JPS6097005A - Plasticization of hollow fiber for dialysis - Google Patents

Plasticization of hollow fiber for dialysis

Info

Publication number
JPS6097005A
JPS6097005A JP7509784A JP7509784A JPS6097005A JP S6097005 A JPS6097005 A JP S6097005A JP 7509784 A JP7509784 A JP 7509784A JP 7509784 A JP7509784 A JP 7509784A JP S6097005 A JPS6097005 A JP S6097005A
Authority
JP
Japan
Prior art keywords
hollow
glycerin
plasticizing
dialysis
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7509784A
Other languages
Japanese (ja)
Inventor
Mimio Nakamura
中村 三三雄
Kazuhiko Suzuki
鈴木 一比好
Kazuaki Takahara
高原 和明
Yukio Kiyota
清田 由紀夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Terumo Corp
Original Assignee
Terumo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terumo Corp filed Critical Terumo Corp
Priority to JP7509784A priority Critical patent/JPS6097005A/en
Publication of JPS6097005A publication Critical patent/JPS6097005A/en
Pending legal-status Critical Current

Links

Landscapes

  • External Artificial Organs (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

PURPOSE:To obtain a plasticization method of a dialytic hollow fiber excellent in quality control, by immersing a hollow fiber in an aqueous glycerine solution held at 40-100 deg.C to contain 3-30wt% of glycerine in said fiber. CONSTITUTION:A hollow fiber comprising a cellulosic fiber such as cuprammonium cellulose with an average polymerization degree of 500-2,500 is immersed in the aqueous glycerine solution 17 in a plasticizing tank 26 through a drive roller 27 and sent to a drying process while drawn up by a drive roller 29 to perform plasticization. The concn. of the aqueous glycerine solution at this time is 0.5-5wt% and the solution temp. thereof is 40-100 deg.C. A running speed is set to 50-130m/min and the hollow fiber is run so as to set the stretching ratio before and after plasticization to 1-1.4. The glycerine content of the hollow fiber after drying is 3-30wt%. In this method, the propagation of falling bacteria in the aqueous glycerine solution is markedly lowered and, even if dead cells are adhered to the hollow fiber, they are prevented from mixing in blood through a dialytic membrane at the time of dialysis.

Description

【発明の詳細な説明】 ■1発明の背明 技術分野 本発明は、透析用中空繊維の可塑化方法に関するもので
ある。詳しく述べると、所望の可塑剤量を含有させるこ
とかでき、かつ品質管理の優れた透析用中空tJ&Nの
可塑化方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (1) Technical field behind the invention The present invention relates to a method for plasticizing hollow fibers for dialysis. More specifically, the present invention relates to a method for plasticizing hollow tJ&N for dialysis, which can contain a desired amount of plasticizer and has excellent quality control.

先行技術 最近、浸透作用、限外濾過作用等を利用する人工腎臓装
置の発展はめざましく、医療界において広く使用されて
いる。しかして、このような人工腎臓装置においては、
極めて細い透析用中空繊維が最も重要な部材となってい
る。
PRIOR ART Artificial kidney devices that utilize osmotic action, ultrafiltration action, etc. have recently made remarkable progress and are widely used in the medical world. However, in such an artificial kidney device,
The most important component is the extremely thin hollow fiber for dialysis.

このような中空繊維は、いずれも銅アンモニアセルロー
ス溶液等のセルロース溶液または合成繊組溶液よりなる
紡糸原液を環状紡糸孔から空気中に押出し、その下方に
自重落下させ、その際、線状に紡出される紡糸原液の内
部中央部に該紡糸に対する非凝固性液体を導入充填して
吐出させ、それから自重落下により充分伸張したのち、
酸またはアルカリ溶液等の凝固液中に浸漬して凝固再生
を行ない、ついで洗浄を行ない、さらにグリセリン処理
を行なって可塑化したのち、乾燥することにより¥J造
されている。
Such hollow fibers are produced by extruding a spinning dope consisting of a cellulose solution such as a cuprammonium cellulose solution or a synthetic fiber solution into the air through an annular spinning hole and letting it fall under its own weight, and then spinning it into a linear shape. A non-coagulable liquid for the spinning is introduced into the center of the spun dope to be discharged and discharged, and after it is fully expanded by falling under its own weight,
It is manufactured by immersing it in a coagulating solution such as an acid or alkaline solution for coagulation and regeneration, then washing it, then treating it with glycerin to plasticize it, and then drying it.

このようなグリセリンによる可塑化処理は、グリセリン
液を収納した槽中に中空lJNを連続的に通過させて浸
漬することにより行なわれる。しかしながら、このよう
な従来の可塑化処理方法は、上方に開口した槽内に収納
されたグリセリン水溶液中で室温(15〜20℃)で行
なわれるため、空気中のM菌が落下してグリセリン水溶
液中で繁殖するので、グリセリン水溶液の管理が煩雑で
あった。すなわら、前記落下菌が存在するとグリセリン
水溶液中で短時間で繁殖が起こり、中空繊維については
後に熱処理またはその他の方法により殺菌することは可
能であるが、多数の死滅菌および繁殖中の代謝産物が中
空繊維にイ」着または含浸され、たとえ殺菌しても発熱
性物質として残存するので、透析中にこれらの発熱性物
質が生体内に入る問題があった。
Such plasticizing treatment with glycerin is carried out by continuously passing the hollow IJN through and immersing it in a tank containing a glycerin solution. However, such conventional plasticizing treatment methods are carried out at room temperature (15-20°C) in a glycerin aqueous solution stored in a tank with an upward opening, so M bacteria in the air fall and enter the glycerin aqueous solution. Since they breed inside the aqueous glycerin solution, management of the glycerin aqueous solution is complicated. In other words, if the fallen bacteria are present, they will multiply in a short time in the glycerin aqueous solution, and although it is possible to later sterilize the hollow fibers by heat treatment or other methods, a large number of dead sterilization and metabolic processes during reproduction will occur. Since the product is attached to or impregnated into the hollow fibers and remains as a pyrogen even after sterilization, there is a problem that these pyrogens enter the body during dialysis.

