欠点があった。
However, when such an artificial kidney is steam sterilized in an autoclave, it contracts, so that the hollow fibers, which were inserted in a relatively loose and bulky manner within the cylindrical body, become taut due to the contraction. It turns out. For this reason, the gap between the inner surface of the cylindrical body and the hollow m string bundle and between the hollow m strings becomes wide, and when performing dialysis using the artificial kidney, the dialysate is mixed with the hollow fibers. There is a risk that the membrane may pass through the membrane without sufficient contact, which has the disadvantage that a sufficient dialysis effect cannot be obtained.

1o発明の目的 したがって、本発明の目的は、新規な透析用中空繊維の
製造方法を提供することにある。本発明の他の目的は、
水蒸気滅菌処理時に収縮の少ない透析用中空繊維の製造
方法を提供することにある。
1o Object of the Invention Accordingly, an object of the present invention is to provide a novel method for producing hollow fibers for dialysis. Another object of the invention is to
It is an object of the present invention to provide a method for producing hollow fibers for dialysis that exhibit less shrinkage during steam sterilization.

本発明のさらに他の目的は、除水能の優れた透析用中空
繊維の製造方法を提供することにある。
Still another object of the present invention is to provide a method for producing hollow fibers for dialysis with excellent water removal ability.

これらの諸口的は、セルロース系紡糸原液を環状紡糸孔
から吐出さU、同時に内部中央部に非凝固性液を導入充
填し、ついで凝固性液中を通過させて凝固再生したのら
水洗し、このようにして得られた中空IIIIlcを水
蒸気と接触さけて処理する工程と、可塑化処理する工程
とを有し、さらに乾燥することを特徴とする透析用中空
繊維の製造方法により達成される。
These methods include discharging cellulose-based spinning stock solution from an annular spinning hole, simultaneously introducing and filling a non-coagulable liquid into the center of the interior, passing it through a coagulating liquid to solidify and regenerate, and washing with water. This is achieved by a method for producing hollow fibers for dialysis, which comprises the steps of treating the hollow IIIlc thus obtained while avoiding contact with water vapor, and plasticizing it, and further drying.

また、本発明は、中空繊維と水蒸気との接触が95〜1
10℃の温度および0〜0.4ko/c…2(ゲージ圧
)の圧力下に1〜4秒間行なわれ、てなる透析用中空m
mの製造方法である。さらに、本発明は、中空繊維と水
蒸気との接触が95〜110℃および0〜0 、4 k
g/ co+2 (ゲージ圧)ノ圧力下に2〜4秒間行
なわれてなる透析用中空繊維の製造方法である。また、
本発明は、セルロース系紡糸原液が銅アンモニアセルロ
ース溶液である透析用中空繊維の製造方法である。
Further, in the present invention, the contact between the hollow fiber and water vapor is 95 to 1
The dialysis hollow m
This is a manufacturing method of m. Furthermore, the present invention provides that the contact between the hollow fibers and water vapor is between 95 and 110 °C and between 0 and 0,4 k
This is a method for producing hollow fibers for dialysis, which is carried out for 2 to 4 seconds under a pressure of g/co+2 (gauge pressure). Also,
The present invention is a method for producing hollow fibers for dialysis, in which the cellulose-based spinning stock solution is a copper ammonia cellulose solution.

■0発明の詳細な説明 本発明により製造される中空m維としては、銅アンモニ
アセルロース、酢酸セルロース等のセルロース系1[が
あり、特に銅アンモニアセルロースである。セルロース
としては種々のものが使用できるが、−例を挙げると、
例えば平均重合度500〜2500のものが好ましく使
用される。しかして、銅アンモニアセルロース溶液は常
法によ、り調整される。例えば、まずアンモニア水、塩
基性硫酸銅水溶液および水を混合して銅アンモニア水溶
液を調整し、これに酸化防止剤(例えば亜硫酸ナトリウ
ム)を加え、ついで原料セルロースを投入して攪拌溶解
を行ない、さらに水酸化ナトリウム水溶液を添加して未
溶解セルロースを完全に溶解させて銅アンモニアセルロ
ース溶液を得る。
(1) Detailed Description of the Invention The hollow fibers produced according to the present invention include cellulose-based fibers such as cuprammonium cellulose and cellulose acetate, particularly cuprammonium cellulose. Various types of cellulose can be used, for example:
For example, those having an average degree of polymerization of 500 to 2,500 are preferably used. Thus, the cuprammonium cellulose solution is prepared by a conventional method. For example, first, aqueous ammonia, a basic aqueous copper sulfate solution, and water are mixed to prepare an aqueous cupric ammonia solution, an antioxidant (e.g., sodium sulfite) is added to this, then raw cellulose is added and dissolved with stirring, and then An aqueous sodium hydroxide solution is added to completely dissolve undissolved cellulose to obtain a cuprammonium cellulose solution.