■1発明の目的 したがって、本発明の目的は、新規な透析用中空1!維
の可塑化方法を提供することにある。本発明の他の目的
は、所望の可塑剤量を含有さ拷ることができ、かつ品質
管理の優れた透析用中空繊維の可塑化方法を提供するこ
とにある。
■1 Purpose of the invention Therefore, the purpose of the present invention is to provide a novel hollow 1 for dialysis! The object of the present invention is to provide a method for plasticizing fibers. Another object of the present invention is to provide a method for plasticizing hollow fibers for dialysis that can contain a desired amount of plasticizer and has excellent quality control.

これらの開目的は、40〜100℃の液温に保3− たれたグリセリン水溶液中に中空繊維を浸漬して該中空
繊維中に3〜30重量%のグリセリンを含有させること
を特徴とする透析用中空繊維の可塑化方法である。
The object of these developments is to dialysis, which is characterized by immersing hollow fibers in an aqueous glycerin solution maintained at a liquid temperature of 40 to 100°C so that 3 to 30% by weight of glycerin is contained in the hollow fibers. This is a method for plasticizing hollow fibers for industrial use.

また、本発明は、グリセリン水溶液中のグリセリン濃度
が0.5〜5.0重間%である透析用中空繊維の可塑化
方法である。さらに本発明は中空繊維のグリセリン水溶
液中への浸漬時間が3〜5秒間である透析用中空IIの
可塑化方法である。
Further, the present invention is a method for plasticizing hollow fibers for dialysis, in which the glycerin concentration in the glycerin aqueous solution is 0.5 to 5.0% by weight. Furthermore, the present invention is a method for plasticizing hollow fibers for dialysis, in which the hollow fibers are immersed in an aqueous glycerin solution for 3 to 5 seconds.

本発明は、中空繊維のグリセリン水溶液中への浸漬が、
該水溶液中へ該中空繊維を50〜b/minで走行させ
ることにより行なわれる透析用中空vanの可塑化方法
である。また、本発明は、中空繊維のグリセリン水溶液
中の走行が1.00〜1.40の可塑化前後の延伸比で
延伸して行なわれる透析用中空繊維の可塑化方法である
。さらに、本発明は、中空繊維中のグリセリン含量が5
〜25重酪%である透析用中空繊維の可塑化方法である
。本発明は、中空繊維がセルロース系繊維である透析用
中空繊維の可塑化方法である。また、4一 本発明は、セルロース系繊維が銅アンモニアセルロース
である透析用中空繊維の可塑化方法である。
The present invention provides that immersion of hollow fibers in a glycerin aqueous solution
This is a method for plasticizing a hollow van for dialysis, which is carried out by running the hollow fibers into the aqueous solution at a rate of 50 to 50 b/min. Further, the present invention is a method for plasticizing hollow fibers for dialysis, in which running the hollow fibers in an aqueous glycerin solution is performed by stretching the fibers at a stretching ratio before and after plasticization of 1.00 to 1.40. Furthermore, the present invention provides that the glycerin content in the hollow fibers is 5.
This is a method for plasticizing hollow fibers for dialysis with a concentration of ~25% by weight. The present invention is a method for plasticizing hollow fibers for dialysis, in which the hollow fibers are cellulose fibers. Furthermore, the present invention is a method for plasticizing hollow fibers for dialysis, in which the cellulose fibers are copper ammonia cellulose.

■1発明の詳細な説明 本発明により可塑化される中空繊維としては、銅アンモ
ニアセルロース、酢酸セルロース等のセルロース系繊維
、ポリメタクリル酸メチルのステレオコンプレックス、
ポリアクリロニトリル系、エチレン−ビニルアルコール
共重合体等の合成繊維等があるが、好ましくはセルロー
ス系IIであり、特に銅アンモニアセルロースである。
■1 Detailed description of the invention Hollow fibers to be plasticized by the present invention include cellulose fibers such as cuprammonium cellulose and cellulose acetate, stereocomplex of polymethyl methacrylate,
Synthetic fibers such as polyacrylonitrile and ethylene-vinyl alcohol copolymers are available, but cellulose II is preferred, particularly copper ammonia cellulose.

セルロースとしては種々のものが使用できるが、−例を
挙げると、例えば平均重合度500〜2500のものが
好ましく使用される。しかして、銅アンモニアセルロー
ス溶液は常法により調製される。例えば、まずアンモニ
ア水、塩基性硫酸銅水溶液および水を混合して銅アンモ
ニア水溶液を調製し、これに酸化防止剤(例えば亜m1
lli酸ナトリウム)を加え、ついで原料セルロースを
投入して攪拌溶解を行ない、さらに水酸化ナトリウム水
溶液を添加して未溶解セルロースを完全に溶解させて銅
アンモニアセルロース溶液を1qる。この銅アンモニア
セルロース溶液には、さらに透過性能制御剤を混合して
配位結合させてもよい。
Although various types of cellulose can be used, for example, those having an average degree of polymerization of 500 to 2,500 are preferably used. Thus, the cuprammonium cellulose solution is prepared by a conventional method. For example, first, aqueous ammonia, a basic aqueous copper sulfate solution, and water are mixed to prepare an aqueous cupric ammonia solution, and an antioxidant (for example, nitrous chloride) is added to this.
Then, the raw material cellulose is added and dissolved with stirring, and an aqueous sodium hydroxide solution is added to completely dissolve the undissolved cellulose, and 1 q of cuprammonium cellulose solution is prepared. This cuprammonium cellulose solution may further be mixed with a permeation performance controlling agent for coordination bonding.

紡糸方法としては種々の方法があり、例えば空中落下方
法、特開昭57−71,408号および同57−71.
410号に記載の非凝固性液中へ吐出したのち該非凝固
性液層と凝固性液との界面を通過させる方法、特開昭5
7−71,409@に記載の非凝固性液中へ直接吐出し
たのち、凝固性液中を通過させる方法、特開昭57−7
1,411号に記載の非凝固性液に囲繞させて吐出し、
ついで凝固再生ずる方法、特開昭57−199、808
@に記載の凝固性液を上層にハロゲン化炭化水素よりな
る非凝固性液を下層に充填してなる浴液の該非凝固性液
中に環状紡糸孔から直接吐出し、同時に内部中央部に非
凝固性液を導入充填し、ついで凝固性液中を通過させて
凝固再生する方法(以下浮上法という。)等があるが、
特に最後者の浮上法が好ましいので、これを例にとって
、以下、図面を参照しつつ本発明を説明づる。
There are various spinning methods, such as the aerial drop method, Japanese Patent Application Laid-Open Nos. 57-71,408 and 57-71.
410, a method for discharging into a non-coagulable liquid and then passing through an interface between the non-coagulable liquid layer and a coagulable liquid, JP-A No. 5
7-71,409@, a method of directly discharging into a non-coagulable liquid and then passing through a coagulable liquid, JP-A-57-7
Surrounded by the non-coagulable liquid described in No. 1,411 and discharged,
Then, method of coagulation and regeneration, JP-A-57-199, 808
The coagulable liquid described in @ is directly discharged from the annular spinning hole into the non-coagulable liquid of a bath liquid in which the upper layer is filled with a non-coagulable liquid made of a halogenated hydrocarbon in the lower layer, and at the same time, a non-coagulable liquid made of a halogenated hydrocarbon is directly discharged from the annular spinning hole. There are methods such as introducing and filling a coagulable liquid and then passing through the coagulable liquid to solidify and regenerate (hereinafter referred to as flotation method).
Since the last levitation method is particularly preferred, the present invention will be explained below by taking this as an example and referring to the drawings.

第1図は、本発明による方法を用いて中空繊維を製造す
るための装置全体の概略を示づ”側面図である。すなわ
ち、底部に非凝固性液層1を設けた浴槽2において、前
記非凝固性液槽1に下層としてハロゲン化炭化水素より
なりかつ前記セルロース系紡糸原液に対する非凝固性液
3を、また上層として前記非凝固性液よりも比重が小さ
くかつ前記紡糸原液に対する凝固性液4を供給して二層
からなる浴液を形成させる。導管5より紡糸原液を圧送
し、紡糸口金8置6の上向きに設けられた環状紡糸孔(
図示せず)から前記下層の非凝固性液中に直接押出す。
FIG. 1 is a side view schematically showing the entire apparatus for manufacturing hollow fibers using the method according to the present invention. That is, in a bathtub 2 provided with a non-coagulable liquid layer 1 at the bottom, In the non-coagulating liquid tank 1, a lower layer contains a non-coagulating liquid 3 made of halogenated hydrocarbon and relative to the cellulose-based spinning dope, and as an upper layer a non-coagulating liquid 3 having a specific gravity lower than the non-coagulating liquid and coagulating relative to the above-mentioned spinning dope. 4 is supplied to form a bath liquid consisting of two layers.The spinning stock solution is pumped through the conduit 5, and the annular spinning hole (
(not shown) directly into the non-coagulable liquid in the lower layer.

その際、該紡糸原液に対する非凝固性液を内部液として
導管7により前記紡糸口金装置に導き、環状に押出され
た線状紡糸原液8の内部中央部に導入して吐出させる。
At this time, the non-coagulable liquid for the spinning dope is introduced as an internal liquid to the spinneret device through the conduit 7, introduced into the center of the linear spinning dope 8 extruded in an annular shape, and discharged.

該線状紡糸原液は吐出直後非凝固性液3中で側面から液
圧をうけ体積を少くする力が作用するとともに化重差に
よる浮力も働らき上方へ進みながら細径となる。
Immediately after being discharged, the linear spinning dope is subjected to liquid pressure from the side in the non-coagulable liquid 3, and a force to reduce the volume acts on it, as well as buoyancy due to the difference in weight, which causes it to move upward and become smaller in diameter.

ついで、変向棒9により変向させて前記凝固性液4中を
通過させたのち、ローラ10により引上る。
Then, it is changed in direction by a direction changing rod 9 to pass through the coagulable liquid 4, and then pulled up by a roller 10.

このような中空11i11f12を、ローラ11を絆て
7− 常法によりアルカリ洗浄装置13、第1水洗装置14、
酸洗洋装@15および第2水洗装置16によりそれぞれ
洗浄を施して、再凝固、水洗、脱銅および水洗を施す。
Such a hollow 11i11f12 is connected to the roller 11 and then washed with an alkaline washing device 13, a first water washing device 14,
Washing is carried out using the pickling cloth @ 15 and the second water washing device 16, respectively, followed by re-solidification, washing with water, decoppering and washing with water.

ついで、グリセリン液17中を通過させて可塑化させた
のち、乾燥器18に導入して乾燥させる。
Then, after passing through a glycerin liquid 17 to plasticize it, it is introduced into a dryer 18 and dried.