この銅アンモニアセルロース溶液には、さらに透過性能
制御剤を混合して配位結合させてもよい。
This cuprammonium cellulose solution may further be mixed with a permeation performance controlling agent for coordination bonding.

紡糸方法としては種々の方法があり、例えば空中落下方
法、特開昭57−71,408号および同57−71.
410号に記載の非凝固性液中へ吐出したのら該非凝固
性液層と凝固性液との界面を通過させる方法、特開昭5
7−71,409号に記載の非凝固性液中へ直接吐出し
たのち、凝固性液中を通過させる方法、特開昭57−7
7.411号に記載の非凝固性液に囲1g4ぎせて吐出
し、ついで凝固再生ずる方法、特開昭57−199.8
08号に記載の凝固性液を上層にハロゲン化炭化水素よ
りなる非凝固性液を下層に充填してなる溶液の該非凝固
性液中に環状紡糸孔から直接吐出し、同時に内部中央部
に非凝固性液を導入充填し、ついで凝固性液中を通過さ
せて凝固再生する方法(以下、浮上法という。)等があ
るが、特に最後者の浮上法が好ましいので、これを例に
とって、以下、図面を参照しつつ本発明を説明覆る。
There are various spinning methods, such as the aerial drop method, Japanese Patent Application Laid-Open Nos. 57-71,408 and 57-71.
410, a method in which a liquid is discharged into a non-coagulable liquid and then passed through an interface between the non-coagulable liquid layer and a coagulable liquid, JP-A No. 5
7-71,409, a method of directly discharging into a non-coagulable liquid and then passing through a coagulable liquid, JP-A-57-7
7.411, a method of discharging 1 g of non-coagulable liquid and then solidifying and regenerating it, JP-A-57-199.8
The coagulable liquid described in No. 08 is directly discharged from an annular spinning hole into the non-coagulable liquid of a solution in which the upper layer is filled with a non-coagulable liquid made of a halogenated hydrocarbon and the lower layer is filled with a non-coagulable liquid made of a halogenated hydrocarbon. There are methods such as introducing and filling a coagulable liquid and then passing it through the coagulable liquid to solidify and regenerate (hereinafter referred to as flotation method), but the last flotation method is particularly preferable, so using this as an example, the following method is used. The invention will now be described with reference to the drawings.

第1図は、本発明による方法および装置を用いて中空繊
維を製造するための装置全体の概略を示す側面図である
。すなわち、底部に非凝固性液槽1を設けた浴[2にお
いて、前記非凝固性液層1に下層としてハロゲン化炭化
水素よりなりかつ前記セルロース系紡糸原液に対する非
凝固性液3を、また上層として前記非凝固性液よりも比
重が小さくかつ前記紡糸原液に対する凝固性液4を供給
して二層を浴槽2に形成させる。原液貯槽(図示せず)
内の紡糸原液を導管5によ圧送し、紡糸口金装置6の上
向きに設けられた環状紡糸孔(図示せず)から前記下層
の非凝固性液3中に直接押出す。
FIG. 1 is a side view schematically showing an entire apparatus for producing hollow fibers using the method and apparatus according to the present invention. That is, in a bath [2] having a non-coagulable liquid tank 1 at the bottom, a non-coagulable liquid 3 made of a halogenated hydrocarbon as a lower layer and corresponding to the cellulose-based spinning stock solution is added to the non-coagulable liquid layer 1 as a lower layer, and a non-coagulable liquid 3 is added as an upper layer. A coagulable liquid 4 having a specific gravity smaller than that of the non-coagulable liquid and relative to the spinning dope is supplied to form two layers in the bathtub 2. Stock solution storage tank (not shown)
The spinning dope in the spinneret is pumped through a conduit 5 and extruded directly into the lower non-coagulable liquid 3 through an annular spinning hole (not shown) provided upward in a spinneret device 6.

その際、内部液貯槽(図示せず)内に貯蔵されている前
記紡糸原液に対する非凝固性液を内部液として導管7よ
り前記紡糸口金装置に供給し、ボI記環状に押出された
線状紡糸原液8の内部中央部に導入して吐出させる。環
状紡糸孔より押出された線状紡糸原液8は、内部に非凝
固性液を含んだままなんら凝固することなく下層の非凝
固性液3中を上方へ進む。この場合、線状紡糸原液8は
、前記非凝固性液との比重差によりその浮力を受けなが
ら上昇する。ついでこの線状紡糸原液8は上層の凝固性
液4中に上昇するので、これを該凝固性液4中に段tプ
られた変向捧9により変向さけて前記凝固性液4中を充
分通過させたのら、ロール10により引上げる。ざらに
、ドライブロール11により引上げられた凝固再生中空
#A維は、搬送装置12により搬送しながら、その上部
に設(ブられたアルカリ洗浄装置13.第1水洗装置1
4.酸洗浄装置15および第2水洗装置16によりそれ
ぞれシャワー洗浄を施して、再凝固、水洗、脱銅。
At this time, a non-coagulable liquid for the spinning dope stored in an internal liquid storage tank (not shown) is supplied as an internal liquid to the spinneret device from the conduit 7, and the annularly extruded linear It is introduced into the center of the spinning dope 8 and discharged. The linear spinning dope 8 extruded from the annular spinning hole advances upward in the non-coagulable liquid 3 in the lower layer without coagulating at all while containing the non-coagulable liquid inside. In this case, the linear spinning dope 8 rises while receiving buoyancy due to the difference in specific gravity with the non-coagulable liquid. Next, this linear spinning dope 8 rises into the coagulable liquid 4 in the upper layer, so it is diverted by a diversion rod 9 placed in the coagulable liquid 4 in stages and passed through the coagulable liquid 4. After it has passed sufficiently, it is pulled up by the roll 10. Roughly speaking, the coagulated and regenerated hollow #A fibers pulled up by the drive roll 11 are conveyed by the conveying device 12 while being installed on the top thereof (the alkali cleaning device 13 and the first water washing device 1
4. Shower cleaning is performed using the acid cleaning device 15 and the second water cleaning device 16, respectively, to re-solidify, wash with water, and remove copper.

および水洗を施す。ついで、このようにして洗浄された
中空繊維は、水蒸気処理装置18に導入して水蒸気と接
触さVで処理し、必要により可塑化処8!層17でグリ
セリン処理しkのち、さらに乾燥装M19に導入して乾
燥される。
and wash with water. The hollow fibers thus washed are then introduced into a steam treatment device 18, contacted with steam and treated with V, and, if necessary, subjected to a plasticization treatment 8! After the layer 17 is treated with glycerin, it is further introduced into a dryer M19 and dried.

しかして、水蒸気処理は、種々の方法で行なうことがで
きるが、例えば、第2図に示すように、両端のに端板2
0a 、20b @備えた筒状本体21内を隔壁22a
 、22b 、22c 、22d 、22’e、22f
により仕切って複数個の水蒸気処理室23a 、23b
 、23c 、23d 、23e 、23f 、231
Jを形成し、該水蒸気処理室の少なくとも一つく例えば
ほぼ中央の水蒸気処理室に水蒸気導入口24を設けると
ともに、前記端板20a。
The steam treatment can be carried out in various ways, but for example, as shown in FIG.
0a, 20b @The partition wall 22a
, 22b , 22c , 22d , 22'e, 22f
A plurality of steam treatment chambers 23a and 23b are partitioned by
, 23c , 23d , 23e , 23f , 231
J, a steam inlet 24 is provided in at least one of the steam treatment chambers, for example, a substantially central steam treatment chamber, and the end plate 20a.

20b、および隔壁22a 、22b・・・に中央繊維
通過孔24を段重)でなる水蒸気処理装置1B内の前記
中央繊維通過孔25に中空II維を通過させ、前記水蒸
気導入口24より水蒸気を導入して接触させる。水蒸気
処理室23dに導入した水蒸気は、該水蒸気処理室23
d内を走行する中空繊維8と接触したのら、中空繊維通
過孔24を経て隣接する水蒸気処理室23cおよび23
eに侵入して中空m維8と接触し、さらに順次同様な方
法で隣接する水蒸気処理室に侵入して中空繊維8との接
触を繰返す。最後に末端の水蒸気処理室で接触処理に供
されたのち、水蒸気排出口26または中空繊維通過孔2
5から排出される。なお、各水蒸気処理室には、必要に
よりドレーン(図示せず)が設けられる。また、筒状本
体21の外部には、必要により保温が施される。
20b, and partition walls 22a, 22b, etc.), the hollow II fibers are passed through the central fiber passage hole 25 in the steam treatment device 1B, and water vapor is introduced from the steam inlet 24. Introduce and bring into contact. The water vapor introduced into the water vapor processing chamber 23d is
After coming into contact with the hollow fiber 8 running in d, it passes through the hollow fiber passage hole 24 to the adjacent steam treatment chambers 23c and 23.
e and comes into contact with the hollow m-fibers 8, and then in the same way sequentially enters the adjacent steam treatment chamber and repeats the contact with the hollow fibers 8. Finally, after being subjected to contact treatment in the terminal steam treatment chamber, the steam outlet 26 or the hollow fiber passage hole 2
It is discharged from 5. Note that each steam treatment chamber is provided with a drain (not shown) if necessary. Further, the outside of the cylindrical main body 21 is provided with heat insulation if necessary.