しかして、前記中空tJAmのグリセリンによる可塑化
は、第2図に示すように、可塑化槽26内に収納されて
いるグリセリン水溶液17中に駆動ローラ27a、27
bを経て中空繊##12を浸漬して走行させ、変向棒2
8により変向させて駆動ローラ29により引上げて乾燥
工程へ送ることにより行なわれる。この場合、後述する
ように、所定の液温および濃度に保たれる。このような
液温およびグリセリンartの制御は、第2図に示すよ
うに、可塑化槽26内のグリセリン水溶液17を導管3
0より後出し、循環ポンプ25によりa度計24、例え
ば濃麿調節用示差屈折計を経て熱交換器23に送って所
定の湿度に加温したのち、可塑化槽26に循環すること
により行なわれる。グリ8− セリン濃度が低下すると、濃度計24からの指示信号が
ライン22より新鮮グリセリン供給ポンプ21へ送られ
、該供給ポンプ21より導管30に新鮮グリセリンが供
給される。m度が高くなると逆浸透水供給経路20より
逆浸透水等の新鮮水が補給される。また、液位は溢流管
19により制御される。
As shown in FIG.
The hollow fiber ##12 is dipped and run through the direction change rod 2.
This is done by changing the direction by 8 and pulling it up by a drive roller 29 and sending it to the drying process. In this case, as will be described later, the liquid temperature and concentration are maintained at a predetermined level. Such control of the liquid temperature and glycerin art is carried out by directing the glycerin aqueous solution 17 in the plasticizing tank 26 to the conduit 3, as shown in FIG.
0, and is sent to the heat exchanger 23 via the a degree meter 24, for example, a differential refractometer for concentration adjustment, by the circulation pump 25, heated to a predetermined humidity, and then circulated to the plasticizing tank 26. It will be done. Glycerin 8- When the serine concentration decreases, an indication signal from the concentration meter 24 is sent from the line 22 to the fresh glycerin supply pump 21, which supplies fresh glycerin to the conduit 30. When the temperature increases, fresh water such as reverse osmosis water is supplied from the reverse osmosis water supply path 20. Further, the liquid level is controlled by an overflow pipe 19.

しかして、前記グリセリン水溶液のグリセリン8!東は
0.5〜5,0重量%、好ましくは1.0〜4.5重量
%である。まIC、グリセリン水溶液の液渇け40〜1
00℃、好ましくは55〜80℃である。この中空mI
Iの走行速度は浮上法であるため紡糸速度に制限があり
、50〜60111/minであるが、本発明では、走
行速度は50〜130m/min好ましくは50〜55
m /min テある。
However, the glycerin 8 of the glycerin aqueous solution! East is 0.5-5.0% by weight, preferably 1.0-4.5% by weight. Ma IC, glycerin aqueous solution dryness 40-1
00°C, preferably 55-80°C. This hollow mI
Since the spinning speed of I is a floating method, there is a limit to the spinning speed, which is 50 to 60111/min, but in the present invention, the traveling speed is 50 to 130 m/min, preferably 50 to 55 m/min.
There is m/min.

また、可塑化前後の延伸比が1.00〜1.40、好ま
しくは1.05〜1.35となるように延伸して走行さ
せることが望ましい。このように処理することにより、
得られる中空繊維の乾燥後のグリセリン含量は3〜30
重1%となり、好ましくは5〜25重間%である。
Further, it is desirable to run the film while stretching it so that the stretching ratio before and after plasticization is 1.00 to 1.40, preferably 1.05 to 1.35. By processing in this way,
The glycerin content of the obtained hollow fiber after drying is 3 to 30
It is 1% by weight, preferably 5 to 25% by weight.

グリセリン水溶液の液温を40〜100℃に保つのは、
発熱性物質である落下菌の槽内での繁殖を防止するため
である。例えば、室温(15〜20℃)および加温下(
55〜60℃)でそれぞれ行なったグリセリン水溶液(
11度1.8重量%)のときのリムラス試験の結果は、
第1表に示すとおりであった。
Maintaining the temperature of the glycerin aqueous solution at 40-100℃ is as follows:
This is to prevent falling bacteria, which is a pyrogenic substance, from propagating in the tank. For example, at room temperature (15-20°C) and under heating (
Glycerin aqueous solution (55-60℃)
The results of the Limulus test at 11 degrees (1.8% by weight) are:
It was as shown in Table 1.

第1表 放置条件 【1比順 生菌数 リムラス試験−室温(1
5〜20℃ 2106〜107 プラス加温(55〜6
0℃ 10102〜103 マイナスなお、リムラス試
験は、可塑化槽よりグリセリン水溶液を50μ℃採取し
、カブトガニの血液5ottxと混和し、337℃のオ
ーブン内で1時間放置した。このとき試料中にエンドト
キシンがあれば反応してゲル化するので、これをプラス
とし、一方、エンドトキシンがなければ液体のままであ
るので、これをマイナスとした。
Table 1 Leaving conditions [1 Ratio Viable bacterial count Limulus test - Room temperature (1
5-20℃ 2106-107 Plus heating (55-6
0°C 10102-103 Minus In addition, in the Limulus test, a 50 μC glycerin aqueous solution was collected from the plasticization tank, mixed with 5 ottx of horseshoe crab blood, and left in an oven at 337°C for 1 hour. At this time, if endotoxin was present in the sample, it would react and turn into a gel, so this was considered a plus; on the other hand, if there was no endotoxin, it would remain liquid, so this was considered a minus.

また、−F記波瀾で可塑化することにより透析用中空繊
維の溶出物質が溶出除去され、このようにして得られた
中空5ill中には溶出物質は認められイ【いのである
In addition, by plasticizing with -F oil, the eluted substances from the hollow fibers for dialysis are eluted and removed, and no eluted substances are observed in the hollow fibers thus obtained.