しかして、水蒸気としては、95〜110℃、好ましく
は100〜110℃で0−0.4.kG/cm’(ゲー
ジ圧)のものが使用され、中空繊維との接触時間は1〜
4秒、好ましくは2〜4秒である。
Therefore, water vapor has a temperature of 0-0.4°C at 95-110°C, preferably 100-110°C. kG/cm' (gauge pressure) is used, and the contact time with the hollow fiber is 1~
4 seconds, preferably 2 to 4 seconds.

グリセリン処理は、可塑化処理槽17内に収納されてい
るグリセリン水溶液中に中空繊維8を浸漬して走行させ
、ついで、ローラにより引−Lげて乾燥装置19へ送る
ことにより行なわれる。このグリセリン水溶液の′a度
は通常0.5〜5重四%、好ましくは1〜4,5重世%
である。また、グリセリン水溶液の液温は20〜60℃
、好ましくは40〜60℃である。このグリセリン処理
にJ:る可塑化工程は、水蒸気処理工程の前に設けても
よいことはもらろんである。
The glycerin treatment is carried out by immersing the hollow fibers 8 in an aqueous glycerin solution stored in the plasticizing treatment tank 17 and running them, and then pulling them up with rollers and sending them to the drying device 19. The a content of this aqueous glycerin solution is usually 0.5 to 5%, preferably 1 to 4.5%.
It is. In addition, the temperature of the glycerin aqueous solution is 20 to 60°C.
, preferably 40 to 60°C. It goes without saying that the plasticizing step involved in this glycerin treatment may be provided before the steam treatment step.

なお、乾燥は、常法によって行なわれる。Note that drying is performed by a conventional method.

つぎに、実施例を挙げて本発明方法を、さらに詳細に説
明する。
Next, the method of the present invention will be explained in more detail with reference to Examples.

実施例 1 25%アンモニア水溶液2,354.9に塩基竹硫酸銅
540(JをIIi頃させて銅アンモニア水溶液を調製
し、これに10%亜硫酸ナトリウム水溶液1.690g
を添加した。この溶液に重合度約1゜000 (±10
0)のコツトンリンターパルプを渥式粉砕し、脱水した
含水リンター(含水率69゜7%)2,273gを投入
して濃度調整用RO水210gを添加して攪拌溶解を行
ない、ついで、10%水酸化ナトリウム水溶液1.23
30を添加して銅アンモニアセルロース水溶液(比重1
゜08)をII製して紡糸原液とした。
Example 1 A copper ammonia aqueous solution was prepared by adding 2,354.9 g of a 25% ammonia aqueous solution to a base bamboo copper sulfate 540 (J around IIi), and to this was added 1.690 g of a 10% sodium sulfite aqueous solution.
was added. This solution has a degree of polymerization of approximately 1°000 (±10
2,273 g of dehydrated water-containing linter (moisture content: 69°7%) was added to the pulp of Kotton linter pulp obtained in 0), and 210 g of RO water for concentration adjustment was added thereto, followed by stirring and dissolving. % sodium hydroxide aqueous solution 1.23
30 was added to make a copper ammonia cellulose aqueous solution (specific gravity 1
゜08) was prepared in II and used as a spinning dope.

一方、第1図に示すような@置を用いて、浴槽2の非凝
固性液槽1に非凝固性液3として1,1.1−トリクロ
ルエタンを供給して下層を形成させ、ついで凝固性液と
して50a/I、の濃度の水酸化ナトリウム水溶液を供
給して上層を形成さじだ。前記紡糸原液を環状紡糸孔を
上向きに装着した紡糸口金装置6に導き、5kQ/Cm
2の窒素圧で紡糸孔より前記下層の液温20±2℃の非
凝固性液3中に直接吐出させた。紡糸孔の孔径は3.8
IIIIIlであり、紡糸原液<0e11,7.8%、
1.1000(20℃))の吐出量は5.86m1/分
とした。
On the other hand, using a @ position as shown in Fig. 1, 1,1,1-trichloroethane is supplied as the non-coagulable liquid 3 to the non-coagulable liquid tank 1 of the bathtub 2 to form a lower layer, and then solidified. An upper layer was formed by supplying an aqueous sodium hydroxide solution with a concentration of 50a/I as a liquid. The spinning dope was introduced into a spinneret device 6 equipped with an annular spinning hole facing upward, and the spinning dope was heated at 5 kQ/Cm.
The liquid was directly discharged from the spinning hole into the non-coagulable liquid 3 in the lower layer at a liquid temperature of 20±2°C under a nitrogen pressure of 2°C. The diameter of the spinning hole is 3.8
IIIIIIl, spinning dope <0e11, 7.8%,
1.1000 (20°C)) discharge amount was 5.86 m1/min.