また、上記のごとき条件下で可塑化Jることにより3〜
30重量%というグリセリン含量の中空MARがiqら
れるが、これは第3図から明らかなようにグリセリン水
溶液中のグリセリン1l11度と中空繊維中のグリセリ
ン含量との間には相関関係があるのである。さらに、第
4図から明らか4Zように、中空4M雑のグリセリン含
量と物性とも相関関係があり、グリセリン含量が少なす
ぎると柔軟性がなくなり、折れやすくなり、一方、多ず
ぎるど破断強度が著しく低下し、中空繊維の取扱いに支
障をきたす。また、第5図に示づように、中空muのグ
リセリン含量と透析性能ども相関関係を示す。
In addition, by plasticizing under the conditions described above, 3~
A hollow MAR with a glycerin content of 30% by weight is iq, and as is clear from FIG. 3, there is a correlation between the glycerin 1l11 degree in the glycerin aqueous solution and the glycerin content in the hollow fiber. Furthermore, as clearly shown in Figure 4, there is a correlation between the glycerin content and physical properties of the hollow 4M miscellaneous material; too little glycerin content makes it inflexible and easy to break, while too much glycerin content significantly reduces breaking strength. This causes problems in the handling of hollow fibers. Moreover, as shown in FIG. 5, the correlation between the glycerin content of the hollow mu and the dialysis performance is shown.

さらに原液組成を変えることなく、後処理可塑化によっ
て中空繊維のグリセリン含量が増えるに従って限外濾過
率(UFR)が高くなるというおど−11− ろくべき効果をみいだした。したがって、−に記の点を
考慮すると、透析用中空繊維としてはグリセリン含量が
3〜30重間%であることが望ましい。
Furthermore, without changing the composition of the stock solution, a surprising effect was found in that as the glycerin content of the hollow fibers increased through post-treatment plasticization, the ultrafiltration rate (UFR) increased. Therefore, considering the points mentioned in -, it is desirable that the hollow fiber for dialysis has a glycerin content of 3 to 30% by weight.

ざらに、前記方法において可塑化前後の走行速用による
延伸比は、°前記のように1.00〜1゜40、好まし
くは1.05〜1.35であるが、これは1,00未渦
では中空m雛が駆動ローラにf)s +ろまりやすくな
り、一方切糸が起こりやすくなるからである。なお、前
記中空llNは50〜130n+ /min 、好まし
くは50〜55m/linの速度で走行されるが、この
場合の中空繊維の浸漬時間はグリセリン水溶液のm度に
もよるが、通常3〜5秒であり、好ましくは3.5〜4
.5秒である。これは3秒未満ではグリセリンの含量が
不充分となり、一方、5秒を越えるとグリセリンの合間
が過度となるからである。
Roughly speaking, in the above method, the stretching ratio for running speed before and after plasticization is 1.00 to 1.40, preferably 1.05 to 1.35, as described above, but this is less than 1.00. This is because in a vortex, the hollow chicks tend to get stuck on the drive roller, and on the other hand, thread breakage is more likely to occur. Note that the hollow 11N is run at a speed of 50 to 130 n+/min, preferably 50 to 55 m/lin, and the immersion time of the hollow fiber in this case depends on the glycerin aqueous solution, but is usually 3 to 5 m/lin. seconds, preferably 3.5 to 4
.. It is 5 seconds. This is because if the duration is less than 3 seconds, the glycerin content will be insufficient, while if it exceeds 5 seconds, the glycerin content will be excessive.

■1発明の具体的効果 以上述べたように、本発明による透析用中空繊維の可塑
化方法は、40〜100℃の液温に保たれたグリセリン
水溶液中に中空繊維を浸漬して該 12− 中空w4維中に3〜30更量%のグリセリンを含有させ
ることを特徴とするものであるから、第2図に示ずよう
なオープンシステムで操作を行なっても、第1表に示す
よう落干菌等の繁殖は著しく低く、例えばリムラス試験
値はマイナスであるので、従来のように室温で行なう方
法に比し、グリセリン水溶液の管理が極めて容易となる
。す<7わち、”可塑化槽内に幾分かの菌が存在したり
、あるいは菌の死骸が存在して、これらが仮りに中空繊
維の表面に付着してそのまま製品化された場合でも、透
析時に透析膜を通って血液に混じることはないので、発
熱の心配はない。また、得られる中空繊維のグリセリン
含有量が3〜30重量%であるので、前記のように適度
な柔軟性を有するだけでなく透析性能も極めて優れたも
のになる。
(1) Specific effects of the invention As described above, the method for plasticizing hollow fibers for dialysis according to the present invention involves immersing hollow fibers in an aqueous glycerin solution maintained at a temperature of 40 to 100°C. Since it is characterized by containing 3 to 30% glycerin in the hollow W4 fibers, even if it is operated in an open system as shown in Figure 2, it will not drop as shown in Table 1. Since the propagation of dry bacteria is extremely low, for example, the Limulus test value is negative, it is extremely easy to manage the glycerin aqueous solution compared to the conventional method conducted at room temperature. <7 In other words, even if some bacteria or dead bacteria are present in the plasticizing tank and these adhere to the surface of the hollow fiber and are made into a product as is, During dialysis, it does not mix with the blood through the dialysis membrane, so there is no need to worry about heat generation.Also, since the glycerin content of the hollow fibers obtained is 3 to 30% by weight, it has moderate flexibility as mentioned above. Not only does it have excellent dialysis performance, but it also has extremely excellent dialysis performance.