一方、紡糸口金装置6に装着した非凝固性液の導入管7
よりミリスチン酸イソプロピル(比重0゜854)を導
呑し、前記線状吐出原液に内包させて吐出させた。上、
記導入管の管径はl、2mmであり、ミリスチン酸イソ
プロピルの吐出量は1.50111J2/分とした。つ
いで、吐出原液(非凝固性液を内包)8(比重1.02
6)を1.1.1−トリクロルエタン中に上昇させ、さ
らに上層の水酸化ナトリウム水溶液(20上2℃)中を
上昇さVたのち、変向棒9により水平方向に走行させた
。このときの非凝固性液の層高は200mmであり、界
面から変向棒9の上端までの距離は150m+nであり
、紡糸速度60m/分、トランバースワインド80、走
行距離4.4g+であった。この浴槽からローラ10に
より引上げた“のち、搬送装置12上に堆積させ、該搬
送装置12上で12%水酸化ナトリウム水溶液をシャワ
ー状に振りかけ充分凝固させ、水洗処理し、5%硫酸に
より再生処理(脱銅処理)をし、さらに水洗処理したの
ち、水蒸気処理に供した。
On the other hand, a non-coagulable liquid introduction pipe 7 attached to the spinneret device 6
Isopropyl myristate (specific gravity: 0°854) was introduced into the tube, encapsulated in the stock solution for linear discharge, and discharged. Up,
The diameter of the introduction tube was 1,2 mm, and the discharge rate of isopropyl myristate was 1.50111 J2/min. Next, discharge stock solution (containing non-coagulable liquid) 8 (specific gravity 1.02
6) was raised in 1.1.1-trichloroethane, further raised in the upper layer of aqueous sodium hydroxide solution (20° C. above), and then moved horizontally by a deflection rod 9. The layer height of the non-coagulable liquid at this time was 200 mm, the distance from the interface to the upper end of the deflection rod 9 was 150 m+n, the spinning speed was 60 m/min, the traverse wind was 80, and the running distance was 4.4 g+. . After being pulled up from this bathtub by rollers 10, it is deposited on a conveying device 12, and on the conveying device 12, a 12% sodium hydroxide aqueous solution is sprinkled in a shower to solidify it sufficiently, washed with water, and regenerated with 5% sulfuric acid. (decopper removal treatment), further washed with water, and then subjected to steam treatment.

水蒸気処理は、第2図に示すように水蒸気導入口24よ
り110℃(0,4klll/cm2・G)の水蒸気を
尋人し、2.5秒間中空繊維と接触させて行なった。つ
いで、このようにして水蒸気処理された中空繊維を1.
5重量%のグリセリン水溶液(液温20℃)に20分間
浸漬して可塑化処理を行なった。さらに、咳中空#A維
を80℃の温度で39秒間熱風乾燥を行なって透析用中
空繊維を得た。
The steam treatment was carried out by injecting steam at 110° C. (0.4 klll/cm 2 ·G) through the steam inlet 24 and bringing it into contact with the hollow fibers for 2.5 seconds, as shown in FIG. Next, the hollow fibers treated with water vapor in this manner are subjected to 1.
Plasticization treatment was performed by immersing it in a 5% by weight aqueous glycerin solution (liquid temperature: 20°C) for 20 minutes. Furthermore, the cough hollow #A fiber was dried with hot air at a temperature of 80° C. for 39 seconds to obtain a hollow fiber for dialysis.

このようにして得られた透析用中空繊維について、水蒸
気滅菌後の収縮率、UFRおよび中分子除去能を測定し
たところ第1表のとおりであった。
Regarding the hollow fiber for dialysis thus obtained, the shrinkage rate, UFR, and middle molecule removal ability after steam sterilization were measured, and the results were as shown in Table 1.

実施例 2〜4 実施例1の方法において、水蒸気処理の条件を第1表に
示すように種々変えた以外は、同様な方法で透析用中空
繊維を製造し、かつ同様な試験を行なったところ、第1
表の結果が得られた。
Examples 2 to 4 Hollow fibers for dialysis were produced in the same manner as in Example 1, except that the steam treatment conditions were varied as shown in Table 1, and the same tests were conducted. , 1st
The results in the table were obtained.

比較例 実施例1の方法において、水蒸気処理を省略した以外は
、同様な方法で透析用中空繊維を製造し、かつ同様な試
験を行なったところ、第1表の結果が得られた。
Comparative Example Hollow fibers for dialysis were produced in the same manner as in Example 1, except that the steam treatment was omitted, and the same tests were conducted, and the results shown in Table 1 were obtained.

(以下余白) 1)収縮率(%)は、116℃(0、7kQ/ ca2
・G)の水蒸気で40分間オートクレーブ中で滅菌処理
したときの収縮率である。
(Left below) 1) Shrinkage rate (%) is 116℃ (0.7kQ/ca2
・This is the shrinkage rate when sterilized with steam in G) for 40 minutes in an autoclave.

2)UFR測定法 ミニダイアライザー(有効長20〜25CI11.中空
繊維本数60〜70本)を製作し、ピンホールおよび大
リークのないことを認識して行なう。
2) UFR measurement method A mini-dialyzer (effective length 20-25 CI 11, number of hollow fibers 60-70) is manufactured, and the measurement is carried out while recognizing that there are no pinholes or large leaks.

(a)まず、ミニダイアライザーを37±1℃の温水に
て湿潤させる。(b)3分以上経過したのら、ニミダイ
アライザーの片方を閉じる。(C)さらに圧力(0,7
5kcJ/cs’ 〜515a+m)−10)を加え、
20秒間に水が抜ける量をリークテスターにより測定し
、次式により算出する。
(a) First, moisten the mini dialyzer with warm water at 37±1°C. (b) After 3 minutes or more, close one side of the Nimi Dialyzer. (C) Further pressure (0,7
Add 5kcJ/cs' ~515a+m)-10),
The amount of water that escapes in 20 seconds is measured using a leak tester, and calculated using the following formula.

U F R(Illi、 /IIIIIIH(1−hr
−km) =測 Wi (I λ ) 圧力(IllmHg)・時間(hr)−長さくk+e)
3)中分子除去能測定法 濃度10mg/(11のイヌリン水溶液を10+nl、
7分の割合でミニダイアライザーに循環させる。
U F R(Illi, /IIIIIIH(1-hr
-km) = Measurement Wi (I λ) Pressure (IllmHg)・Time (hr) - Length k+e)
3) Medium molecule removal ability measurement method Concentration 10 mg/(11 inulin aqueous solution 10 + nl,
Cycle through the mini dialyzer at a rate of 7 minutes.

さらにミニダイアライザーの出口側をしぼることにより
、溶液の圧力を201118″gとする様にする。
Furthermore, by squeezing the outlet side of the mini-dialyzer, the pressure of the solution is adjusted to 201118''g.

この状態でミニダイアライザーの外部に限外濾過された
濾液を採取し、レゾルシン第■鉄塩m法により発色させ
、濃度をめる。中分子除去能は以下の式で算出する。
In this state, the ultrafiltrated filtrate is collected from the outside of the mini dialyzer, and the color is developed by the resorcinol ferrous salt m method to adjust the concentration. The middle molecule removal ability is calculated using the following formula.

中分子除去の能(%)= ろ液濃度(110/ dλ) xloo(%) 10il Q /d 1 ■1発明の具体的効果 以上述べたように、本発明は、セルロース系紡糸原液を
環状紡糸孔から吐出させ、同時に内部中央部に非凝固性
液を導入充填し、ついで凝固性液中を通過させて凝固再
生したのち水洗し、このようにして得られた中空msを
水蒸気と接触させて処理する工程と、可塑化処理する工
程とを有し、さらに乾燥することを特徴とする透析用中
空繊維の製造方法であるから、該中空繊維を使用した人
工腎臓等を水蒸気滅菌した場合、その収縮が非常に小さ
いので、両末端をボッティング剤で固定しであるにもか
かわらず、人工腎臓の筒状本体内で比較的緩んだ状態で
嵩高性を保つことができ、このため前記筒状本体内面と
中空繊維束との間および各中空繊維同士の間隙が比較的
狭くなり、該人工腎臓を使用して透析を行なう際に、透
析液が中空繊維と充分接触することができ、このため充
分な透析効果が得られる。また、tJFRおよび中分子
除去能が大きいという利点がある。
Ability to remove middle molecules (%) = Filtrate concentration (110/dλ) It is discharged from the hole, and at the same time, a non-coagulable liquid is introduced and filled into the center of the interior, and then it is passed through a coagulable liquid to solidify and regenerate, and then washed with water, and the hollow ms thus obtained is brought into contact with water vapor. This method of manufacturing hollow fibers for dialysis includes a treatment step, a plasticization step, and further drying, so when an artificial kidney etc. using the hollow fibers is steam sterilized, Because the contraction is so small, even though both ends are fixed with a botting agent, the bulkiness can be maintained in a relatively loose state within the cylindrical body of the artificial kidney. The gaps between the inner surface of the main body and the hollow fiber bundle and between the hollow fibers are relatively narrow, and when performing dialysis using the artificial kidney, the dialysate can sufficiently come into contact with the hollow fibers. A sufficient dialysis effect can be obtained. It also has the advantage of having a high ability to remove tJFR and middle molecules.