また、グリセリン水溶液中のグリセリン濃度が0.5〜
5.0重量%であるので、第3図に示すように中空me
lt中のグリセリン含量を3〜30重量%にすることが
できる。さらに、グリセリン水溶液の液温を40〜10
0℃、好ましくは55へ・80℃にすれば可塑化槽内液
の制御・管理はさらに良好となる。また、中空繊維のグ
リセリン水溶液中への浸漬を、該水溶液中へ該中空繊維
を50〜i 3 QIIl/minで走行させることに
より前記グリセリン含量が容易に達成される。さらに、
中空繊維のグリセリン水溶液中の走行を、1.00〜1
.40の可塑化前後の延伸比で延伸することにより中空
繊維の駆動ローラに対する絡まりや切糸がな(なる。
In addition, the glycerin concentration in the glycerin aqueous solution is 0.5~
5.0% by weight, so as shown in Figure 3, the hollow me
The glycerin content in lt can be 3-30% by weight. Furthermore, the temperature of the glycerin aqueous solution was set to 40 to 10
If the temperature is set to 0°C, preferably 55 to 80°C, the control and management of the liquid in the plasticizing tank will be even better. Further, the above glycerin content can be easily achieved by dipping the hollow fibers into an aqueous glycerin solution and running the hollow fibers through the aqueous solution at a rate of 50 to i 3 QIIl/min. moreover,
Running of hollow fiber in glycerin aqueous solution is 1.00 to 1.
.. By stretching at a stretching ratio before and after plasticization of 40, the hollow fibers do not get entangled with the drive roller or are cut.

つぎに、実施例を挙げて本発明をさらに詳細に説明する
。なお、下記実施例においてパーセントは、特にことわ
らない限りすべて重量による。
Next, the present invention will be explained in more detail by giving Examples. In addition, in the following examples, all percentages are by weight unless otherwise specified.

実施例 25%アンモニア水溶液2,354gに塩基性硫酸銅5
40gを懸濁させて銅アンモニア水溶液を調製し、これ
に10%亜硫酸ナトリウム水溶液1.690(Iを添加
した。この溶液に重合度約1゜000(±100)のコ
ツトンリンターパルプを湿式粉砕し、脱水した含水リン
ター(含水率69゜7%>2.27311を投入して濃
度調整用RO水210gを添加して攪拌溶解を行ない、
ついで10%水酸化ナトリウム水溶液1,233CIを
添加して銅アンモニアセルロース水溶液(比M1.08
)を調製して紡糸原液とした。
Example 2 5% basic copper sulfate in 2,354g of 5% ammonia aqueous solution
40 g was suspended to prepare an aqueous cupric ammonia solution, and 1.690 (I) of a 10% aqueous sodium sulfite solution was added to this solution. Cotton linter pulp with a degree of polymerization of approximately 1°000 (±100) was wet-pulverized to this solution. Then, put in the dehydrated water-containing linter (moisture content 69°7%>2.27311), add 210 g of RO water for concentration adjustment, and stir and dissolve.
Next, 1,233 CI of 10% sodium hydroxide aqueous solution was added to prepare a copper ammonia cellulose aqueous solution (ratio M1.08
) was prepared and used as a spinning stock solution.

一方、第1図に示すような装置を用いて、浴槽2の非凝
固性液槽1に非凝固性液3としてi、1.i−トリクロ
ルエタンを供給して下層を形成さば、ついで凝固性液と
して50g/lの111度の水酸化ナトリウム水溶液を
供給して上層を形成させた。前記紡糸原液を環状紡糸孔
を上向きに装着した紡糸口金装置6に導き、5kg/c
m2の窒素圧で紡糸孔より前記下層の液温20±2℃の
非凝固性液3中に直接吐出させた。紡糸孔の孔径は3.
8mmであり、紡糸原液(Celffi7.8%、1.
10011(20℃))の吐出量は5.86m11分と
した。
On the other hand, using a device as shown in FIG. i-Trichloroethane was supplied to form a lower layer, and then a 50 g/l aqueous sodium hydroxide solution at 111 degrees Celsius was supplied as a coagulating liquid to form an upper layer. The spinning stock solution is introduced into a spinneret device 6 equipped with an annular spinning hole facing upward, and the spinning stock solution is fed to a spinneret device 6 equipped with an annular spinning hole facing upward.
It was directly discharged from the spinning hole into the non-coagulable liquid 3 in the lower layer at a liquid temperature of 20±2° C. under a nitrogen pressure of m2. The diameter of the spinning hole is 3.
8 mm, and the spinning stock solution (Celffi 7.8%, 1.
10011 (20° C.)) was set at 5.86 m11 minutes.

一方、紡糸口金装置6に装着した非凝固性液の導入管7
よりミリスチン酸イソプロピル(比重0゜854)を導
入し、前記線状吐出原液に内包させて吐出させた。上記
導入管の管径はl、2m+nであり、ミリスチン酸イソ
プロピルの吐出量は1.515− Om(1,’分とした。ついで、吐出原液〈非凝固性液
を内包)8(比重1.026>を1〜リクロルトリフル
オロTタン中に上昇させ、さらに上層の水酸化ナトリウ
ム水溶液(20±2℃)中を上昇させたのち、変向棒9
により水平方向に走行させた。
On the other hand, a non-coagulable liquid introduction pipe 7 attached to the spinneret device 6
Isopropyl myristate (specific gravity: 0°854) was introduced, encapsulated in the stock solution for linear discharge, and discharged. The diameter of the introduction tube is 1,2m+n, and the discharge amount of isopropyl myristate is 1.515-Om (1,'min).Next, the discharge stock solution (containing non-coagulable liquid) is 8 (specific gravity 1.5-Om). 026> in 1~lichlorotrifluoroTthane, and further in the upper layer sodium hydroxide aqueous solution (20±2°C), and then
It was made to run horizontally.