また、水蒸気処理を95〜110℃、好ましくは100
〜110℃でO−0,4kg/cm2− G好ましくは
O〜0.4kg/cm2 ・Gで1〜4秒間、好ましく
は2〜4秒間行なうことによりI)0記効果はさらに増
大する。ざらに、セルロースとして銅アンモニアセルロ
ースを使用する場合には、特に優れた効果を発揮する。
In addition, steam treatment is carried out at 95 to 110°C, preferably at 100°C.
By carrying out the reaction at 0.4 kg/cm2-G, preferably 0-0.4 kg/cm2.G, at 110 DEG C. for 1 to 4 seconds, preferably 2 to 4 seconds, the I) 0 effect is further increased. In particular, when copper ammonia cellulose is used as the cellulose, particularly excellent effects are exhibited.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法において使用される装備仝体の概略
を示す側面図であり、また第2図は本発明方法で使用さ
れる水蒸気処理装置の概略を示ず部分破断斜視図である
。 6・・・紡糸口全装置、 8・・・線状紡糸原液、12
・・・搬送装置、 14.16・・・水洗装置、17・
・・可塑化処理槽、 18・・・水蒸気処理装置、19
 ・’・・乾燥装置。 特許出願人 テ ル 七 株式会社
FIG. 1 is a side view schematically showing the equipment body used in the method of the present invention, and FIG. 2 is a partially cutaway perspective view, not showing the outline, of the steam treatment apparatus used in the method of the present invention. 6...All spinneret equipment, 8...Linear spinning dope, 12
...Conveyance device, 14.16...Water washing device, 17.
...Plasticization treatment tank, 18...Steam treatment device, 19
・'・Drying equipment. Patent applicant Teru Shichi Co., Ltd.

Claims (1)

【特許請求の範囲】 (1)セルロース系紡糸原液を環状紡糸孔から吐出させ
、同詩に内部中央部に非凝固性液を導入充填し、ついで
凝固性液中を通過さして凝固再生したのち水洗し、この
ようにして得られた中空繊維・ を水蒸気と接触させて
処理する工程と、可塑化処理する工程とを有し、さらに
乾燥することを特徴とする透析用中空繊維の製造方法。 (2)中空繊維と水蒸気との接触は、95〜110℃の
温度およびO〜0 、4 ko/ C1112(ゲージ
圧)の圧力下に1〜4秒間行なわれてなる特許請求の範
囲第1項に記載の透析用中空繊維の製造方法。 (3ン中空Ila紐と水蒸気どの接触は、95〜110
℃の湿度および0−0.4kg/cm2 (ゲージ圧)
の圧力下に2〜4秒間行なわれてなる特許請求の範囲第
1項に記載の透析用中空$1i雑の製造方法。 (4)セルロース系紡糸原液が銅アンモニアセルロース
溶液である特許請求の範囲第1項ないし第3項のいずれ
か一つに記載の透析用中空繊維の製造方法。
[Scope of Claims] (1) A cellulose-based spinning dope is discharged from an annular spinning hole, a non-coagulable liquid is introduced and filled into the center of the same tube, and then passed through a coagulable liquid to solidify and regenerate, followed by washing with water. A method for producing hollow fibers for dialysis, which comprises the steps of bringing the thus obtained hollow fibers into contact with water vapor and treating them, and plasticizing the fibers, and further drying them. (2) The contact between the hollow fiber and water vapor is carried out for 1 to 4 seconds at a temperature of 95 to 110° C. and a pressure of O to 0,4 ko/C1112 (gauge pressure). A method for producing a hollow fiber for dialysis as described in . (The contact between the 3-inch hollow Ila string and water vapor is 95 to 110
Humidity in °C and 0-0.4kg/cm2 (gauge pressure)
A method for producing a hollow $1i miscellaneous material for dialysis according to claim 1, wherein the process is carried out under a pressure of 2 to 4 seconds. (4) The method for producing hollow fibers for dialysis according to any one of claims 1 to 3, wherein the cellulose-based spinning dope is a cuprammonium cellulose solution.
JP2062284A 1984-02-07 1984-02-07 Preparation of hollow yarn for dialysis Granted JPS60166008A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2062284A JPS60166008A (en) 1984-02-07 1984-02-07 Preparation of hollow yarn for dialysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2062284A JPS60166008A (en) 1984-02-07 1984-02-07 Preparation of hollow yarn for dialysis