このときの非凝固性液の層高は200111RIであり
、界面から変向棒9の上端までの距離は150111m
であり、紡糸速度60m/分、トラバースワインド80
、走行路tlt4.4mであった。この浴槽からローラ
10により引上げたのち、12%水酸化ナトリウム水溶
液をシャワー状に振りかけ充分凝固さけ、水洗処理し、
5%硫酸により再生処理(脱銅処理)をし、さらに水洗
処理した。
The layer height of the non-coagulable liquid at this time is 200111RI, and the distance from the interface to the upper end of the deflection rod 9 is 150111m.
The spinning speed is 60 m/min, and the traverse wind is 80 m/min.
, the running path tlt was 4.4 m. After being lifted out of this bathtub by rollers 10, a 12% aqueous sodium hydroxide solution was sprinkled in a shower to prevent solidification, and then washed with water.
Regeneration treatment (copper removal treatment) was performed using 5% sulfuric acid, and further water washing treatment was performed.

可塑化処理は、第2図に示す装置を用い、55〜60℃
の液温に保たれた濃度1.8重量%のグリセリン水溶液
中に中空m帷を、可塑上前走行速度51〜52Ill/
1n1可塑化後走行速度54m/min、可塑化前後の
走行速度による延伸比を1゜05として4.5秒間浸漬
して走行させた。ついで、乾燥装置18において120
℃で乾燥を行な−16= った。この場合の可塑化槽のグリセリン水溶液について
行なったリムラス試験値は、第1表に示すように、マイ
ブースであった。これに対し、室渇く15〜20℃)で
行なった場合には、第1表に示すようにリムラス試験値
はプラスであった。
The plasticization treatment was performed at 55 to 60°C using the apparatus shown in Figure 2.
A hollow m-thread is placed in an aqueous glycerin solution with a concentration of 1.8% by weight, maintained at a liquid temperature of
It was immersed and run for 4.5 seconds at a running speed of 54 m/min after 1n1 plasticization and a stretching ratio of 1°05 between the running speeds before and after plasticization. Then, in the drying device 18, 120
Drying was carried out at -16°C. In this case, the limulus test value performed on the aqueous glycerin solution in the plasticizing tank was My Booth, as shown in Table 1. On the other hand, when the test was carried out at a room temperature of 15 to 20° C., the limulus test value was positive as shown in Table 1.

このようにして得られた中空繊維およびその他の条件下
で可塑化したときの中空IJ維について、グリセリン水
溶液の濃度と中空mu中のグリセリン含量との関係は第
3図に示すとおりであり、また、中空繊維中のグリセリ
ン含量と中空IMの破断強度との関係は第4図に示寸と
おりである。さらに、中空m維中のグリセリン含量によ
るダイアリザンスおよび限外濾過率UFRと6関係は第
5図に示すとおりである。なお、同図において、曲mA
は尿素について、曲線Bはクレアチニンについて、また
曲線CはビタミンB+ についてのダイアリザンス試験
結果でり、曲線りはUFRである。
Regarding the hollow fibers thus obtained and the hollow IJ fibers plasticized under other conditions, the relationship between the concentration of the glycerin aqueous solution and the glycerin content in the hollow mu is as shown in FIG. The relationship between the glycerin content in the hollow fibers and the breaking strength of the hollow IM is shown in FIG. Furthermore, the relationship between the glycerin content in the hollow m-fiber and the dialysance and ultrafiltration rate UFR is as shown in FIG. In addition, in the same figure, the song mA
shows the dialysance test results for urea, curve B for creatinine, and curve C for vitamin B+, and the curve is the UFR.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法を用いて透析用中空繊維を製造する
ための装置全体の概略を示す側面図、第2図は本発明に
よる中空繊維の可塑化方法を行イ【う装置の一実施例を
示す概略側面図、第3図はグリセリン水溶液11度ど中
空繊維中のグリセリン含…との関係を示すグラフ、第4
図は中空繊維中のグリセリン含量と中空wINの破断強
度および伸度との関係を示すグラフであり、また第5図
は中空11M中のグリセリン含mとダイアリザンスおよ
びLJ F Rどの関係を示すグラフである。 12・・・中空繊維、 17・・・グリセリン水溶液、
27a 、 27b 、 29−・・駆動ローラ。 23・・・熱交換器。 特許出願人 テ ル 七 株式会社・ 19−
Fig. 1 is a side view schematically showing the entire apparatus for producing hollow fibers for dialysis using the method of the present invention, and Fig. 2 is an embodiment of the apparatus for carrying out the method of plasticizing hollow fibers according to the present invention. A schematic side view showing an example, Fig. 3 is a graph showing the relationship between glycerin aqueous solution 11 times and glycerin content in hollow fibers, Fig. 4
The figure is a graph showing the relationship between the glycerin content in the hollow fiber and the breaking strength and elongation of the hollow wIN, and FIG. 5 is a graph showing the relationship between the glycerin content m in the hollow 11M and dialysance and LJ F It is. 12...Hollow fiber, 17...Glycerin aqueous solution,
27a, 27b, 29-... Drive roller. 23... Heat exchanger. Patent applicant Teru Shichi Co., Ltd. 19-

Claims (8)

【特許請求の範囲】[Claims] (1)=lIO〜100℃の波瀾に保たれたグリセリン
水溶液中に中空繊維を浸漬して該中空繊耗中に3〜30
重石96のグリセリンを含有さぼることを特徴とする透
析用中空繊維の可塑化方法。
(1) = lIO ~ 100 ° C. Hollow fibers are immersed in an aqueous glycerin solution maintained at a temperature of 3 to 30% during the hollow abrasion.
A method for plasticizing hollow fibers for dialysis, characterized by containing 96 weights of glycerin.
(2)グリセリン水溶液中のグリセリン濃度が0.5〜
5.0重量%である特許請求の範囲第1項に記載の透析
用中空m紺の可塑化方法。
(2) Glycerin concentration in glycerin aqueous solution is 0.5~
5.0% by weight of the method for plasticizing hollow m-dark blue for dialysis according to claim 1.
(3)中空繊維のグリセリン水溶液中への浸漬時間が3
〜5秒間である特許請求の範囲第1項または第2項に記
載の透析用中空繊維の可塑化方法。
(3) Immersion time of hollow fibers in glycerin aqueous solution is 3
The method for plasticizing hollow fibers for dialysis according to claim 1 or 2, wherein the plasticizing time is 5 seconds.
(4)中空繊維のグリセリン水溶液中への浸漬は、該水
溶液中へ該中空繊維を50〜13 Qm /n+inで
走行させることにより行なわれる特許請求の範囲第1項
ないし第3項のいずれか一つに記載の透析用中空繊維の
可塑化方法。
(4) The hollow fiber is immersed in the glycerin aqueous solution by running the hollow fiber into the aqueous solution at a speed of 50 to 13 Qm/n+in. A method for plasticizing hollow fibers for dialysis as described in .
(5)中空illのグリセリン水溶液中の走行は、1.
00〜1.40の可塑化前後の延伸比で延伸して行なわ
れる特許請求の範囲第4項に記載の透析用中空1!帷の
可塑化方法。
(5) Running a hollow ill in a glycerin aqueous solution is as follows: 1.
The hollow 1 for dialysis according to claim 4, which is stretched at a stretching ratio before and after plasticization of 00 to 1.40! Method of plasticizing cloth.
(6)中空mu中のグリセリン含量が5〜25重量%で
ある特許請求の範囲第1項ないし第5項のいずれか一つ
に記載の透析用中空繊維の可塑化方法。
(6) The method for plasticizing hollow fibers for dialysis according to any one of claims 1 to 5, wherein the glycerin content in the hollow mu is 5 to 25% by weight.
(7)中幸繊紺がセルロース系HAMである特許請求の
範囲第1項ないし第6項のいずれか一つに記載の透析用
中空繊維の可塑化方法。
(7) The method for plasticizing hollow fibers for dialysis according to any one of claims 1 to 6, wherein the Nakakosen navy blue is a cellulose-based HAM.
(8)セルロース系1111が銅アンモニアセルロース
繊維である特許請求の範囲第7項に記載の透析用中空繊
維の可塑化方法。
(8) The method for plasticizing a hollow fiber for dialysis according to claim 7, wherein the cellulose-based 1111 is a copper ammonia cellulose fiber.
JP7509784A 1984-04-16 1984-04-16 Plasticization of hollow fiber for dialysis Pending JPS6097005A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7509784A JPS6097005A (en) 1984-04-16 1984-04-16 Plasticization of hollow fiber for dialysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7509784A JPS6097005A (en) 1984-04-16 1984-04-16 Plasticization of hollow fiber for dialysis

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP58031329 Division

Publications (1)

Publication Number Publication Date
JPS6097005A true JPS6097005A (en) 1985-05-30

Family

ID=13566320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7509784A Pending JPS6097005A (en) 1984-04-16 1984-04-16 Plasticization of hollow fiber for dialysis

Country Status (1)

Country Link
JP (1) JPS6097005A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63252504A (en) * 1987-04-07 1988-10-19 Toyobo Co Ltd Hollow yarn type blood purifying membrane

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5094079A (en) * 1973-12-10 1975-07-26
JPS54147215A (en) * 1978-05-02 1979-11-17 Mitsubishi Rayon Co Ltd Hollow regenerated cellulose fibers and their production
JPS5527053A (en) * 1978-08-15 1980-02-26 Toray Ind Inc Selectively permeable hollow filament and preparing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5094079A (en) * 1973-12-10 1975-07-26
JPS54147215A (en) * 1978-05-02 1979-11-17 Mitsubishi Rayon Co Ltd Hollow regenerated cellulose fibers and their production
JPS5527053A (en) * 1978-08-15 1980-02-26 Toray Ind Inc Selectively permeable hollow filament and preparing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63252504A (en) * 1987-04-07 1988-10-19 Toyobo Co Ltd Hollow yarn type blood purifying membrane

Similar Documents

Publication Publication Date Title
JPS5860010A (en) Hollow fiber and dialytic membrane consisting of said hollow fiber
US4444716A (en) Method for manufacture of hollow fiber
US5505890A (en) Process for manufacturing cellulose acetate membranes
US4681713A (en) Method of making a hollow fiber membrane for dialysis
US5290448A (en) Polyacrylonitrile membrane
EP0359636B1 (en) Hollow cellulose fibers, method for making, and fluid processing apparatus using same
EP0175948B1 (en) Method for manufacture of hollow fibers for dialysis
JPH06296686A (en) Polysulfone hollow yarn membrane for medical purpose
GB2086798A (en) Microporous cellulose membrane
US2154893A (en) Manufacture of artificial threads or the like
JPS6097005A (en) Plasticization of hollow fiber for dialysis
JPS59150501A (en) Hollow fiber for dialysis
JPH0254132B2 (en)
JPS6333871B2 (en)
JPH0371144B2 (en)
US4587168A (en) Hollow fiber membrane for dialysis
JPH047256B2 (en)
JPS60166007A (en) Preparation of hollow yarn for dialysis
JPH02187133A (en) Cellulose-type hollow yarn and is production and fluid treatment apparatus
JPS6225168B2 (en)
JPS60166008A (en) Preparation of hollow yarn for dialysis
JPS6256764B2 (en)
JP2003275300A (en) Regenerated cellulose hollow fiber membrane for blood purification, its manufacturing method, and blood purifying apparatus
JP2707274B2 (en) Method for producing porous regenerated cellulose hollow fiber
JPS60193504A (en) Hollow fiber membrane for dialysis