Publications (2)

Publication Number Publication Date
JPS60166008A true JPS60166008A (en) 1985-08-29
JPH0330414B2 JPH0330414B2 (en) 1991-04-30

Family

ID=12032336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2062284A Granted JPS60166008A (en) 1984-02-07 1984-02-07 Preparation of hollow yarn for dialysis

Country Status (1)

Country Link
JP (1) JPS60166008A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6157204A (en) * 1984-08-27 1986-03-24 Terumo Corp Dialytic hollow yarn and its preparation
JP2008295868A (en) * 2007-06-01 2008-12-11 Toyobo Co Ltd Method for producing blood purifier and blood purifier
JP2010149044A (en) * 2008-12-25 2010-07-08 Mitsubishi Rayon Co Ltd Method of manufacturing hollow fiber membrane and dryer for hollow fiber membrane
US9151538B2 (en) 2010-07-07 2015-10-06 Mitsubishi Rayon Co., Ltd. Drying device and drying method for hollow fiber membranes

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57164127A (en) * 1981-04-02 1982-10-08 Asahi Chem Ind Co Ltd Production of regenerated cellulose molding
JPS58120808A (en) * 1982-01-11 1983-07-18 Teijin Ltd Production of hollow fiber of regenerated cellulose

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57164127A (en) * 1981-04-02 1982-10-08 Asahi Chem Ind Co Ltd Production of regenerated cellulose molding
JPS58120808A (en) * 1982-01-11 1983-07-18 Teijin Ltd Production of hollow fiber of regenerated cellulose

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6157204A (en) * 1984-08-27 1986-03-24 Terumo Corp Dialytic hollow yarn and its preparation
EP0175948A2 (en) * 1984-08-27 1986-04-02 TERUMO KABUSHIKI KAISHA trading as TERUMO CORPORATION Method for manufacture of hollow fibers for dialysis
JP2008295868A (en) * 2007-06-01 2008-12-11 Toyobo Co Ltd Method for producing blood purifier and blood purifier
JP2010149044A (en) * 2008-12-25 2010-07-08 Mitsubishi Rayon Co Ltd Method of manufacturing hollow fiber membrane and dryer for hollow fiber membrane
US9151538B2 (en) 2010-07-07 2015-10-06 Mitsubishi Rayon Co., Ltd. Drying device and drying method for hollow fiber membranes

Also Published As

Publication number Publication date
JPH0330414B2 (en) 1991-04-30

Similar Documents

Publication Publication Date Title
JPS5860010A (en) Hollow fiber and dialytic membrane consisting of said hollow fiber
JPH0460692B2 (en)
US5505890A (en) Process for manufacturing cellulose acetate membranes
US5084349A (en) Hollow cellulose fibers, method for making, and fluid processing apparatus using same
JPS6133601B2 (en)
JPS60166008A (en) Preparation of hollow yarn for dialysis
EP0175948B1 (en) Method for manufacture of hollow fibers for dialysis
US4332752A (en) Process for production of dialysis membrane hollow fiber chains
JPS61146306A (en) Preparation of hollow yarn for dialysis
JPH0254132B2 (en)
JPS60166007A (en) Preparation of hollow yarn for dialysis
RU2149049C1 (en) Improved method of manufacturing semipermeable membrane and medical facilities from cellulose acetate
JP3494466B2 (en) Method for producing hollow fiber for dialysis
JPS6329005B2 (en)
JPH0829231B2 (en) Cellulose hollow system and method for producing the same
JPH04210066A (en) Reproduced cellulosic hollow yarn film for blood dialysis and its manufacture
JPS6259607B2 (en)
JPS6097005A (en) Plasticization of hollow fiber for dialysis
JPS5818405A (en) Hollow fiber regenerated from cuprammonium cellulose and its production
JPS5751806A (en) Preparation of hollow fiber
JPS6120644B2 (en)
JPS60193504A (en) Hollow fiber membrane for dialysis
JPS6259614B2 (en)
JP2707274B2 (en) Method for producing porous regenerated cellulose hollow fiber
JP2002066273A (en) Method for suppressing oxidation of hollow fiber membrane